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Drug-target-ADR Network and Possible Implications of
Structural Variants in Adverse Events
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Abstract: Adverse drug reactions (ADRs) are of major
concern in drug safety. However, due to the biological
complexity of human systems, understanding the under-
lying mechanisms involved in development of ADRs
remains a challenging task. Here, we applied network
sciences to analyze a tripartite network between
1000 drugs, 1407 targets, and 6164 ADRs. It allowed us to
suggest drug targets susceptible to be associated to ADRs

and organs, based on the system organ class (SOC).
Furthermore, a score was developed to determine the
contribution of a set of proteins to ADRs. Finally, we
identified proteins that might increase the susceptibility of
genes to ADRs, on the basis of knowledge about genomic
structural variation in genes encoding proteins targeted by
drugs. Such analysis should pave the way to individualize
drug therapy and precision medicine.

Keywords: Network sciences · drug safety · pharmacology · adverse drug reactions · precision medicine

1 Introduction

The occurrence of adverse drug reactions (ADRs) is an
important concern for the health of patients as well as for
the healthcare sector as it costs several billion dollars every
year. ADRs account for 5% to 7% of all hospitalized
individuals and represent the fifth most common cause of
death in hospitals.[1-3] ADR is defined as a noxious and
unintended response to drug therapy at a normal dose.
Several factors, including polypharmacy, age, type of
prescribed medicines, and genomic variations, might
influence its occurrence.[4] For example, drug-drug interac-
tions (DDIs) from combined medication have been reported
to account for 30% of all ADRs.[5] In addition, genetic factors
and structural variations may predispose a person to some
ADRs. It has been reported that pharmacogenomics
accounts for about 80% of the variability in drug efficacy
and safety.[6] Therefore, identifying the underlying mecha-
nisms of these ADRs is necessary to limit their severity and
mortality and to improve drug safety.

As a large number of drugs interact with more than a
single target, perturbated protein interaction network sys-
tem-wide approaches may be more suitable to capture the
effects of drugs on the human body.[7–8] A variety of methods
linking ADRs to drug actions have been proposed. One
common approach is to correlate the chemical structure of a
drug compound with a particular set of ADRs.[9–11] However,
chemically unrelated structures might share ADRs, targeting
similar off-targets or pathways. To overcome this limitation,
methods based on target profiling similarity and side effect
similarity have been investigated.[12–13] Campillos et al.[14]

proposed a method based on side effect similarity to
associate drug pairs with common protein targets, whereas
Fliri et al.[15] adopted a systems biology approach, showing
that drugs with similar bioactivity profiles tend to cause

similar side effects. In another study, Lounkine et al.
developed an enrichment score that associates targets with
ADRs based on the likelihood of the target-ADR pairs co-
occurring as compared to random associations.[16] Garcia-
Serna and Mestres[17] assigned a strength score between
drug and secondary effects (SE) depending on the reporting
frequency among the five SE sources used in their study,
where “1” denoted presence of SE in all sources, and “0.2”
denoted presence in only one source.

More recently, systems pharmacology approaches, com-
bining network sciences and chemical biology, have been
developed to predict and understand ADRs. Network sciences
allow the integration of heterogeneous data sources and the
quantification of their interactions.[18–19] Several studies have
reported new insights on ADRs based on network representa-
tion and analysis. A bipartite graph and supervised machine
learning were developed to predict new drug-protein pairs by
combining chemical space (chemical structure similarity),
genomic space (amino acid similarity), and pharmacological
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effect.[20] Based on the topological properties of protein-
protein interactions, network biology methods were applied
to identify proteins involved in specific ADRs.[21–22] Chen et al.
performed an ADR-protein network and identified 41 network
modules related to specific ADRs.[23] Oprea et al. included
tissue information on a drug-target-SE network and reported
that a drug is more likely to cause SE in the organ/tissue
where it is more likely to accumulate.[24] Recently, a combined
deep learning and biomedical tripartite network approach to
predict drug-ADR associations was reported.[25]

In the present study, we developed a network biology
model that complements the ones previously mentioned to
identify and prioritize drug targets involved in specific ADRs as
well as in more general terms, based on the system organ
class (SOC) implemented in the Medical Dictionary for
Regulatory Activities (MedDRA).[26] In addition, we included
genomic structural variation (SV) information in the models to
determine drug target associations contributing to the highest
ADR susceptibility in individuals.

2 Material and Methods

2.1 Data

2.1.1 DrugBank

To build the network model, we used the DrugBank database
v5.1.5.[27] It is a free online database with a wide range of
information on drugs, notably drug-target relationships.
Considering all drugs, and only human proteins, we collected
11,355 small molecules targeting 3510 proteins, reaching
24,579 drug-target interactions.

2.1.2 DrugCentral

DrugCentral is a drug information resource, which includes,
among others, Food and Drug Administration (FDA) Adverse
Event Reporting System (FAERS).[28] The likelihood ratio test
(LRT) for the safety signal detection method proposed by
Huang et al. was used.[29] Any drug-ADR with a likelihood ratio
(llr) superior to the likelihood ratio threshold was conserved in
our analysis, giving us 92,794 associations with 8501 unique
ADRs. Moreover, on the basis of the Medical Dictionary for
Regulatory Activities (MedDRA), ADRs can be categorized
using the System Organ Class (SOC) classification, which is the
highest level in MedDRA hierarchy.[26] Therefore, all the
compiled ADRs were categorized through the 27 SOCs,
representing them at the level of organs and body systems,
including other special categories (e.g., social factors, surgery,
poison, and injury). The SOC abbreviations are described in
Table S1 in the Supporting Information.

2.1.3 Database of Genomic Variants

For information on the genomic structural variation observed
in the population, we used the Database of Genomic Variants
(DGV).[30] DGV provides high-quality structural variations (SVs),
defined as a region of DNA elements approximately 1 kb and
larger and can include inversions and balanced translocations
or genomic imbalances (insertions and deletions), commonly
referred to as copy number variants (CNVs). The content of
DGV represents SV identified in healthy control samples from
large published cohorts and integrated by the DGV team. This
database contained 8 million entries in 2019. We worked with
the latest release available from the GRCh37(hg19) assembly
of supporting variants section (http://dgv.tcag.ca/dgv/docs/
GRCh37_hg19_supportingvariants_2020-02-25.txt). We ex-
tracted SVs with variant subtypes, including “deletion”,
“duplication”, “loss” and “gain”. SVs without frequency and
gene information were removed. This leads to 83541 SVs with
frequencies. For clarity, we combined deletion and loss under
the term “loss” and duplication and gain to the term “gain”.

2.2 Tools

2.2.1 Network Development & Representation

All compiled data are represented as a graph. A graph is a
mathematical model consisting of a set of nodes defined by
properties that are linked by relationships (edges). We used
the Neo4j tool (www.neo4j.com), which is a high-performance
NOSQL graphics database using Cypher-based query com-
mands. Data collected from the DrugBank, DrugCentral, and
DGV databases were integrated together into a network. First,
the drug-target reported in DrugBank was considered. The SV
information from the DGV was then connected to the targets,
forming a drug-target-SV network. In parallel, the drug-ADR-
SOC network was built from DrugCentral data. Finally, we
merged both networks. As we have no information about
specific target-ADRs, putative links were added to the drug-
ADR associations, based on the assumption that if a drug has
an ADR, then the protein targets may be causing it.

We deleted the nodes that either did not have any link, or
did not have a link considering all integrated collected data
(for instance, if a drug is connected to a target, but had no
ADR linked to it, we would remove this specific molecule
node). This step allowed to refine and reduce the compiled
data, and to keep only a fully linked graph (Figure 1A). An
example is also represented in Figure 1B with the drug
bivaluridin

2.2.2 Networks Analysis

Several parameters were considered to analyze the three
networks (Drug-ADR, Drug-Target and, Drug-Target-ADR).
Among them, we investigated the following:
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– Network density measures the fraction of edges in the
network, compared to the theoretical maximum number
of edges connecting each node.

– Network centrality is a measure of how central its most
central node is in relation to all the other nodes.

– The degree of a node corresponds to the number of
edges connected to a node.

– Network heterogeneity measures the variance of the
connectivity distribution in a network.

– Betweenness centrality is the frequency with which the
shortest paths between any pair of nodes pass through
that node. Betweenness centrality estimates the global
influence of a node in controlling the interaction
between a pair of nodes passing through this node in
the network. A node with high betweenness centrality is
usually a node concentrated in a dense subnetwork with
many connections to other nodes. Such a node has a

larger impact on the information flow in the global
network.[31] Betweenness centrality is usually associated
with closeness centrality, measuring the importance of a
node in a subnetwork. It assumes that the closer a node
is to other nodes, the more likely it is to be included in
the shortest paths.

– Radiality is a node centrality index. If the radiality is high,
it means that, with respect to its diameter, the node is
generally closer to the other nodes, whereas low radiality
means that the node is peripheral.

– The topological coefficient is a relative measure of the
extent to which a node shares its neighbors with other
nodes. Nodes that have one or no neighbors are
assigned a topological coefficient of zero.

– The connectivity of a node is the number of its neighbors.
The neighborhood connectivity of a node n is defined as
the average connectivity of all neighbors of n.

Figure 1. A) Overview of the integrative developed network. The nodes are represented by circles and colored according to their labels. The
numbers of nodes in the entire network are written below their labels. B) Example of a part of the network. Here, 3 nodes “SV” are
represented in dark green and named after their variant accession number, 2 nodes “Target” in beige named after their gene name, 1 node
“Molecule” in red named after the molecule name, 3 nodes “ADR” in blue named after their ADR term, and 3 nodes “SOC” in orange named
after their SOC abbreviation. The edges (in gray) show the relations between different nodes. This network was created using the Neo4j tool.

Full Paper www.molinf.com

© 2020 The Authors. Published by Wiley-VCH GmbH Mol. Inf. 2020, 39, 2000116 (3 of 11) 2000116

Wiley VCH Dienstag, 23.03.2021

2012 - closed* / 174510 [S. 620/628] 1

www.molinf.com


For, the drug-target-ADR network, the drug-ADR linkages
were removed, to conserve only the Drug-Target-ADR-SOC
connections in the network indices calculation.

All analyses were performed using R[32] and the Network
Analysis plugin from Cytoscape (v.3.6.1) (www.cytoscape.org).
Some figures required special R packages such as “circlize”[33]

to produce the chord diagram, and “lattice”[34] and
“ggplot2”,[35] which produce various types of plots.

3 Results and Discussion

3.1 Drug-ADR and Drug-SOC Networks

Based on the 1000 drugs from the Drugbank, we collected
6164 ADRs from DrugCentral. To analyze the multiple ADR-
drug annotations, an undirected network-based model was
developed. Although such a large model is difficult to
visualize, network analysis allows the identification of some
interesting features and modules related to the topology of
the graphs. The obtained drug-ADR network was sparse, with
a total of 7164 nodes (drugs and ADRs combined). It has a low
network density (0.003), a network heterogeneity of 2.98
(tendency to contain hubs), an average number of 24 neigh-
bors, and a network centrality of 0.21 (close to 0 when all
nodes have the same centrality and close to 1 when one actor
has the maximal centrality). ‘Nausea’, ‘Vomiting’ and ‘Drug
ineffective’ are the ADRs with the highest closeness centrality
(around 0.48), and radiality (around 0.86) i.e. they have the
highest number of drugs connected (407, 402 and 390
respectively). Methotrexate (used in acute lymphoblastic
leukemia, breast cancer, rheumatoid arthritis), alendronic acid
(indicated for the treatment of osteoporosis), and prednisone
(an anti-inflammatory or immunosuppressive drug derived
from cortisone) show the highest number of links to ADRs
(1561, 1422, and 1377, respectively). Interestingly, 155 drugs
are associated with only one ADR (293 drugs have less than
five ADRs), and 1626 ADRs are only related to one drug
(3718 ADRs are connected to less than five drugs). However, a
single ADR for a drug does not mean that this ADR appears
only for this drug. For example, prucalopride, a drug indicated
for the treatment of chronic idiopathic constipation, shows
‘Vomiting’ as unique ADR, even if ‘Vomiting’ is connected to
402 drugs. Similarly,“Agoraphobia” was the only ADR seen
with the antidepressant paroxetine. However, this drug is
annotated to 449 ADRs. An interesting feature is the topo-
logical coefficient (TC), which measures how much a node
shares its neighbors with other nodes. For example, the ADR
‘Mental disability’ is indicated with two drugs and has a TC of
1, that is, the drugs aminophylline and theophylline are
annotated for the same 55 ADRs (Neighborhood Connectivity
score). Drugs sharing the same set of ADRs can be analogs –
such as droxidopa and norepinephrine for the ‘Tracheal
atresia’ ADR, mycophenolate mofetil and mycophenolic acid
for ‘Wound infection pseudomonas’ ADR – but also structur-
ally different, although indicated for the same treatment

(fluorouracil and capecitabine for ‘Tumor perforation’ or
atovaquone and proguanil for ‘Plasmodium falciparum in-
fection’).

Based on the ADR-drug interaction pairs, it is possible to
create an ADR-ADR network that reaches close to 5 million
unique interactions between 6164 ADR terms. This network
allows the identification of ADRs interrelated to other ADRs by
large sets of drugs. This is the case, for example, with the
ADRs ‘Nausea’ and ‘Vomiting’ sharing 360 drugs and ‘Dizzi-
ness’ and ‘Nausea’ sharing 288 drugs. Some ADRs are also
related to common blood tests to evaluate liver problems
such as increased alanine aminotransferase and increased
aspartate aminotransferase, which share 219 drugs. Therefore,
although many drugs have common general ADRs, drugs may
also be related to specific ADRs. In the second step, each ADR
has been annotated to one of the 27 SOCs defined in MedDra.
Using this classification, we developed an SOC-SOC network
to visualize the 27 SOC interactions by drugs (Figure 2). The
larger the SOC, the more the drugs depict ADRs for this SOC.
Similarly, the larger the edge between the two SOCs, the less
the drugs have specific ADRs. We observed a fully connected
network between the 27 SOCs. Globally, the ‘General disorders
and administration site conditions’, the ‘Injury, poisoning and
procedural complications’, and the ‘Nervous System disorders’
are the most targeted SOCs by drugs with 684, 653, and
616 drugs, respectively. ‘Reproductive system and breast
disorders’, ‘Endocrine disorders’, and ‘Ear and labyrinth
disorders’ are less impacted with 144, 156 and 170 drugs,
respectively (Figure 2). The majority of the SOCs are highly
connected to the ‘General disorders and administration site
conditions’. In addition, many compounds with'Nervous
System disorders’ also present ‘Pregnancy, puerperium, and
perinatal condition’ (182 drugs). Similarly, ‘Cardiac disorders’
and ‘Vascular disorders’ (361 drugs) are linked as well as
‘Gastrointestinal disorders’ with ‘Injury, poisoning, and proce-
dural complications’ (458 drugs). We can observe that drugs
annotated to ‘Infections and infestations’ are also linked to
‘Respiratory, thoracic, and mediastinal disorders’, ‘Gastrointesti-
nal disorders’, and ‘Renal and urinary disorders’, which might
give some input about the comorbidities seen with the Covid-
19.[36]

3.2 Drug-Target-ADR and Drug-Target-SOC Networks

After analyzing both drug-ADR and drug-SOC interactions, we
included available drug target information from the DrugBank
database in the previously developed network and performed
a tripartite network analysis to assess drug targets that are
potentially associated with an ADR or an SOC. The principle is
the more drugs share common ADRs and proteins, the more
the proteins are associated to these ADRs. By integrating the
drug target information into the drug-ADR model, we built a
network of 515959 interactions between drugs, targets, ADRs,
and SOCs. The full list of the network scores obtained for each
node is available in the Supporting Information (Table S2). The
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drug-target-ADR network is still sparse with a network density
of 0.014 between the 8571 nodes and a similar network
heterogeneity (2.43). The average number of neighbors (120)
as well as the network centrality (0.66) is higher, meaning that
some nodes (proteins) are more central than others (drugs
and ADRs). Proteins targeted by drugs are essentially
cytochromes and transporters, except for the serum albumin
protein (ALB) (Table S3 in Supporting Information). As primary
targets are drug-metabolizing enzymes (DMEs), these results
are not surprising.[37–38] If we remove the cytochrome enzymes,
proteins such as ALB, SLC22 A6, PTGS1, UGT2B7, UGT1 A9,
and PTGS2 are highly related to ‘Acute kidney injury’ (Fig-
ure 3). Some of these proteins have been associated with this
adverse effect in studies.[39–41] ‘Somnolence’ is highly related to

ADRA1 A, but so far, no clear relationship has been reported
in the literature. Finally, ‘Toxicity to various agents’ is highly
associated with the human H1 receptor (HRH1). Although
antihistamine drugs are associated with many ADRs, a recent
study has reported that the polymorphism of HRH1 may be
related to the severity of ADR, notably sedation.[42]

In the tripartite network, 84 drugs were annotated to a
unique protein (449 drugs with less than five proteins).
Through the drug-ADR relationships, it is possible to assume
that some proteins have an impact on specific ADRs. For
example, the 4-hydroxyphenylpyruvate dioxygenase protein
(HPD) is the unique target of the drug nitisone in DrugBank
and is linked to the ADR ‘Amino acid level increased’, ‘Liver
transplant’ and ‘Hepatocellular carcinoma’. The squalene

Figure 2. A) System Organ Class (SOC) network. Each colored segment (node) corresponds to one SOC and is named according to its SOC
abbreviation name (Supporting information). The segment size depicts the number of drugs associated with their corresponding SOC. Each
edge represents a drug that causes an ADR linked to their corresponding SOCs. The chord diagram was developed using the R package
circlize. B) SOC association counting table. Each value represents the number of drugs common to both SOCs.
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monooxygenase protein (SQLE) is linked to the drug naftifine
and the ADR ‘Blister’, and the Oxytocin Receptor (OXTR)
connect the drug carbetocin and the ADR ‘Acute kidney
injury’. Interestingly, 166 proteins (11% of the drug targets)
connect one drug to only one ADR. Similarly, we can estimate
whether these proteins are central in the linkage between
drugs and ADRs. For example, the protein GNRHR2 is linked to
the ADR ‘Ovarian hyperstimulation syndrome’ and the drug
nafarelin (Figure 4A). GNRHR2 has a low Neighborhood
Connectivity score (16.5), and its topological coefficient (TC) is
one of the lowest (0.51). This means that GNRHR2 is relatively
specific to this ADR and has a high possibility of being
involved with this ADR. Protein DDAH2 has the highest
Neighborhood Connectivity score (424), but a higher radiality
(0.67) and a lower TC (0.50). This is due to DDAH2 being linked
to citrulline that is annotated to 14 targets and the ADR “drug
ineffective”, which is linked to 834 proteins. This protein does
not seem to be a central partner in this ADR.

In contrast, there is a set of 23 proteins (P5CR2, P3H2,
PPIC, EPRS, P3H1, PYCR1, PPIA, P4HA1, L3HYPDH, P3H3, PPIG,
PYCR2, SLC6 A14, PYCRL, PROSC, PPIF, SLC6 A7, PPIB, P4HA2,
PARS2, PPIH, SLC16 A10, PRODH) that are linked to the
nutraceutical Proline and the ADR ‘Fetal growth restriction’.

With a TC of 0.64, these nodes are more specific to this
ADR. The proteins with the highest connections are essentially
cytochromes and transporters. CYP3A4 has the highest close-
ness centrality (0.66) and radiality (0.91). This is the most

central node. However, its TC is the lowest (0.06), meaning
that there is no clear relationship between a set of drugs and
a set of ADRs with which CYP3 A is involved.

Finally, 16 ADRs are associated with only one protein. For
example, ‘Niemann-Pick disease’ is linked only with the UGCG
protein, and the drug miglustat (Figure 4B); the ADR ‘Mixed
dementia’ is linked with the cytochrome CYP1A2, and the
drug bendamustine; and the ‘Implant site rash’ is associated
to the GNRHR receptor, and the drug histrelin. However, these
proteins can be related to other ADRs, as many drugs
influence these proteins. The Neighborhood Connectivity
score can inform us if the nodes (drugs and proteins) linked to
an ADR are highly connected to other ADRs. For ‘Niemann-
Pick disease’, the UGCG protein is connected to 18 other ADRs
through the drug miglustat (see Figure 4B where only 13 of its
ADRs are shown), whereas for ‘Mixed dementia’, CYP1A2 is
linked to 3547 ADRs through 131 drugs. On average, 18.5 pro-
teins are predicted to have an effect on more than one ADR,
confirming the possible role of some proteins in many ADRs.
To estimate the contribution of each protein to an ADR, we
developed an equation (eq. 1) combining the proportion of
the proteins targeted by a drug and adding the ensemble of
proportions for all drugs involved in the same ADR.[Eq. 1]

Figure 3. A) The 20 proteins associated with the highest number of drugs for an ADR. B) The proportion of these 20 proteins associated with
an ADR among the other proteins linked to this ADR.
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TD g,i,k : Total number of proteins interacting with Dg,i,k.

Protein1…n : Protein associated with ADRx.
Such an equation allows the assessment of the contribu-

tion of each protein to an ADR. The information is available in
the Supporting Information (Table S4).

For example, the ADR ‘Prostate cancer stage IV’, which is
linked to one drug (leuprolide) that targets two proteins
(GNRHR and CYP3A4), will have a contribution of 0.5 to
GNRHR and 0.5 to CYP3A4. The ADR ‘Uterine disorder’ is linked
to five drugs that are linked to 20 proteins (Figure 4C).
Integrating proteins targeted by these drugs, the farnesyl
pyrophosphate synthase (FDPS) obtains a score of 1.7, where-
as the second one (PTGS2) obtains 0.625, and the other
proteins less than 0.23. Therefore, these two proteins could
contribute the most to this ADR. Of course, for some general
ADR like ‘Nausea’ for which 944 proteins are linked, the
contribution of each protein might be questionable, but for

Figure 4. Zoomed-in parts of the network as example. “SV” nodes
are represented in dark green and named after their variant
accession number, “Target” nodes in beige named after their gene
name, “Molecule” nodes in red named after their name, “ADR”
nodes in blue named after their name, and “SOC” nodes in orange
named after their SOC abbreviation. The edges (in gray) show the
relations between different nodes. Nodes cited in the text are
framed in black and written in bold. A) Example of subnetwork
involving the target “GNRHR2” and the ADR “Ovarian hyper-
stimulation syndrome”. B) Example of subnetwork involving the
target “UGCG” and the ADR “Niemann-Pick disease”. Only 13/18
ADRs linked to the miglustat molecule are represented. C) Example
of subnetwork involving the ADR “Uterine disorder”, its 5 molecules
and 20 targets.

Figure 5. Proportion of drug-SOC associated with the 20 proteins
having the most drug-ADR associations. Each color corresponds to
an SOC and the size of the color bar the proportion of drug-ADR
associations for the protein to a specific SOC.
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many ADRs for which we have fewer proteins, this approach
can be used to prioritize proteins causing ADRs.

Finally, we developed a drug-target-SOC network. At the
SOC level, 177 proteins are linked specifically to one SOC.
Many proteins do not seem to be specific to one SOC. Many
proteins targeted by drugs are linked to ‘Metab’, ‘Infec’, ‘Gastr’,
and ‘Inv’ in majority (Figure 5 and Table S5 in Supporting
Information).

Through the SOC-SOC network, we can observe that many
proteins are involved in two SOCs. The ‘Nervous System
disorders’ share more than 1000 targets with the ‘General
disorders and administration site conditions’, the ‘Injury,
poisoning and procedural complications’, and the ‘Gastro-
intestinal system’. The ‘Respiratory system’ is also highly
connected with other systems. The ‘Reproduction systems’

and the ‘Social circumstances’ are SOCs that are the least
connected to other systems with 400 to 500 proteins involved
in the two SOCs (Figure 6).

3.3 Structural Variations (SVs) on Drug Targets Associated
with ADRs

Matching the 1407 proteins with the data from the Database
of Genomic Variants (DGV), we identified 1117 drug targets
having SVs; 794 SVs were defined as ‘gain’ (replication of the
protein) and 957 SVs defined as ‘loss’ (deletion of the protein)
(Table S6 in Supporting Information). Figure 7 shows the drug
targets with the highest frequency of deletion, replication, and
SV associated with the highest number of drugs.

Figure 6. Chord diagram of the SOC-SOC interaction network based on the target SOC information.
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One of the proteins that shows the highest frequency of
replication is opioid receptor kappa (OPRK1). The polymor-
phism of this protein has recently been reported to affect pain
relief from opioids.[43] Studies on cancer and postoperative
patients show that carriers of the homozygote G allele have
higher pain scores and require higher morphine doses,
thereby indicating reduced signaling efficacy and a possibly
declined receptor expression.[44] A total of 52 drugs target this
protein, and some of them show as ADR ‘Drug abuse’, ‘Drug
tolerance’, ‘Drug hypersensitivity’, ‘Drug ineffective’, ‘Drug
intolerance’, or ‘Drug withdrawal syndrome’ and so might be
related to this SV. CES1 also has a high frequency of
replication. CES1 is involved in the catalysis of the hydrolytic
biotransformation of a variety of compounds containing an
ester, amide, or carbamate function to their respective free
acids and alcohols.[45] Numerous drugs, including the psychos-
timulant methylphenidate (MPH) used in the treatment of
attention-deficit hyperactivity disorder (ADHD), angiotensin-
converting enzyme inhibitors (quinapril, imidapril, temocapril,
and cilazapril), anti-cancer agents (CPT-11), and narcotics and
analgesics (cocaine and meperidine) are all hCES1 substrates,
and the ADRs associated with these drugs could involve in

some individuals an SV of this protein.[46] On the other hand,
glutathione S-transferase, GSTM1, and GSTT1 genes are more
frequently subject to deletion. Studies have reported the
susceptibility of these enzymes to clinical toxicities, notably
gastrointestinal toxicity.[47] This is a typical ADR that we see, for
example, with acetaminophen (paracetamol). The opioid
receptor mu (OPRM1) is also among the most frequently
deleted genes. Therefore, opioid receptors seem to have
frequent SV (deleted or replicated) that might explain ADRs
related to drug inefficacy. In general, we retrieved drug-
metabolizing enzymes (notably cytochromes) with the most
frequent SV. As these proteins are also highly targeted by
drugs, we can assume that the susceptibility to ADRs caused
by an SV on these targets is not negligible. For example, the
antidepressant fluoxetine targets CYP2C9, CYP2C19, CYP1A2,
CYP2B6, CYP3A4, CYP3A5, ORM1, SLC6A4, HTR2 C, and
KCNH2, which have some of the highest frequencies among
SV. We could assume that patients having an SV on one of
these proteins and taking this treatment have a greater
susceptibility to one of the ADRs linked to this drug.
Interestingly, at the top of the list, we can observe the
serotonin, dopamine, and noradrenaline neurotransmitter

Figure 7. Frequency of structural variations (SVs) according to the variant subtype (deletion or duplication) for A) the 30 genes with the
highest frequency of deletion, B) the 30 genes with the highest frequency of replication, and C) the 30 genes with the highest number of
drugs.
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transporters. As they are the primary targets of many
antidepressants, it could be one of the explanations for the
inefficacy or ADR associated with them.[48]

4 Conclusions

The present study explored the reported ADRs of drugs and
the potential drug-target associations causing these ADRs,
using network sciences. Although it is possible to assume the
role of some proteins for some specific ADRs, many biological
targets are related to several ADRs. Grouping ADRs into SOCs
allowed the observation of organs more affected by ADRs,
and whether the drug-specific ADRs were more localized in an
SOC or spread over several organs. We have to be aware that
some terms such as ‘Drug ineffective’, ‘Device ineffective’ and
‘Therapeutic product ineffective’ are listed as ADRs in the
reporting system provided by the FDA, although these terms
mean that there is no reaction occurring by the administration
of a drug in a normal dose. This is a known situation. As
Wysowsky et al. observed, the most frequently reported
adverse event was ‘Drug ineffective’.[49]

The findings of ADRs are essentially based on clinical trials
or spontaneous reports but are rarely related to genomic
variations. The inclusion of structural variations in the drug-
target data is an interesting avenue as the high polymorphism
of some genes might contribute to increase the susceptibility
to an ADR. In our study, we considered structural variations of
more than 1 kb, which cover a complete loss or a large gain
of a gene that is important for the functionality of a protein.
There are more local genetic variations such as single-
nucleotide polymorphisms (SNPs) which can also be related to
the occurrence of ADRs, but the impact of such local variations
in a protein target is more difficult to assess. Pharmacogenom-
ic studies investigating the role of genetic variations in drug
response and results for some drugs have been reported and
can be accessed.[50–51]

Some challenges remain in utilizing the full potential of
network sciences to decipher the mechanisms behind drug-
ADR associations and network pharmacology.[52] The coverage
of the drug-target associations is not fully accomplished, and
ADRs might be caused by some targets not yet determined
for a drug. In addition, our network does not consider the
binding affinity value between a drug and a target. Besides,
drugs might directly impact the expression of genes. With the
opportunity to access omics data, notably transcriptomic data,
toxicogenomic studies would allow an analysis of the
deregulation of genes and pathways in a specific cell type,
tissue, or organ, in the presence of a drug. The integration of
such information will be beneficial for obtaining a more
comprehensive pharmacological profile of drugs.
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