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Abstract

High-dimensional, localized ribonucleic acid (RNA) sequencing is now possible owing to recent developments in spatial transcrip-
tomics (ST). ST is based on highly multiplexed sequence analysis and uses barcodes to match the sequenced reads to their respective
tissue locations. ST expression data suffer from high noise and dropout events; however, smoothing techniques have the promise to
improve the data interpretability prior to performing downstream analyses. Single-cell RNA sequencing (scRNA-seq) data similarly
suffer from these limitations, and smoothing methods developed for scRNA-seq can only utilize associations in transcriptome space
(also known as one-factor smoothing methods). Since they do not account for spatial relationships, these one-factor smoothing
methods cannot take full advantage of ST data. In this study, we present a novel two-factor smoothing technique, spatial and pattern
combined smoothing (SPCS), that employs the k-nearest neighbor (kNN) technique to utilize information from transcriptome and
spatial relationships. By performing SPCS on multiple ST slides from pancreatic ductal adenocarcinoma (PDAC), dorsolateral prefrontal
cortex (DLPFC) and simulated high-grade serous ovarian cancer (HGSOC) datasets, smoothed ST slides have better separability,
partition accuracy and biological interpretability than the ones smoothed by preexisting one-factor methods. Source code of SPCS
is provided in Github (https://github.com/Usos/SPCS).

Keywords: spatial transcriptomics, imputation, two-factor expression smoothing, k-nearest neighbors, tissue region partition,
pancreatic ductal adenocarcinoma, dorsolateral prefrontal cortex, high-grade serous ovarian cancer

Introduction
Mammalian tissue is highly heterogeneous with phe-
notypes that depend on their spatial distribution [1,
2]. Until recently, studies of tissue heterogeneity have
either sacrificed spatial relationships (e.g. scRNA-
seq) or produced low-dimensional measurements [e.g.
immunohistochemistry (IHC)] [3–7]. Novel ST techniques
allow whole transcriptome profiles to be measured
while preserving spatial relationships [8, 9]. These
techniques have already been profoundly useful in

understanding tumor [10–12] and non-tumor tissue
[13–16] heterogeneity. However, improvements in ST
library preparation [17], sequencing techniques and
bioinformatic analysis pipelines [18] are still necessary
and ongoing in contrast to more established scRNA-seq
standard practice protocols [19, 20].

The most widely utilized ST technologies are based on
highly multiplexed sequence barcoding, which suffers
from expression noise and dropout events [21, 22].
Barcoding-based scRNA-seq data suffer from similar
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limitations, while plate- and in vitro transcription-based
techniques, such as Smart-seq2 [23] and CEL-seq2 [24],
respectively, provide more representative expression
profiles per cell at the cost of fewer cells measured
per experiment. As a result, a multitude of techniques
have been developed to impute the missing expression
values and smooth the noise that comes directly from
the barcode-based non-spatial scRNA-seq. SAVER [25]
and MAGIC [26] use sets of correlated genes and relative
cell similarity in transcriptome space to impute the
dropout events and eliminate other types of expression
errors via machine learning techniques. These methods
are termed as ‘one-factor methods’, given that they
only incorporate expression values. The smoothened
expression values give more accurate representations
of the true underlying RNA abundances than the raw
read counts. ST data have the advantage of providing
spatial relationships that can be used in addition to
transcriptomic similarity for smoothing based on the
assumption that nearby cells will have more similar
expression profiles than distant cells.

Here, we present a novel two-factor smoothing
method, termed spatial and pattern combined smooth-
ing, i.e. SPCS, specifically designed for ST data, which
utilizes both the associations of spatial locations in
transcriptome space (expression pattern knowledge) and
in Euclidean space (spatial knowledge). By performing
SPCS on multiple ST slides from PDAC, DLPFC and HGSOC
datasets, smoothed ST slides have better separability,
partition accuracy and biological interpretability than
the ones smoothed by preexisting one-factor methods.

Methods
Datasets
The datasets that we use in this study include two real-
world ST datasets, PDAC [10] and DLPFC [14], and a simu-
lating dataset generated from HGSOC single-cell datasets
[27]. For the two real-world datasets, PDAC includes 10
ST slides sourced from the traditional ST platform, while
DLPFC is a Visium platform dataset with 12 slides. All the
data in these datasets consist of two different matrices
containing gene expressions and spatial coordinates. One
matrix consists of the gene expression values for each
spatial barcode hybridized from its corresponding spot
on the ST slide. The other matrix contains the spatial
locations in 2D space for each spot’s spatial barcode.
Using these two matrices, we can generate a 2D rep-
resentation of each gene’s expression value throughout
the biopsied tissue section. Because these datasets are
sourced from different ST platforms, i.e. traditional ST
platform and new developed Visium platform, we can
explore the influence of smoothing methods more com-
prehensively. A detailed statistical summary of the data
we used is provided in Supplementary Table S1 available
online at https://academic.oup.com/bib.

To better explore the ability of smoothing methods
to deal with outlier spots, we designed a simulation

experiment based on those used in the BayesSpace study
[28]. Simulated ST data are based on HGSOC single-cell
datasets and an immunofluorescence stained image
of an ovarian cancer biopsy. In the original single-cell
analysis of the HGSOC dataset, all the cells were divided
into 15 clusters by the DBSCAN clustering method and
annotated [27]. Considering the limited number of cells,
we only used some of the slides. Ground-truth cluster
labels were derived from single-cell level annotation of
tumor and stroma compartments within the image. To
make the simulated data reflect biology, we separated
the slide into four clusters: intratumor (including
dendritic and fibroblast cells), stroma (corresponding to
macrophage cells) and two tumor clusters (associated
with two different malignant cell clusters). Detailed
information about ground-truth clusters is provided
in Supplementary Table S2 available online at https://
academic.oup.com/bib. To test the ability of different
smoothing methods to find outlier spots, we randomly
mixed 5% of other cell types as perturbation for each
spatial cluster. We generated 10 sets of simulating data
in the simulation analysis.

SPCS of spatial transcriptomic expression
For each spot on an ST slide, there exists not only the gene
expression but also its spatial positions. This means we
can improve the quality of the expression values within
each specific spot using the relative similarity to the
other spots based on both expression pattern and spatial
location on the ST slide. To achieve this goal, we propose
a kNN-based method, SPCS, to perform smoothing and
padding. We display the procedure of the SPCS method
in Figure 1.

In our method, we obtained the smoothed expression
of each spot by integrating the contribution-weighted
expression of its pattern and spatial neighbors. Let Xi be
a vector of gene expression values for spot i, smoothed
expression X′

i can be calculated by the following:

X′
i = (1 − α) Xi + α

(
β

∑
j∈Ns(i) cs

jiXj∑
k∈Ns(i) cs

ki

+ (1 − β)

∑
j∈Np(i) cp

jiXj∑
k∈Np(i) cp

ki

)
.

(1)

In Equation (1), there are two ratio parameters α and
β. α is used to regularize the ratio of original expression
to the corrected expression, which avoids the expres-
sion of the object spot becoming over-smoothed. β is
used to adjust the ratio of spatial-based to pattern-based
smoothing for different applications. Ns(i) and Np(i) are
the spatial and pattern neighborhoods of the object spot
i, respectively. The size of the neighborhoods can be
determined by parameters τs and τp, which also should
be specified in advance. cs

ji and cp
ji represent the spatial

and pattern contributions of a corresponding neighbor
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Figure 1. Workflow of our proposed SPCS smoothing method. (A) An example of smoothing. In this sample, SPOT 1 is the object spot that is going to be
smoothed. For ST slides, preprocessing steps normalize the expressions and filter out genes with zero expression in most spots. Spatial neighborhood
is second-order neighborhood of SPOT 1 with nine spots. Spots, where all gene expression is 0, are treated as non-tissue regions and are excluded
from spatial neighborhood. Pattern neighborhood consists of the top eight spots with the most similar expression pattern to SPOT1. Both spatial and
pattern contributions are normalized, which means the total contribution of all neighbors is =1. Smoothing is performed by integrating parameter- and
contribution-weighted expression of the object spot itself and both its spatial and pattern neighbors. (B) Shape of second-order spatial neighborhood for
ST and Visium platforms. Spatial neighborhood is determined by Manhattan distance. Spots with the same Manhattan distance to object spot belong
to the same order of spatial neighborhood. Due to the different geometries of spots, the shape of spatial neighborhood could be different in different
platforms. (C) Padding strategy of SPCS. A missing spot will not be padded unless there are >50% of non-missing spots inside its spatial neighborhood.
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spot j to the object spot i. For traditional ST platform-
based PDAC dataset, we set α = 0.6, β = 0.4, τs = 2 and
τp = 16; and for the Visium platform-based DLPFC and
simulating datasets, we make τs = 4 due to the larger
number of spots. We will display the influence of these
parameters on data separability and discuss the selec-
tion of them in the Discussion section. In addition, SPCS
will also fill the missing spots using multiple non-missing
spatial neighbors. The source code of our proposed SPCS
method is provided in our Github repository (https://
github.com/Usos/SPCS). In the next section, we introduce
the detailed mathematical definitions of neighborhood,
neighborhood contribution and our missing spot padding
strategy.

Pattern neighborhood
ST data are a type of transcriptomic data that measure
gene expression patterns similar to scRNA-seq. Like
some scRNA-seq data, where cells can be localized
to tissue location of origin, spots that have a similar
expression pattern are more likely to belong to the same
region in a tissue. Therefore, smoothing the expression of
a given spot using other spots with a similar gene expres-
sion can improve data quality and is similar to one-factor
smoothing methods [25, 26] designed for scRNA-seq. A
group of the most similar spots based on the expression
‘pattern’ of the spot can be defined as that spot’s
‘pattern neighborhood’. Here, we provide the explicit
definition of the pattern neighborhood used by the
SPCS method.

Definition 1 (Pattern neighborhood): Sp is the gene
expression pattern space of an ST slide; i, j, k ∈ Sp are
different spots; dp

ij and dp
ik are pattern distances between

spots i, j and i, k, respectively. Np(i) is the τp pattern neigh-
borhood of spot i if | Np(i) |= τp, ∀j ∈ Np(i), ∀k ∈ Sp −
(Np(i) ∪ {i}) s.t. dp

ij < dp
ik.

For gene expression data, the overall shapes of gene
expression patterns are of greater interest than the indi-
vidual magnitudes of each feature [29]. Hence, we used
the Pearson correlation distance to measure the pattern
distance between different spots. Let ρij represents Pear-
son correlation coefficient (PCC) of coordinate of spots i
and j in pattern space, Pearson correlation distance dij of
spots i and j is given as follows [30]:

dij = 1 − ρij. (2)

In ST data, some genes are expressed at identical or
near-identical levels that lack the variance to establish
an accurate pattern neighborhood. Therefore, we used
principal component analysis (PCA) [31] to transform the
expression of spots into a 10D principal component space
before smoothing. These uncorrelated components with
the largest variance from our PCA are considered as the
gene expression pattern space.

Spatial neighborhood
In contrast to scRNA-seq data, ST data provide the spatial
position for each spot in the slide. Regions in proximity
on histopathology slides are more likely to be the same
tissue type. Aside from the pattern associations between
spots, we can also use spatial associations to smooth the
expression as a second factor. We define the group of
spots that are spatially near a given spot as the ‘spatial
neighborhood’ of that spot, which is defined explicitly
below.

Definition 2 (Spatial neighborhood): S represents the
set of spatial location indices of an ST slide, and i, j ∈ S,
ds

ij is the spatial distance between spots i and j. Ns(i) is the
τs spatial neighborhood of spot i, if ∀j ∈ Ns(i) s.t. ds

ij ≤ τs.
ST spots are spatially distributed in a checkerboard or

honeycomb pattern. Due to the geometric patterns inher-
ent to ST spot layout, Manhattan distance is a suitable
metric to measure the spatial distance between spots
inside an ST slide. Thus, we chose Manhattan distance as
the spatial distance to define our spatial neighborhood.
Due to the difference in the spatial pattern of spots,
the shape of spatial neighborhood could be different
in different platforms. Figure 1B illustrates the shape of
second-order neighborhood of both traditional ST plat-
form (checkerboard spatial pattern) and Visium platform
(honeycomb spatial pattern).

Contribution of neighbors on smoothing
Different neighbors in the spatial or pattern neighbor-
hood will have different impacts on the smoothing for
a given spot, which we refer to as ‘contribution’. Since
the definitions of spatial and pattern distance are dif-
ferent, we model the corresponding contributions in dif-
ferent ways. The contributions of both spatial and pat-
tern neighbors are still comparable since the range of
both is [0, 1]. For spots outside the neighborhood (both
spatial and pattern) of object spot, we assigned their
corresponding contribution to 0, which means they have
no contribution to smoothing of the object spot.

In pattern space, to better capture global gene expres-
sion patterns, we used PCC distance described in Equa-
tion (2) as the distance metric, whose range is [0, 2]. If
the expression of two spots has a negative correlation,
the distance based on Equation (2) will become >1. How-
ever, smoothing with negative correlation spots is not
performed since they are dissimilar. Therefore, we set
the contribution to 0 if the pattern distance between
the object spot and one of its neighbors is >1. We used
an exponential transformation to achieve this goal. For
object spot i and its pattern neighbor j, pattern contribu-
tion cp

ji can be defined as follows:

cp
ji =

⎧⎪⎪⎨
⎪⎪⎩

exp

⎛
⎝−

(
d
p
ij
σ

)2
⎞
⎠ dp

ij < 1

0 otherwise

. (3)
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The exponential function in Equation (3) limits the
range of cp

ji to [0, 1] and ensures that cp
ji decreases as

dp
ij increases. σ in this equation is a tuning parameter

that controls how the pattern contribution decays with
pattern distance. When dp

ij > 3σ/
√

2, cp
ji will quickly

decay to 0 [32, 33]. Hence, setting σ to
√

2/3 will remove
the effect of negative correlation neighbors and we can
simplify Equation (3) to

cp
ji = exp

(
−4.5

(
dp

ij

)2
)

. (4)

For spatial neighbors, we used Manhattan distance, an
integer >0, as spatial distance to measure their distance
to the object spot. Since the inverse proportional function
has a similar decay nature as exponential function, we
used the inverse of spatial distance as the spatial contri-
bution, i.e.

cs
ji = 1

ds
ij

. (5)

In this case, i is the spot being smoothed and j is the
spatial neighbor of spot i.

Padding of missing spots
For ST slides, there are two types of missing values. The
first type of missing value is missing genes, which means
the spot itself is located in the tissue region, but some
specific gene expression is missing. This is the main form
of dropout events and also frequently happens in single-
cell data, which most of the smoothing methods can
handle. The second type is missing spots, i.e. expression
of all genes in the spot is 0. These kinds of absent data
are unique in ST data and cannot be padded without
spatial position information, which often indicates the
spot has been removed due to a quality problem. Hence,
it is necessary to judge whether the missing spot needs to
be padded. As shown in Figure 1C, for each blank spot in
a slide, SPCS will only pad the ones whose predetermined
spatial neighborhood has >50% non-blank spots. This
criterion ensures that the boundary of the tissue will not
be erroneously expanded. Since there is no expression
on missing spots at all, we estimate the expression of
missing spots by their spatial neighbors only. Let i become
a missing spot, and its expression Xi can be estimated by
the following:

Xi =
∑

j∈Ns(i) cs
ji

Xj∑
k∈Ns(i) cs

ki
. (6)

In Equation (6), Ns(i) is τs-order spatial neighborhood of
spot i, cs

ji and cs
ki are spatial contributions of spot j and k to

spot i. Spot padding is performed after non-missing spot
smoothing. To evaluate the adjusted Rand index (ARI)
score for padding spots, we assign ground-truth labels
for them. The ground-truth labels of the padded spots
are determined by spatial contribution-weighted major

voting of their spatial neighbors and manually inspected
by a pathology resident.

Performance evaluation
To evaluate the effectiveness of our proposed SPCS
method, we first performed SPCS and other one-factor
smoothing methods (SAVER and MAGIC) on PDAC, DLPFC,
and simulated ST datasets. SAVER and MAGIC are two
representative one-factor smoothing methods using
different techniques (i.e. statistical model-based and
kNN-based). Then, we partitioned both smoothed and
the original unsmoothed real-world slides using the K-
medoids clustering method [34] and judged how well
the clusters were separated after smoothing by internal
evaluation of the unsupervised clustering. In addition,
we also explored how the parameters in SPCS will
influence the smoothing. Next, we performed multiple
unsupervised clustering methods, including K-medoids,
Louvain [35], mclust [36], BayesSpace [28] and spaGCN
[37], on all the smoothed and unsmoothed slides to find
out how well the clusters match the histopathological
labels from the corresponding image as an external
evaluation. Simulating data were also used here to detect
outliers for each smoothing method. As a gene filter, we
only kept genes with <70% zero expressed spots in our
analysis. For normalization, we performed logarithmic
count per million normalization before smoothing using
SPCS, SAVER and MAGIC. The distance metric used during
clustering was Pearson correlation distance as described
in Equation (2). For each dataset, the number of clusters
is predetermined by ground truth, which is provided
in Supplementary Tables S1 and S2 available online
at https://academic.oup.com/bib. PCA was performed
prior to clustering, and the eigenvectors with top 20
eigenvalues were selected to reduce the dimensions
of expression matrices and to enhance the clustering
results.

Internal evaluation
For the internal evaluation, silhouette score was used as
the evaluation indicator [38]. Silhouette score, a metric
whose range is [−1, 1], estimates the average distance
between clusters. A greater silhouette score indicates
better cluster separations. For an ST spot i, let a(i) be
the average distance between i and all the other ST spots
within the same cluster and b(i) be the smallest average
distance between i and all the ST spots with any other
clusters. The silhouette coefficient S(i) of ST spot i can be
expressed by the following:

S(i) = b(i) − a(i)
max{a(i),b(i)} . (7)

The silhouette score of an entire ST slide is the average
silhouette coefficient of all spots in it.

In this work, Pearson correlation-based measurement
in Equation (2) was used to calculate the dissimilarity
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between ST spots from the imputed ST data. Tradition-
ally, Euclidean distance is used, but here, we adopted
the dissimilarity metric defined in Equation (2) since
our clustering method is based on PCC distance. Padded
spots are excluded in this analysis. To make the average
silhouette coefficient of clustering under different
smoothing methods comparable, we used the same
distance matrix, which was based on dimensionality-
reduced original unsmoothed ST expression. Hence, in
our experiments, compared with unsmoothed slides,
an increase or lack of change in silhouette score on
smoothed slides represents the smoothing method has
enhanced the original data distribution, while a decrease
indicates the smoothing method has corrupted the
original data distribution.

External evaluation
For the external evaluation, we obtained the histopatho-
logical labels of the ST spots. The correspondence
between smoothed slides and histopathological labels
was evaluated at both clustering and gene expression
levels. At the clustering level, the imputed ST data
are clustered using multiple clustering algorithms.
Technical details of the clustering methods are shown
in Supplementary Table S4 available online at https://
academic.oup.com/bib. Next, the concordance was
evaluated between the clusters from the imputed ST data
and the labels from the corresponding histopathological
images. Then, the distribution of marker gene expression
was compared to the locations of histopathological
labels.

The ARI was used to evaluate the similarity between
the clustering results from the imputed ST data and
the histopathological labels [39]. For clusters from the

imputed ST data
{
I1, I2, I3, I4

}
and the histopathological

categories of ST spots
{
H1, H2, H3, H4

}
, we denoted nij as

the number of ST spots that are in both Ii and Hj. The ARI
is defined as follows:

ARI =

∑
ij

⎛
⎝ nij

2

⎞
⎠ −

∑
i

⎛
⎝ ni

2

⎞
⎠∑

j

⎛
⎝ nj

2

⎞
⎠

⎛
⎝ n

2

⎞
⎠

1
2

⎡
⎣∑

i

⎛
⎝ ni

2

⎞
⎠ + ∑

j

⎛
⎝ nj

2

⎞
⎠

⎤
⎦ −

∑
i

⎛
⎝ ni

2

⎞
⎠∑

j

⎛
⎝ nj

2

⎞
⎠

⎛
⎝ n

2

⎞
⎠

, (8)

where ni is the number of ST spots in Ii and nj is the
number of ST spots in Hj. A higher ARI value indicates
that the imputed ST clusters and the histopathological
labels are more similar. In this analysis, padded spots
that are unable to be clustered with the ground truth will
be treated as an error cluster.

In the marker gene evaluation with the PDAC dataset,
two marker genes, PRSS1 and TM4SF1, were used to com-
pare their expression distribution spatially. Both genes

are protein-coding genes. PRSS1 encodes a trypsinogen,
which is often highly expressed in normal pancreatic
tissues, while TM4SF1 is a common proto-oncogene and
is highly expressed in pancreatic cancer among other
malignancies [40, 41]. High expression of TM4SF1 in the
cancerous regions of the PDAC dataset has been detected
in previous research [10]. For the DLPFC dataset, three
other marker genes, MOBP, PCP4 and SNAP25, were used
in the analysis. Previous research has reported that these
genes can delineate different cortical layers [14]. The
expression distribution of these representative genes can
stratify the histopathological regions and can be used to
measure the accuracy of that partition.

Biological analysis
To examine how our algorithm aids in informing the
biology of an ST sample, we identified differentially
expressed genes (DEGs) and performed gene ontology
enrichment analysis (GOEA). DEGs were identified in
the PDAC slides by comparing two groups of spots with
TM4SF1-high (neoplastic tissue) and low expression (non-
neoplastic tissue). To define the two groups, we first
linearly transformed the expression values of TM4SF1
between [0, 1] by dividing each value by the maximum
expression value. The spots on each slide were split into
two groups, with one having a transformed expression
value <0.7 (TM4SF1 under-expressed) and the other
greater (TM4SF1 over-expressed). The cutoff 0.7 was
chosen as it can reflect the boundary of the cancer region
accurately.

A Kruskal–Wallis test was performed between the
over- and under-expressed groups, and the P-values
were adjusted using the Benjamini–Hochberg method
to account for the multiple comparisons [42]. Only
genes with an adjusted P-value < 0.05 were included.
In addition, we used logarithmic foldchange (logFC) to
determine the up-regulated and down-regulated events
for genes. Genes with a logFC > 1 were considered as
up-regulated and as down-regulated if the logFC were
<−1.

GOEA was performed on the DEGs using ‘g:Profiler’
[43]. The significance of enriched terms was tested by
cumulative hypergeometric test, and P-values were cor-
rected by g:SCS method [44]. Only terms with an adjusted
P-value < 0.05 were reported. All data sources offered by
g:Profiler were used, including gene ontology (GO) [45],
Reactome [46], KEGG [47], WikiPathways [48], TRANS-
FAC [49], CORUM [50], Human Protein Atlas [51] and
the Human Phenotype Ontology [52]. Heatmaps for each
sample were then generated to compare the terms found
by each smoothing algorithm.

The DLPFC slides were processed slightly differently
than the PDAC slides. To find the DEGs, one layer of
the cortex was compared with the other six layers. For
example, the expression values for all the sports in Layer
1 (L1) were compared to the expression values for the
spots in layers L2, L3, L4, L5, L6 and WM (white matter). A
Kruskal–Wallis test was performed between one layer of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac116#supplementary-data
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the cortex and all other layers, P-values corrected using
the Benjamini–Hochberg method and logFC calculated.
This resulted in seven sets of comparisons. The same
cutoffs of P-value < 0.05 and logFC > 1 were used. The
significant DEGs were then compared to a set of DLPFC
layer marker genes published by Zeng et al. [53]. Enrich-
ment analysis was performed using g:Profiler in the same
way as the PDAC slides were processed.

Results
In this study, we applied our two-factor smooth-
ing method SPCS and two state-of-the-art one-factor
smoothing methods (MAGIC and SAVER) to smooth ST
slides. We first evaluated the computational cost of SPCS
and provided the results in Supplementary Table S3. To
compare the performance of different smoothing meth-
ods, we evaluated the quality of generated clusters after
performing unsupervised clustering on both smoothed
and unsmoothed expressions. The generated clusters
and the distribution of marker gene expression were
compared with pre-labeled histopathological partitions
to check if the smoothed expression more accurately
reflected the pathology features of the corresponding
images. In addition, DEGs were identified in different
regions and GOEA was performed to reveal the biological
meaning from the smoothed data.

Internal evaluation
The silhouette score indicates the average distance
between clusters in a slide. Since we used the same
unsmoothed distance matrix in the different smoothing
methods, the silhouette score reflects how well the
smoothing methods kept the original data distribution.
For different smoothing methods, a greater silhouette
score than an unsmoothed slide usually represents
better separability of the smoothed expressions com-
pared to the original data distribution. In contrast,
a decreased silhouette score indicates the smoothing
method has changed the original data distribution
making it less separable. After clustering the spots into
the corresponding clusters, we calculated the silhouette
score of 10 PDAC slides and 8 DLPFC slides with 7 clusters
for each smoothing method, as shown in Figure 2A and
Supplementary Figure S1 available online at https://
academic.oup.com/bib. In most of the slides from these
two datasets, SPCS and MAGIC got a similar or even
greater silhouette score to the unsmoothed slide, while
SAVER got a significantly lower score. In addition, SPCS
had the greatest average silhouette score over the
other smoothing methods even slightly higher than
the unsmoothed slide. This result indicates that kNN-
based smoothing generally can keep the characteristics
of original data distribution resulting in better data
separability.

Figure 2B and C illustrates how the parameters influ-
enced the data separability of SPCS smoothed PDACA1

slide. For the two ratio parameters α and β, while β ≤
0.4, silhouette score was not affected much by changing
α, but the result became more sensitive to α once β is
large. This result indicates that pattern-based smoothing
can help keep the original data distribution. In addition,
the results reveal that the data distribution of spatial
neighbors is different from the pattern neighbors. For the
neighborhood size parameters, the results show that τs

and τp have no significant influence on data separability.
However, while τs = 2 and τp = 4, silhouette score is
significantly lower than other parameter combinations,
which indicates that neighborhood size parameters also
should be well tuned according to the dataset to avoid
unexpected results.

External evaluation
In the external evaluation, different smoothing methods
were evaluated based on the consistency of unsupervised
clusters with histopathological labels. The result of
PDACA1 alone is shown in Figure 3 since the histopatho-
logical labels were not available for other PDAC slides.
This slide can be well clustered by K-medoids clustering
even without smoothing. When examining the results
in detail, Figure 3B shows that most ST spots in the
cancer cells and desmoplasia region were separated
from other clusters. Most ST spots in the duct epithelium
region were also well separated, with slight mixing of the
interstitium and the normal pancreatic tissue regions.
It is worth mentioning that by including spatial position
information, SPCS can pad missing spots, which other
one-factor smoothing methods cannot do. Figure 3C and
D shows the influence of different smoothing methods
on marker gene expression. Compared with other
smoothing methods, SPCS generated a better marker
gene contrast between distinctive histopathological
areas due to two reasons. First, marker gene expressions
showed fewer dropouts and better-reflected expression
patterns across different tissue regions with SAVER and
SPCS (MAGIC does not impute the missing expressions).
Second, and in contrast to SAVER, SPCS imputed the
missing values and kept the spatial distribution of non-
missing values stable.

Figure 4 illustrates external evaluation results from 12
slides in DLPFC dataset. Figure 4A shows the influence of
smoothing methods on different clustering methods. To
make the evaluation comprehensive, we choose three
commonly used general clustering methods (i.e. K-
medoids, Louvain and mclust) and two state-of-the-art
clustering methods developed specifically for ST slides
(i.e. BayesSpace and SpaGCN). The results revealed that
smoothing achieved a higher ARI score using various
clustering methods and that SPCS outperforms other
one-factor smoothing methods for every clustering
method. When combining SPCS with Louvain or mclust
clustering methods on the DLPFC dataset, we got an ARI
score near BayesSpace, indicating that the combination
of SPCS with general clustering methods improves
the performance of spatial clustering on ST slides.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac116#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac116#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 2. Influence of smoothing on data separability and data distribution. (A) Box plot of average silhouette score of 10 PDAC samples and 8 seven-
layer DLPFC samples without smoothing and with smoothing by different methods (MAGIC, SAVER and SPCS). (B) Influence of parameters α and β on
average silhouette score for SPCS smoothed PDACA1 slide when τp = 16, τs = 2. (C) Influence of parameters τp and τs on average silhouette score for
SPCS smoothed PDACA1 slide when α = 0.6, β = 0.4.

In addition, combining SPCS and BayesSpace got the
highest ARI score among all the combinations. Due to the
difference in preprocessing steps, the results of SpaGCN
clustering were moderately lower than the original
publication [37], which indicates that hyperparameter
settings of SpaGCN are sensitive to preprocessing steps
and we hope to optimize this in the future. Figure 4B and
Supplementary Figure S2A, available online at https://
academic.oup.com/bib, illustrate clustering ground-
truth and BayesSpace clustering results combined with
different smoothing methods on slides 151675 and
151673. Compared with other one-factor smoothing
or without smoothing, SPCS can achieve more clear
and accurate boundaries between different regions,
which contribute to a higher ARI score. In addition,
smaller spatial neighborhood (τs) for SPCS can help
to capture long narrow regions in the slide but may
cause over clustering in thicker regions with a similar

length and width. Similar to the PDAC dataset, SPCS also
helps to obtain a better marker gene contrast between
distinctive cortical layers in DLPFC dataset as shown in
Supplementary Figure S2B–D available online at https://
academic.oup.com/bib.

We also performed simulation analysis to test the
clustering accuracy for different smoothing methods.
Louvain and BayesSpace, the two best general and ST
dedicated clustering methods in the DLPFC experiment,
were used in this analysis. The clustering ground truth is
shown in Figure 5A. For the 10 simulated slides, Figure 5B
illustrates the distribution of ARI score of each combi-
nation of smoothing and clustering method. In general,
since the original single-cell dataset was well clustered,
every combination of smoothing and clustering methods
got high ARI scores in this experiment. With Louvain
clustering, there was only a small difference in ARI scores
on different slides. For different smoothing methods,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac116#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac116#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
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Figure 3. Influence of smoothing on clustering accuracy in PDACA1. (A) Original ST slide of PDACA1 and its histopathological partitions. (B) Results of
K-medoids clustering on expression smoothed by different methods. ARI score, which reflects the correlation between clusters and histopathological
labels, is marked at bottom-right corner of each figure. Clusters are ordered by their size. Heatmap of smoothed expression of two marker genes, (C)
PRSS1 and (D) TM4SF1, are also shown. For demonstration purposes, expressions of genes are linearly transformed into the range of 0–1 as normalization.

SPCS gets a slightly higher average ARI score, which
indicates that spatial information helps general clus-
tering methods to cluster ST slides. However, Louvain
separates the spots into five clusters instead of four,
which means Louvain tends to cluster the spots accord-
ing to cell types. For the BayesSpace experiments, the
ARI scores were lower than Louvain on average and
were greater in variance. To better review the higher
variance of BayesSpace, we illustrate BayesSpace clus-
tering results of two simulating slides in Figure 5C and
D. Obviously, BayesSpace tends to merge small clusters
into nearby larger ones, which leads to oversmoothing in
the simulated dataset, and smoothing with SAVER and
SPCS will aggravate this problem. Overall, all methods
performed well on the simulated data (ARI > 0.85), but
it is worth noting that SPCS has a higher potential ARI
as evaluated by the 75th percentile. This is surprising

considering the other smoothing methods are specif-
ically designed for scRNA-seq data from which these
simulated ST slides are generated.

Biological analysis
The biological interpretability of the smoothed results
was compared between different smoothing methods.
Comparing between TM4SF1 over- and under-expressed
regions for the PDAC slides, the significant DEG num-
bers are displayed in Figure 6A. There were no DEGs
found in any smoothed or unsmoothed slides of PDACB2
and PDACG because they lacked TM4SF1, while a higher
number of DEGs were detected by SPCS in six out of
the rest eight ST slides. Correspondingly, the number of
enriched GO terms was also more from SPCS than the
other methods, as shown in Figure 6B, which are further
examined below.
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Figure 4. Influence of smoothing on clustering accuracy in DLPFC dataset. (A) Box plot of ARI score on various combinations of smoothing (No smoothing,
MAGIC, SAVER and SPCS) and clustering methods (K-medoids, Louvain, mclust, BayesSpace and SpaGCN) in 12 DLPFC samples. (B) Ground-truth label
and BayesSpace clustering results of smoothed and unsmoothed sample 151675. Clusters are ordered by their size.

The top 10 most significant GO terms found in slide
PDACA1 for each algorithm are shown in Figure 6C
for the up-regulated DEGs and in Figure 6D for the
down-regulated DEGs. More than 10 terms are shown
in the heatmap because most GO terms were not shared
between smoothing methods. Without smoothing the
slides, the up-regulated DEGs identified are related
to interleukin-1. Instead, the terms found by SPCS
smoothing are related primarily to cell adhesion,

extracellular matrix (ECM) organization and MET-
activated PTK2 signaling. The GO terms from all
smoothed and unsmoothed up-regulated slides can
be seen in Supplementary Figure S3 available online
at https://academic.oup.com/bib. g:Profiler could not
find any enriched terms for slides PDACB2, PDACD and
PDACG. Up-regulated enriched terms for all SPCS slides
except PDACB1 appear similar to PDACA1. The results for
the other methods had a small number of terms which

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac116#supplementary-data
https://academic.oup.com/bib
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Figure 5. Influence of smoothing on clustering accuracy in HGSOC simulating dataset. (A) Ground-truth labels of a simulated ST slide. (B) Box plot of
ARI score on Louvain and BayesSpace clustered 10 smoothed simulated ST slides. (C and D) BayesSpace clustering results of two of the simulated ST
slides are illustrated. Clusters are ordered by their size.

do not seem related to PDAC, except for slide PDACF
that contained cell adhesion and ECM terms for the no
smoothing and MAGIC.

The enriched GO terms for the down-regulated DEGs
(Figure 6D) tell a different story. Without smoothing,
GO terms related to digestion as well as infection
and autoimmune-related pathways and complement
cascade components (C3, C5) were identified. GO terms
related to digestion were seen with SAVER as well.
After performing smoothing, we found many more GO
terms related to the ECM, more complement binding,
as well as apoptosis regulation, but the infection and
autoimmune-related pathways were absent. Applying
MAGIC and SPCS also helped to find other complement
cascade components such as C1q complex binding. The
other slides shown are in Supplementary Figure S3,

available online at https://academic.oup.com/bib, and
have similar results to the terms described above.

Figure 6E contains terms enriched in the SPCS smoothed
data from up-regulated DEGs that have previously been
reported in PDAC [54–57]. These terms, such as cell
adhesion, cadherin binding, PI3K-Akt signaling pathway
and focal adhesion, are all significantly enriched in DEGs
from SPCS-smoothed data (albeit not among the top 10
enriched terms), but were absent from unsmoothed data,
reflecting the enhancement of biological interpretability
by performing our novel SPCS smoothing method.

The results of the biological analysis of the DLPFC
slides are shown in Supplementary Figure S4 available
online at https://academic.oup.com/bib. The significant
DEGs are shown in Supplementary Figure S4A, avail-
able online at https://academic.oup.com/bib, and show

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac116#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac116#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac116#supplementary-data
https://academic.oup.com/bib
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Figure 6. Biological analysis of unsmoothed and different methods (MAGIC, SAVER and SPCS) smoothed PDAC slides. (A) Number of DEGs identified
in each slide and (B) the number of GO terms found from GOEA in each slide shown on a log10 scale. DEGs that are down-regulated in TM4SF1 over-
expressed region and their corresponding GOEA terms are marked as slash-filled texture. The 10 most significantly enriched terms from each smoothing
method found in the (C) up-regulated DEGs and (D) down-regulated DEGs groups in TM4SF1 over-expressed region for PDACA1 slide are shown, shaded
by −log10(P-value). (E) GO terms enriched in SPCS smoothed slides from up-regulated DEGs that have previously been found in PDAC.
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a similar number of DEGs for each algorithm. When
comparing the DEGs with those reported by Zeng et al.
[53], a similar number of genes were shared for each
smoothing method, as shown in Supplementary Figure
S4B available online at https://academic.oup.com/bib.
These genes include MOBP (an oligodendroctye and white
matter marker), PCP4 (associated with L5 and L6) [14, 53]
and GFAP (associated with astrocytes and many neuro-
logical disorders) [58]. In addition, when comparing with
other smoothing methods, SPCS helped to discover five
DEGs [i.e. Cell Adhesion Molecule 4 (CADM4), ELOVL5,
AGR2, LGALS3BP and scavenger receptor class B Mem-
ber 2 (SCARB2)], which the authors have not found to
be reported in the DLPFC. These genes were found in
the white matter layers of the brain. The expression of
CADM4 and SCARB2 in sample 151673 is shown in Sup-
plementary Figure S4C and D available online at https://
academic.oup.com/bib, respectively.

Discussion
Importance of smoothing on ST data
ST data are based on highly multiplexed sequence anal-
ysis where barcodes are used to split the sequenced
reads into their respective tissue locations. However, this
type of sequencing suffers from high noise and dropout
events. To keep enough genes to perform biological anal-
ysis, we set a relaxed filtering threshold (<70% zero-
expressed spots) to filter out non-expressed genes in pre-
processing steps. Even with this rather relaxed threshold,
<10% of genes in slides of both PDAC and DLPFC datasets
were left, which indicated that dropout events are highly
frequent in ST datasets. By visualizing the expression
distribution of two marker genes, PRSS1 and TM4SF1 in
Figure 3, the gene-level dropout events can be easily seen,
as indicated by the black-colored spots on the slides.
PRSS1 and TM4SF1 dropout events frequently occurred
in interstitium regions of the slide, leading to a failure
cluster this area on unsmoothed ST data. In addition,
there are also entire spots missing in multiple ST slides,
which can negatively influence spatial clustering. By
performing smoothing methods, the missing and noisy
expression values were controlled to a certain extent so
that the partition of regions and downstream analysis are
greatly improved. Therefore, smoothing is an important
and necessary step for analyzing ST data.

SPCS improves data quality
Compared with unsmoothed data, smoothing improves
data quality. We have demonstrated that various
smoothing algorithms increase the separability and
partition accuracy of ST spots. Moreover, by performing
internal and external evaluations, we confirm that SPCS-
smoothed data show better quality as compared with the
two existing one-factor smoothing methods, MAGIC and
SAVER. In the internal evaluation, from the results shown
in Figure 2, SPCS smoothing method produces greater
silhouette scores than MAGIC and SAVER, which means

the ST data smoothed by SPCS have better separability.
In addition, a more similar silhouette score of SPCS
smoothed and original unsmoothed data indicates that
SPCS can better preserve the original data distribution,
which helps to keep accurate biological analysis results
while improving spatial clustering accuracy.

Our external evaluation verifies the partition accuracy
of smoothed data. One main objective of slide partition
is to identify different histopathological regions in the
slide. Hence, we measured the degree of overlap between
unsupervised clusters on smoothed data and histopatho-
logical partitions using ARI. Since the spots in the same
histopathological region are usually connected, incor-
porating spatial knowledge is expected to boost parti-
tion accuracy. Moreover, spatial knowledge can also help
to detect and pad missing spots. Indeed, as expected,
results in Figures 3–5 reveal that SPCS method generates
a higher ARI score than existing one-factor methods,
which means a more accurate histopathological parti-
tion can be acquired by performing the two-factor SPCS
method. In addition, it is also clear that SPCS can be used
before various clustering methods to improve clustering
accuracy. From the marker gene analysis, SPCS method
recovered the dropout events and enhanced the expres-
sions of marker genes in the corresponding regions. This
evidence proves that SPCS can improve the accuracy of
the ST spot partitions.

SPCS enhances biological interpretability
Our SPCS method identified many more DEGs than the
other smoothing methods tested for most of the ST slides.
IL1RN, KRT7, LAMB3, LAMC2, NOTCH3 and S100A16 were
identified as up-regulated DEGs in the PDACA1 slide
after SPCS processing, and each of these genes has been
associated with poor survival in PDAC [55, 59]. IL1RN
and LAMB3 were also found using unsmoothed data
and LAMB3 was detected with MAGIC smoothed data,
but the other genes were uniquely detected by SPCS. A
higher number of DEGs associated with GO terms after
SPCS processing than unsmoothed, SAVER and MAGIC
processing. Specifically, only slides PDACE and PDACF
contained up-regulated DEGs and GO terms for SAVER
and MAGIC, although PDACD was the only slide that
had DEGs and no GO terms for the down-regulated
genes. The unsmoothed up-regulated slides PDACA2,
PDACB3, PDACD and PDACE and down-regulated slides
PDACA3, PDACB3 and PDACD also had DEGs but no GO
terms. In contrast, every SPCS smoothed slide that had
DEGs also had GO terms. The SPCS data demonstrated a
TM4SF1 expression landscape that matched the original
histopathological assignment more accurately than the
other smoothing methods.

The GO terms reported in PDACA1 using SPCS
related more to pancreatic cancer and to the role of
TM4SF1 than the non-smoothed data and the two one-
factor smoothed data. TM4SF1 has been found to be
over-expressed in PDAC and has roles in apoptosis,
proliferation and cell migration [40]. Previous work

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac116#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac116#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac116#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
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found that collagen 1 (GO:0030199) binds with DDR1,
which then interacts with TM4SF1 to activate the focal
adhesion kinase (FAK) [40, 60, 61]. This results in the
disruption of E-cadherin (GO:0045296), leading to the
Wnt signaling pathway and loss of cell–cell adhesion
(GO:0050839) [40, 59]. The FAK pathway also increases
the expression of N-cadherin (GO:0045296), which results
in the migration of cancer cells [40, 59]. TM4SF1 can
also activate the AKT pathway (KEGG:04151), leading
to anti-apoptotic effects and angiogenesis [40, 62]. All
of these previously identified GO terms are important
factors for PDAC survival and metastasis. They were also
identified using SPCS-smoothed data only, which would
have been missed using other smoothing methods or
with the unsmoothed ST data.

The terms found through GOEA were more inter-
pretable in the scenario of PDAC and its pathogenesis
when applying SPCS smoothing. Many of the SPCS top
10 terms, as shown in Figure 6C, and previously reported
terms, as shown in Figure 6E, are similar to those found in
the literature [54–57] and are consistent between slides.
Without applying SPCS, some of the top terms found
in Figure 6D are involved in typical pancreatic activity,
such as peptidase regulator activity (GO:0061134),
digestion (GO:0007586) and triglyceride lipase activity
(GO:0004806), which indicates that important PDAC
pathology-related GO terms may be missed when data
are not smoothed or not properly smoothed.

Identifying the DEGs in different histological regions
and checking their associated GO terms can help evalu-
ate the biological interpretability of a smoothed slide. It is
worth noting that the GO (i.e. gene set database) and the
enrichment tool can yield different results. The simplest
example would be the use of a hypergeometric test to
determine enriched gene sets opposed to gene set enrich-
ment analysis, which accounts for the significance of
DEGs. The hypergeometric test has a longer history of use
and is easily interpretable whereas gene set enrichment
analysis is a newer approach. Furthermore, the gene
sets themselves differ between databases such as KEGG
and GO. There could potentially be more enriched KEGG
pathways for one sample and more enriched GO terms
for another. For these reasons, we used g:Profiler since
it incorporates many gene set databases in the analysis
and relies on the well-established hypergeometric testing
approach.

Using the cortical layers in the DLPFC slides, we
found a similar number of DEGs and shared genes
between the smoothing methods. Most of these genes
were previously reported. Due to the enhanced contrast,
our proposed SPCS method helped to identify five DEGs
in the white matter, while the other methods did not.
The CADM4 and SCARB2, to the author’s knowledge,
have not been identified as white matter markers in
the DLPFC. Cell adhesion molecules like CADM4 play
an important role in myelination by oligodendrocytes.
Higher expression of CADM4 leads to many short myelin
internodes that disrupt the normal myelination process

[63]. SCARB2 is a lysosomal membrane receptor for the
glucocerebrosidase enzyme. It has been associated with
Parkinson’s disease and Lewy Body disease. Glucocere-
brosidase degenerates sphingolipid, which is important
for brain development. There is some evidence that
decreases in sphingolipids can lead to demyelination [64,
65]. While the authors do not intend to present CADM4
and SCARB2 as marker genes for white matter, we believe
that SPCS can be used to help aid with this task. The
enrichment analysis results for DLPFC are not shown but
are similar between all smoothing methods. This is likely
because the number of GO terms found is correlated
with the number of DEGs. It is possible that using a
gene marker instead of layers to identify DEGs could
produce different results. Given the generally clearly
defined boundaries of the brain, using layer data to get
differential gene expression seems more appropriate.

Determination of SPCS parameters
There are four parameters in SPCS:τs, τp, α and β. The
parameters τs and τp are designed to adjust the size of
spatial neighborhood and pattern neighborhood, respec-
tively. Including more information while performing
smoothing is beneficial for a more robust result, and
increasing the size of neighborhood is a good way to
achieve that goal. Blindly expanding neighborhoods
will incorporate some spots that are not similar to the
spot being smoothed; therefore, SPCS uses contribution
weighting to reduce this effect, which gives the size
of both spatial and pattern neighborhoods limited
influence on data separability, as shown in Figure 2C.
In addition, as shown in Figure 4B, spatial neighborhood
will also influence clustering sensitivity. A smaller
spatial neighborhood (τs) for SPCS can help to capture
long narrow regions in slides but may cause over
clustering in thicker regions with a similar length and
width. Therefore, we recommend a modest selection of
these two parameters to balance the trade-off. For most
cases, τp ≤ 16 and τs ≤ 4 are recommended.

The parameters, α and β, are designed to balance the
original expression and corrections from spatial and pat-
tern neighbors, which has a significant effect on smooth-
ing quality. Due to the pattern similarity between the
object spot and its pattern neighbors, corrections from
pattern neighbors tend to enhance the original data dis-
tribution features, which is shown by an increased or
stabilized on silhouette score. In contrast, corrections
from spatial neighbors make the object spot expres-
sion consistent with its spatial neighbors. This is bene-
ficial for spatial clustering but may change the original
data distribution, leading to a worse silhouette score. To
keep the accuracy of spatial clustering and biological
analysis simultaneously, it is important to balance the
intensity of correction with the underlying expression
signatures. Results in Figure 2B indicate that the influ-
ence of smoothing strength (α) on data separability is
heavily reliant on the proportion of spatial and pattern
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correction (β). Hence, we recommend setting α between
0.2 and 0.8 and β <0.6 in most cases, and values should
be selected carefully according to data distribution. In
addition, as indicated in Figure 5, when combined with
spatial clustering methods like BayesSpace, smaller α

and β are recommended to avoid erroneous merging of
small clusters.

Conclusion
In response to expression noise and dropout events in
barcoding-based sequencing technologies, smoothing
has become an essential data processing step before
performing the downstream analysis on ST data. In
this paper, we proposed a novel two-factor ST data
smoothing method, SPCS, which can take full advantage
of both the expression patterns and the spatial patterns
contained in ST data. Compared with traditional one-
factor smoothing methods, SPCS improved separability,
partition accuracy and biological interpretability of ST
experiments. SPCS can effectively improve ST data qual-
ity for accurate and meaningful downstream analyses.
SPCS is broadly applicable to any barcoding-based ST
technology.

Key Points

• Due to the common issue of noise and dropout events in
ST data, smoothing has become a necessary step before
downstream analysis on ST data.

• SPCS is a novel kNN-based two-factor smoothing method
which can fully utilize both expression pattern and spa-
tial knowledge in ST data.

• Compared with traditional expression pattern
knowledge-based one-factor smoothing methods,
SPCS can provide better separability, partition accuracy
and biological interpretability.

Supplementary Data
Supplementary data are available online at https://
academic.oup.com/bib.
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