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In cell andmolecular biology, metabolism is the only system that can be fully simulated at genome scale. Metabolic systems biology
offers powerful abstraction tools to simulate all known metabolic reactions in a cell, therefore providing a snapshot that is close
to its observable phenotype. In this review, we cover the 15 years of human metabolic modelling. We show that, although the
past five years have not experienced large improvements in the size of the gene and metabolite sets in human metabolic models,
their accuracy is rapidly increasing. We also describe how condition-, tissue-, and patient-specific metabolic models shed light on
cell-specific changes occurring in themetabolic network, therefore predicting biomarkers of disease metabolism.We finally discuss
current challenges and future promising directions for this research field, includingmachine/deep learning and precisionmedicine.
In the omics era, profiling patients and biological processes from a multiomic point of view is becoming more common and less
expensive. Starting from multiomic data collected from patients and N-of-1 trials where individual patients constitute different
case studies, methods for model-building and data integration are being used to generate patient-specific models. Coupled with
state-of-the-art machine learning methods, this will allow characterizing each patient’s disease phenotype and delivering precision
medicine solutions, therefore leading to preventative medicine, reduced treatment, and in silico clinical trials.

1. Introduction

With the advent of bioinformatics and computational biol-
ogy, computational andmathematical techniques can provide
accurate simulation of biological processes. The most widely
used approaches to analyze omics data mainly focus on
genomics, transcriptomics, and proteomics, through differ-
ential expression or network-based coexpression analysis.
However, genes and their expression alone do not always
constitute a reliable indicator of cellular phenotype. When
characterizing a phenotypic outcome, relying solely on gene
or protein expression profiles will miss the highly nonlinear
interaction between these biological layers. Such approaches
often overlook the metabolic level, the dense network of
biochemical reactions occurring in a cell with the aim of
converting nutrients into energy and cellular building blocks.

Being the best-characterized network in biological sys-
tems and also the closest to the phenotype, metabolism is
arguably the best indicator for the cell physiological state [1].

Once considered only a passive result of the state of a cell,
it is now widely recognized as a main contributor to cellular
behavior. More specifically, it is a key player in a number
of diseases, including diabetes, neurodegenerative diseases,
and cancer, where altered metabolism is now accepted as a
hallmark [2].

The recent availability of high-throughput data regarding
multiple layers of biological organization (omics) allows
mapping cellular processes at the levels of genes, mRNA,
proteins, and metabolites (Figure 1). In a single experiment,
these measurements are often at both the “genotype” level
(i.e., referring to the genetic elements on a genome) and at
the “phenotype” level (the form and function of the cell).
A fundamental question in systems biology is the definition
and understanding of the genotype-phenotype relationship
[3]. A mechanistic link between genotype and phenotype is
offered by genome-scale metabolic models, which contain all
knownbiochemical reactions occurring in a cell. Suchmodels
have been generated taking into account decades of studies in
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Figure 1:The observable phenotype of a cell is a result of complex interactions and feedback loops among several omic layers, each influenced by
environmental perturbations. In order of “distance” from the cell phenotype, these are epigenomics (epigeneticmarkers that affect gene activity
and expression), genomics (DNA containing the genetic code of the cell), transcriptomics (the RNA encoded by the genome), proteomics
(the set of proteins produced as a result of gene expression and subsequent posttranslational modifications), and metabolomics (the set of
metabolites andmetabolic reactions taking place in the cell). Although each omic layer can be studied alone, no single-omic layer has achieved
a satisfactory correlationwith the phenotypic observables. As a result, in recent years, amultiomic approach has been adopted where all layers
are considered together, and the effect of interactions and feedback is taken into consideration.

biochemistry and inmost cases are able to predict the cellular
phenotype with high accuracy.

Constraint-based modelling is the most widely used
approach to model the behavior of metabolism, often assum-
ing that cells have to fulfill a given task (e.g., ATP production,
growth, or proliferation) or to optimize the production of a
given compound. Such models have two main advantages:
first, they do not need dynamic or kinetic data as they are
based onmass balance across the metabolic network; second,
they are suitable for integration of different omic layers at
genome scale to improve their predictive performance. In
particular, multiomic “vertical” integration methods have
been proposed to include omic layers (mainly transcrip-
tomics and proteomics) [4–6]. Conversely, “horizontal” inte-
gration methods have focused on modelling different envi-
ronments, cancers or growth conditions starting from the
same model [7–11]. Such multiomic integration in genome-
scale models has provided a mechanistic link between the
genotype and their phenotypic observables [12–15]. This is
a key added feature that such models possess if compared
with genome-wide association studies (GWAS), which are
able to associate gene variations to phenotypic traits, but
not to provide a mechanistic explanation of the associations
observed [16].

In this review, we focus on metabolic systems biology,
and in particular on human metabolic modelling. Originally
tested and validated withmicroorganisms, metabolic systems

biology is now becoming widespread for human tissues and
biomedical applications [17]. We provide a comprehensive
review of the metabolic models developed so far for human
cells, discussing their strengths and limitations. We show
that the main focus of the metabolic modelling community
has shifted from increasing the size of the models—a “size-
focused modelathon approach”, often at the expense of
reliability of predictions—to team-based curation approaches
where gap filling algorithms and extensive manual curation
improve the reliability of the predictions without necessarily
increasing (and in fact often decreasing) the number of
components in the model.We also outline key success stories,
current challenges, and future directions for the human
metabolic modelling field, including the integration with
machine learning methods and precision medicine.

2. Metabolic Systems Biology

Understanding the role of individual components in a bio-
logical system is an important step to elucidate or predict
its behavior. However, a major theme in systems biology is
investigating these systems with an integrated approach. In
fact, studying the interactions between different components
also gives insights into the functioning and behavior of the
components taken independently [18].

Metabolism is the biggest biological network fully
described. It is a surrogate of the phenotype, being able to
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elucidate phenotypic changes caused by single or combined
omics or physiological factors. It also has the advantage
of being the only system that can be entirely modelled at
genome-scale. As a result, it plays a central role in elucidating
the genotype-phenotype relation. Systems-based approaches
have been successfully applied over the last decade to inves-
tigate metabolic networks, composed of a set of chemical
reactions and a pool of metabolites. The first examples of
metabolic systems biology appeared in 1999 and were focused
on modelling, connecting, and simulating several cellular
processes [19]. Whole-cell modelling, named the “grand
challenge of the 21st century”, is still an active area of research
[20–24]. Inmetabolic systems biology, the value of modelling
cell metabolism is not merely explanatory of a biological
process, but also predictive. A model can be used to suggest
hypotheses that can be tested or to pinpoint unexpected
behaviors that can be further investigated in vitro.

There are different methods tomodel a metabolic system:
steady-state analysis (e.g., FBA) involves a set of linear equa-
tions, while kinetic simulations involve ordinary differential
equations (ODEs). Each variable represents the variation of
a metabolite concentration, in a dynamic or steady state,
where the concentration depends on the rates of the reactions
that produce and consume that metabolite [25]. Kinetic
models do not assume steady state and therefore are able to
model highly dynamic mechanisms, including allosteric and
posttranslational regulation, metabolite concentrations, and
thermodynamics. Such ODE-based systems contain a large
number of equations (differential or algebraic) and require
unique kinetic parameter values. They are highly effective
at predicting the behavior of small systems where sufficient
experimental data can be collected for model calibration
and parameter estimation [26]. Furthermore, unlike standard
FBA-based methods, reaction kinetics can be accounted for,
and metabolite concentrations can be modelled explicitly,
and therefore intracellular metabolomics data can be inte-
grated directly [27].

For large systems, however, the use of kinetic mod-
elling remains challenging. The increasing demand for
systems-level genome-scale analyses has recently led to the
widespread use of constraint-based steady-state models and
their unsteady-state extensions. This has also been facilitated
by the increasing availability of multiomics data and pheno-
typic information, used to constrain the model dynamically
and therefore often compensating for the lack of regulatory
and kinetic modelling.

Following a number of successful attempts at building
multiscale kinetic and constraint-based models [28, 29],
achieving the right combination (and therefore trade-off)
of kinetic modelling and steady-state assumptions is likely
the next step for the metabolic modelling community. Tech-
niques like unsteady-state FBA (uFBA) [4] have been recently
developed to relax the steady-state assumption in genome-
scale models, with the goal of modelling dynamic cellular
states derived from changes in the concentration of internal
metabolites. An approach to integrate reaction kinetics with
steady-state metabolic networks has also been proposed,
where the genome-scale information of shared metabolites
among different reactions is used to inform the interactions

between the reactions and predict metabolite concentrations
in a network kinetics approach [30]. More generally, due to
the larger range of predictions that kinetic models can per-
form compared to steady-state approaches, expanding them
towards the genome scale or using information derived from
genome-scalemodel simulations is a promising direction that
will increase their spatial and temporal resolution.

2.1. Genome-Scale Metabolic Models. Genome-scale meta-
bolic models contain all known metabolic reactions in an
organism and can therefore serve as functional databases
of cell-specific metabolism. A genome-scale model is built
using the following process. First, a draft reconstruction is
generated starting from the genome and including all the
genome-encoded metabolic reactions. The draft reconstruc-
tion also includes annotated enzyme, reaction, and pathway
data from databases like KEGG [31], BioCyc [32], and
BRENDA [33]. Details on which genes control each reaction
are also included. Then, a sequence of manual curation steps
improves the draft reconstruction, by gathering evidence to
prove or disprove the presence of a reaction in the network of
the organism.

The construction of genome-scale model represents the
starting point for flux balance analysis (FBA, see following
subsections). Finally, the model is run and validated by
comparing its predictions with existing experimental results,
and new in silico experiments are performed to further
improve and validate the model. For more details on how
to build a metabolic model from the DNA sequence of an
organism, the reader is referred to full protocols [34–36].

Most genome-scale models are annotated with curated
gene-protein-reaction associations (GPR rules), linking
genes with enzymes (Figure 2). Such annotations pave the
way for overlaying multiomic data on the models, using
them as omic-scaffolds (see Section 2.3). Since omic data
can be quantified numerically and in a condition-, tissue-,
and patient-specific way (e.g., transcriptomic profiles,
protein levels, and metabolite concentrations), models
with GPR rules can serve as a baseline for generating
personalized metabolic models. For instance, personalized
predictions using suchmodels can lead to precise phenotypic
characterization of patients (see Section 4).

2.2. Constraint-Based Modelling and Flux Balance Analy-
sis. Flux balance analysis (FBA) is the most widely used
constraint-based technique to predict flux distributions and
network capabilities in genome-scale models [37]. FBA has
proved useful thanks to its ability to handle large networks
and predict genome-scale flux distributions. It requires
information about biochemical reactions and stoichiometric
coefficients but does not involve kinetic parameters. This
makes it well suited to metabolic engineering studies that
identify and characterize optimal perturbations such as
different substrates or genetic interventions (e.g., knockouts)
leading to obligatory coupling between the growth rate and
the overproduction of the desired metabolite [38–42]. In
general, FBA is a powerful tool for predictions of cell behavior
under different metabolic conditions.
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Figure 2: The integration of different types of omics data can be used to infer tissue- and condition-specific intracellular metabolic
flux distributions. Intracellular metabolic reactions provide the cell with basic biochemical building blocks, as well as energy and a
thermodynamically favorable environment to sustain its life. Patient-specific data, molecular information, lifestyle, and environmental factors
affect different omic levels. As a consequence, transcriptomic, proteomic, and metabolomic data need to be integrated to determine gene-
protein association rules and to build genome-scale models used for personalized predictions. Given the large effect of environmental factors
on omics level, determination of system-level changes in intracellular metabolic fluxes is important for understanding the fundamental
mechanisms of metabolic responses to perturbations. Indeed, environmental factors affect omics data on different levels, form epigenomics
to the cell phenotype. Omic-augmented genome-scale metabolic reconstructions have proved successful due to the ability to integrate omic
measurements at genome scale and to give mechanistic insights into the genotype-phenotype relationship.

FBA is a linear programming technique that models the
steady-state condition in a chemical reaction network [43].
The FBA representation of a genome-scale model is built
based on a stoichiometric matrix 𝑆, containing the stoichio-
metric coefficients of each metabolite (on the rows) in each
reaction of the network (on the columns). A stoichiometric
coefficient of a metabolite in a given reaction is positive if
the metabolite is produced by the reaction and negative if
consumed. An underdetermined linear system of equations
𝑆V = 0 is defined from the stoichiometric matrix, where
the unknowns are represented by the vector V of reaction
flux rates. Additional constraints are included as lower and
upper bounds of the fluxes in V (Vmin

≤ V ≤ Vmax). These
account for the growth or physiological condition, and can
be used to incorporate omics data. One or more cellular
objectives (usually growth- or energy-related, e.g., biomass
or ATP), or a linear combination thereof, are finally selected
to be maximized or minimized under the above-mentioned
constraints, therefore solving a linear program.

FBA is therefore based on two main assumptions:

(i) Homeostatic assumption: the organism has reached a
steady state where the metabolite concentrations are
constant and a set of nutrients are being constantly
converted to generate biomass.

(ii) (Multilevel) optimality: in each state, the organism
tends to maximize one or multiple objectives, usu-
ally related to growth, biotechnologically relevant
compound production (e.g., acetate exchange) and
important energy-carrying molecules (e.g., ATP).

FBA is widely used in systems biology to quantify the
entire metabolic steady state of a cell and calculate its flux
distribution. All knownmetabolic reactions in a given cell are
considered, and they are mathematically described in a way
that allows simulation of various states and configurations
of the chemical reaction network. Intuitively, the steady-
state constraints used in FBA can be thought of as Kirchoff ’s



BioMed Research International 5

laws applied to any node representing a metabolite in the
network: the flux through each metabolite in the network
must be constant, namely the input flux must equal the
output flux. The combination of steady-state constraints and
capacity constraints on reaction fluxes is a system of linear
homogeneous equations and inequalities; thus, its solution
space is a convex polyhedral cone representing the feasible
flux distributions.

The assumptions of FBA and the reduction of the
problem to a linear program can cause some limitations.
First, incorporating or predicting metabolite concentrations
is challenging, and requires a dynamic FBA [44], relaxing the
steady state [4], flux-sum methods [45], or thermodynamic
approaches [46]. Second, the reliability of the flux distribu-
tions is highly dependent on the objective function chosen
(see Section 2.4), on the quality of the reconstruction and
on the method used to obtain the solution. Regularized FBA
methods help alleviate this issue, as discussed later in this sec-
tion and in Section 5. Finally, FBA lacks the ability to directly
model regulatory effects or posttranscriptional regulation of
expression levels. Likewise, changes occurring over quick
transients (e.g., perturbations to the cell microenvironment)
cannot be modelled dynamically, but can be approximated
through step-wise before/after simulations [47]. Although
the steady-state rule has been challenged and probabilistic
approaches have been proposed to relax the steady-state
equality [48], this assumption enables the use of linear sys-
tems and linear programming, lowering the computational
requirements and enabling fast simulation of genome-scale
models in a variety of growth or physiological conditions.

When solving linear programs for FBA, different solvers
can give different solutions due to numerical implementation
differences and to the existence of multiple alternate optimal
solutions [49–51]. While the value of the objective function is
the same in all the optimal solutions, the other flux rates can
vary. Having a unique solution is therefore important when
the full flux distribution is used for further analysis or as a
feature of predictive algorithms. To avoid the degenerate solu-
tions provided by standard FBA approaches, parsimonious
FBA (pFBA) has been proposed with the aim of minimizing
the overall flux carried by the metabolic network after
maximization of the main objective [52]. However, in some
cases, pFBA has produced less plausible results in central
carbon metabolism and in the glycolytic pathway compared
to standard FBA methods [53]. Furthermore, pFBA makes
use of the L1-norm (minimization of the sum of absolute
flux values) which does not guarantee a unique solution as
it is not strictly convex [54]. For solving such minimization
problems with a guarantee of a unique solution, the L2-norm
should be used instead (minimization of the sum of squared
flux values). Additional approaches to alleviate the problem
of alternate optimal solutions include geometric FBA [55] and
sampling [56].

Several tools are available for metabolic model recon-
struction, constraint-based modelling, FBA and related
analyses. These include COBRA [57], its Python version
COBRApy [58], RAVEN [59], PathwayTools [60], and FAME
[61]. For a complete list, the reader is referred to the related
reviews and comparison papers [62, 63].

2.3. Multiomic Flux Balance Analysis. Although some bio-
logical outcomes can be elucidated through single-omic
analysis (e.g., protein-protein interaction or gene networks),
the vast majority of phenotypic observables are a result
of more comprehensive interconnections among multiple
omics [64]. Regulatory mechanisms also take place at dif-
ferent omic levels (including transcription, translation and
metabolic reactions). The complex interplay between these
levels is responsible for cell behavior.Multiomic analyses have
been proposed to integrate single-omic networks, based on
coexpression or interaction networks [65]. However, such
methods often omit mechanistic links between omic layers,
derived from previous molecular knowledge.

The idea of multiomic FBA is that by mapping omic data
onto in silico models of metabolism, it is possible to obtain
a metabolism-enriched view of any given omic profile. In
this context, as well as permitting the simulation of large,
usually genome-scale, systems in a few seconds of CPU time,
FBA also has the advantage of facilitating the introduction
of additional omic layers of experimental data that can be
overlaid onto the model, using GPR rules or metabolite
annotations to place constraints on the flux bounds. Omic-
informedmetabolicmodels consider themechanistic relation
between omics, therefore correctly representing the prior
information available on biochemical networks [66]. Mul-
tiomic FBA allows assigning the importance of a gene or
enzyme through its predicted function, therefore avoiding
approximations or statistical methods merely based on the
value of its expression level.

Following this approach, FBA and its multiomic modifi-
cations have been used to predict the metabolic response to
a given condition in light of the multiple cellular objectives
that a cell is required to meet [67, 68]. Recent studies have
been also aimed at improving the predicting capability of
a metabolic model and elucidating the genotype-phenotype
relationship through computational analyses across multiple
omic levels. Predictions of flux distributions after multiomic
data integration, combined with experimental methods, have
been successfully used to formulate novel biological hypothe-
ses. These techniques reduce the problem of determining the
flux distribution through all reactions in the system, under
a given growth or physiological condition, to a tractable
linear program, under the assumptions of steady state and
optimality. Due to their scalability and precision, these meth-
ods have been used widely, e.g., to predict bacterial growth
phenotypes in specific environmental conditions [69, 70], to
identify novel therapeutic targets against infections [71, 72],
to characterize cancer metabolism of different cell lines [73–
76], and to generate cancer-vs-normal tissue-specific models
for 17 tissues [77]. Further examples of how this approach has
been used to characterize disease metabolism are provided
in Section 4. For a comprehensive review on multiomic
integration techniques in FBA models, the reader is referred
to the recent reviews on omic-informed metabolic modelling
[78–81].

Ongoing modelling efforts are aimed at incorporating
further biological knowledge in the models. To account for
enzyme promiscuity when overexpressing or underexpress-
ing a gene, GPR rules have been proposed as additional
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rows of the stoichiometric matrix, as an enzyme-by-reactions
submatrix [53]. For instance, if multiple reactions are cat-
alyzed by the same promiscuous enzyme, the change in flux
as a result of underexpression/overexpression of the enzyme
is distributed among the reactions (also considering the
other enzymes participating in the reactions), rather than
triggering a priori an equivalent flux increase/decrease in all
the reactions. Codon usage can also be integrated through
the GPR rules [71]. Splice isoform annotations, initially lost
and then simply ignored in human reconstructions, have also
received recent attention [82, 83].

Soft constraints can be used to integrate omics data
in a reaction-specific fashion, rather than with a single
mathematical rule modifying the constraints for all the
reactions [84]. Further constraints have been also added to
integrate transcriptional regulatory models and metabolic
models. The idea is that a constraint models the correlation
between the expression level of a target gene and that of
its regulating genes [6]. To further analyze the reaction
flux distributions predicted by multiomic FBA, sensitivity
analysis can be carried out on genes, reactions or pathways.
Definitions of sensitivity scores have been based on effects
of gene knockouts [85], real-valued gene perturbations [69],
or the role of each metabolite in reducing thermodynamic
uncertainty in the model [86].

2.4. Choosing an Objective Function and Accounting for
Multiple Cellular Goals. The selection of an appropriate
objective function is still a challenge in metabolic modelling.
A common assumption in systems biology is that cells tend
to optimize their metabolic network in order to maximize
the growth rate (biomass). This is however still a matter of
debate [87], both in terms of its composition [88] and because
in many cases the best objective for a cell is not growth-
related [89]. While models of microorganisms can assume
that the cell aims at maximizing growth rate, human cells
might not necessarily aim for maximum biomass (although
this is widely accepted as an objective for cancer cells).
Furthermore, it is now evident that the cellular goal can
change betweendifferent cells in a tissue, between tissues, and
also over time for the same cell. For tissue-specific studies,
starting from a generic humanmetabolic reconstruction (e.g.
Recon) and using the general-purpose biomass composition
of generic humanmodels can prove unreliable. Recent studies
are therefore moving towards a cell-specific estimation of
the biomass compositions [13, 90]. Algorithms for generating
and standardizing the biomass reaction [91, 92], and for
automatically generating an objective function have also been
proposed [93].

Especially in the context of human metabolism, the
question ‘what does a particular cell do?’ has often more than
one correct answer. There is increasing evidence that cells
have to cope with multiple, usually competing, objectives
to optimize simultaneously [94]. A single FBA objective
function is not able to capture all of them. It is also likely that
metabolism is not fully optimized for any particular objective
[95], and evolution has shaped cells in order to reach an
optimal trade-off between all objectives [96].

Optimization processes have therefore been proposed
that take into account multiple objectives (e.g., protein or
energy production, detoxification, proliferation) with the
advantage of ensuring metabolic flexibility for possible reor-
ganizations performed during adaptations to changes in the
environmental conditions [97]. These methods include a
probabilistic approach [98], lexicographic ordering [99], and
the reduction to a single objective through the definition of
weights for the objectives [100, 101]. Approaches based on
these ideas are fast and can generate a Pareto front; however,
they miss suboptimal solutions, solutions in nonconvex
regions [102, 103], or they give preference to one objective
[104], therefore addressing a multilevel problem rather than
a strictly multiobjective problem. Although slower, meth-
ods based on evolutionary algorithms are able to explore
nonconvex trade-offs without requiring the combination of
the objectives into a single objective function [105–107].
Exploring a set of trade-off solutions between competing
objectives, rather than a single biomass-maximizing solution,
also accounts for suboptimal solutions [108].

3. 15 Years of Human Metabolic Modelling

The study of human metabolism is becoming increasingly
important for biomedical applications as an approach for
understanding many diseases and aspects of health [109,
110]. A systems-level understanding of metabolic behavior
is enabled by the availability of high-quality genome-scale
reconstructions integrating extensive metabolic information
from various resources. The first genome-scale metabolic
reconstruction efforts focused on bacteria (Haemophilus
influenzae [111], followed by Escherichia coli [112]), due to
their simplicity, the available genome sequences, and thewell-
known mechanisms of substrate utilization. Reconstructions
of humanmetabolism, which required amuch larger number
of pathways and a larger pool of essential nutrients, were
attempted at a later stage, after the publication of the draft
and complete human genome sequences in 2001 and 2004
[113, 114].

HumanCyc [115] (in 2004) and Reactome knowledgebase
[116, 117] (in 2005) were the first successful attempts to
build a curated collection of biochemical reactions in human
cells. The first models of human metabolism published
in 2007—Recon 1 [118] and EHMN (Edinburgh human
metabolic network reconstruction, and its subsequent com-
partmentalized version in 2010) [119, 120]—achieved a better
coverage of the human metabolic network, especially in
compartments other than the cytosol. Recon 1 contains
approximately 1.4 times more unique metabolites and 2.2
times more reactions than HumanCyc.

In 2013, a large improvement of the number of metabolic
processes covered in the reconstruction was achieved with
Recon 2 [121]. This is a consensus model that includes all
reactions from EHMN, Recon 1, HepatoNet1 [122], and a
module for acylcarnitine and fatty-acid oxidation [123]. Com-
pared to Recon 1, Recon 2 represents a major improvement
with approximately 1.7 times more unique metabolites and 2
times more reactions. Recon 2 was then refined in 2015 with
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updated gene-reaction associations. Simultaneously, a larger
reconstruction named HMR (Human Metabolic Reaction
database) [73] was built independently, based onHepatoNet1,
Recon1, EHMN, Reactome, HumanCyc, KEGG [31], and the
Human Metabolic Atlas [124]. HMR was then extended in
2014 to include lipidmetabolism, therefore generating HMR2
[125].

Although containing a large set of reactions and being a
consensus model, the predictions from Recon 2 were incor-
rect in some cases, mainly due to a number of incorrectly
balanced reactions. At this point, the main focus of the
community shifted to curation of existing models. Between
2014 and 2015, a series of minor updates and corrections were
published for Recon 2 [126–129]. In 2016, Swainston et al.
performed an extensive curation effort on Recon 2 and its
updates, resulting in Recon 2.2 [130]. For the first time, a sig-
nificant improvement of an existing model contained fewer
genes than the original. In fact, due to the removal of dupli-
cates and pseudogenes, and to the new unique HGNC ID
convention, Recon 2.2 contains 112 enzyme-encoding genes
less thanRecon 2, and for the first timewith unified identifiers
(grouping splice isoforms into a single gene). Recon 2.2 is a
major improvement for the energy-related metabolism, with
a new compartment simulating themitochondrial intramem-
brane space. As a result, theATP and biomass flux predictions
were greatly improved, achieving for the first time accurate
predictions of maximum ATP yield under 14 carbon sources,
both in aerobic and anaerobic conditions, and under 20 addi-
tional amino acid carbon sources in aerobic conditions [130].

In 2017, a new human metabolic model named iHsa
[131] was obtained as an expansion and manual curation
of HMR2. iHsa is a result of a reconciliation with the rat
metabolic model iRno, also presented in the same paper.
Both models were generated in parallel; rat-specific reac-
tions, thermodynamically infeasible reaction loops, and other
incorrect reactions present in HMR2 and Recon 2 were
removed from iHsa, while new reactions were added from
KEGG and MetaCyc/BioCyc [132]. For the first time, rat-
specific reactions were removed from a human metabolic
reconstruction. In fact, both models were reconciled and
manually curated focusing on species-specific metabolic
differences. The clear definition of differences between the
twometabolic networks, coupled with the presence of unique
reactions in both models, opens opportunities for human/rat
cross-species comparison.

In 2018, Recon 3D [133] was developed from Recon 2 by
incorporating HMR2 and a number of additional reaction
sets, including reactions modelling host-microbe interaction,
reactions for simulating drug effects on human metabolism,
reactions for absorption of dietary compounds, reactions of
lipid metabolism and reactions from metabolomics datasets.
3D protein structures, pharmacogenomics data and atom-
atom mappings were also included in the model. After
extensive manual curation steps and refinement ofGPR rules,
the model was tested for consistency when replicating 431
essential functions of the human body. To date, Recon 3D
is the largest metabolic reconstruction available for human
metabolism, containing 1.1 times more unique metabolites
and 1.4 times more reactions than Recon 2.

Figure 3 summarizes the progress made by the metabolic
modelling community over the last 15 years. The number of
genes, metabolites and reactions is reported in the figure. To
better quantify the connectedness of a model, we computed
the number of genes whose knockout yields measurable
effects in the model as measured by the predicted biomass
flux. To account for the tolerance of the linear solver, we
defined a gene essential if its knockout produces biomass
< 10

−10 h−1; we defined a gene nonnegligible if its knockout
causes a biomass variation > 10−10 h−1. Compared to Recon
2, the increase in the number of genes whose variation has
a nonnegligible effect on the growth rate shows that efforts
have been successfully made towards curation, gap filling,
and consistency checks, as detailed in Section 3.1.

3.1. From Size-Focused “Modelathons” to Manual Curation.
When the first Recon 1 [118] and EHMN [119] human
metabolic reconstructions were published in 2007, Recon 1
was preferred in many studies because it contained more
reactions. In fact, this was only due to the compartmen-
talization of Recon 1, with metabolites repeated in different
compartments and transport reactions between compart-
ments. The number of unique reactions was indeed greater
in EHMN (1028 more reactions and 1202 more metabolites),
and a subsequent compartmentalized version of EHMN was
generated [120].

These frequent comparisons among different models
indicate that the main focus was initially to include as
many reactions as possible—a size-focused “modelathon”
approach—often at the expenses of curation and accuracy.
Conversely, the approach of including all the available biolog-
ical components in amodel is now always coupledwith exten-
sive team-based curation, consistency checks, uniformity of
annotations and gap filling. It is not uncommon to achieve
a better model by removing reactions from an existing one.
This encouraged the community to focus on the accuracy of
the models and solvers used, rather than only on the model
size.

Manual curation is therefore considered one of the main
steps in generating a metabolic model. Tools like MetaNetX
[134] simplify curation efforts and suggest identifier map-
pings to unify reactions and metabolites identifiers. Such
curation efforts are likely to become even more important
in the near future given the recent advances of automated
reconstruction tools, now able to generate a full working
draft of a model, e.g., MicrobesFlux [135], Pathway Tools
[136], PathwayBooster [137], CoReCo [138], andMerlin [139].
Given the importance of obtaining reconciled and high-
quality models, MetaNetX also provides a database of models
generated after reconciliation of metabolites and biochemical
reactions [134]. More recently, CarveMe [140] and RAVEN
2.0 [59] have shown high potential in automating man-
ual steps, achieving for the first time an accuracy directly
comparable with manually curated models when predicting
experimental phenotypes. Tools for checking inconsistencies
and for visually inspecting the model are also available [141].

Over the last few years, the curation efforts have yielded a
reduction in the number of unbalanced reactions, as well as in
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Figure 3: (Top, left) Number of genes, metabolites, reactions, and GPR rules in humanmetabolic models.Thenumber of genes in the table refers
to the number of transcripts in the model. (Number of enzyme-encoding genes: Recon 1: 1490, Recon 2: 1789, and Recon 2.2: 1675.) Recon 2
was considered in its latest Recon 2.04 iteration.The GPR rules in HMR have been extracted as all the nonempty “listOfModifiers” fields via
a Matlab custom script. The boundary metabolites were excluded from the comparison, therefore metabolite counts represent the size of the
stoichiometric matrix on which the model is built. (Bottom, right) Gene essentiality in the five most recent metabolic models. A gene is deemed
essential if, when knocked out, it induces a biomass value lower than 10−10 h−1. A gene is nonnegligible if, when knocked out, it affects the
biomass by more than 10−10 h−1. Although the improvement in the number of genes and metabolites has been limited in the past five years,
the curation and gap filling efforts have produced more reliable models. As a result, compared to Recon 2, there has been a sharp increase in
the percentage of genes whose knockout yields measurable effects on the predicted biomass.

the number of blocked reactions and dead-end metabolites.
For instance, Recon 2.2 has no unbalanced reactions apart
from the biomass objective functions, and Recon 3 has now
less than 15 blocked reactions and dead-ends. Furthermore,
as generating context-specific models using omics relies on
GPR rules, the accuracy of these models strictly depends on
the accuracy of the GPR in the baseline model. As shown in
Figure 3, GPR coverage is increasing. Finally, the agreement
between theoretical and model-predicted ATP yields has
been improved in the most recent models. We calculated the
rootmean squared error (RMSE) between the theoretical and
model-predicted maximum ATP yields per unit of carbon
source, which has been reduced from∞ (Recon 2 and earlier
models) to 5.17 (in Recon 3) and 1.67 (in Recon 2.2). The
table of ATP yields and the RMSE calculations are provided
as Supplementary Material.

4. Tissue- and Patient-Specific Insights into
Human Disease Metabolism

Starting from human generic metabolic reconstructions, a
number of successful efforts have been published on recon-
structing tissue-specific models. These include brain [142],

adipocytes [143], breast cancer [144], heart [145], kidney
[146], myocytes [147], and hepatocytes [125, 148]. A further
set of 32 tissue- and organ-specificmodels has been generated
by mapping protein expression onto the generic human
model HMR2 [125].

Tissue-specific models are usually built as a reduction of
a generic human model. The reactions that are removed in
the construction of the tissue-specific model are found to be
not active in that tissue. Reactions are removed according to
transcriptomic or proteomic data collected in that tissue, and
therefore the tissue-specific model contains fewer reactions
than the generic one. Unsurprisingly, in most cases they
outperform the generic counterpart where they stemmed
from. At this point, a new tissue-specific biomass equation
needs to be established, or the model needs to be set so
that the cell can find alternative pathways to sustain its
life. Although many methods for generating tissue-specific
models set the goal of creating the minimal metabolic model
that satisfies viability or a set of metabolic tasks, the use
of nonminimalistic methods for generating tissue-specific
models should be preferred. For instance, considering essen-
tiality before removing reactions from a generic model yields
a nonminimal tissue-specific model, but improves model
functionality and agreement with experimental data [149].
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Since the generic models are a superset of the tissue-specific
models, predictions of generic models may still be correct in
tissue-specific problems, but less accurate.

Context-specific human metabolic models have shed
light on disease onset and progression in a range of recent
case studies. In this context, the renewed interest in disease
metabolism is due to the fact that a holistic genome-scale
view, rather than a single-gene approach, is necessary to
fully characterize most diseases. For instance, in cancer, the
differences in the metabolic pathways between cancer cells
and their parent tissue have been characterized using omics
data and a human metabolic model [75, 150, 151]. As a result,
tissue- and cell-specific metabolic models have been suc-
cessfully used to identify—and successively validate—specific
drug targets that inhibit cancer proliferation but do not affect
normal cell proliferation [74, 152]. With a similar approach,
submodels built from human genome-scale models have
been used to generate several testable hypotheses, e.g., to
compare wild-type and Fh1-deficient kidney mouse cells,
and to predict further gene knockouts that affect growth
in the Fh1-deficient cells but do not affect the wild-type
cells, therefore suggesting targets for treating hereditary
leiomyomatosis and renal-cell cancer [153].

For specific diseases, tissue-specific models have been
used successfully to identify biomarkers and therapeutic tar-
gets [125]. Using RNA-Seq expression levels in combination
with genome-scale models has enabled the reconstruction
of cancer cell line-specific models, enabling the discovery
of metabolites supporting proliferation, and antimetabo-
lites leading to cell death [154]. (An antimetabolite is
a compound that simultaneously inhibits those enzymes
involved in metabolizing the associated endogenous metabo-
lite. Antimetabolites can affect multiple enzymes at the same
time and can reduce proliferation, and are therefore used
as anticancer drugs.) After integration with extracellular
metabolomic data and transcriptomic profiles, metabolic
modelling has reliably characterized intracellular metabolism
of lymphoblastic leukemia cell lines [155]. A combination of
different omics data and flux splits have been used to generate
cancer-specific models of the NCI60 panel, achieving corre-
lation close to 1 in predicting the remaining flux rates [13].

Following the same direction, personalized models (e.g.,
using patients’ omic data to constrain the generic reconstruc-
tion) hold promise to become key for precision medicine
(Figure 2). The largest study to date with patient-specific
models is the Human Pathology Atlas [77]. The authors built
personalized genome-scale models of cancer in each patient
across 17 tissues. This allowed investigating the metabolic
differences between different cancers, as well as patient-
specific biological functions. In another recent study [156], 86
patients with nonalcoholic fatty liver disease were recruited,
and their personalized hepatocyte genome-scale metabolic
models were built using patient-specific experimental data
on lipoprotein fluxes. A new molecular mechanism of the
disease was elucidated as a result of personalized metabolic
modelling.

Genotyping coupled with patient-specific metabolic
modelling offers a new opportunity for personalized
medicine. In fact, new biomarkers can be predicted in a

patient-specific fashion, and personalized therapies can
therefore be designed and subsequently assessed in terms
of their metabolic mechanistic effects [157]. As shown in a
recent case of arginase deficiency (a urea cycle disorder),
different individuals can respond differently to the same
disease and treatment, and this can often be flagged observing
their individual metabolic response [158].

Due to the importance of the gut microbiome com-
position in human health, a set of modelling approaches
has been proposed recently [159]. Using host-microbiome
modelling, e.g., combining metabolic community modelling
with human metabolic models, the interplay among the gut
bacteria and their interaction with the surrounding human
cells can be investigated [160, 161]. Personalized models of gut
microbiome have been built from patient-specific metage-
nomic data in order to elucidate individual-specific bile
acid production in microbiomes of healthy individuals and
patients with inflammatory bowel disease [162]. Although
several modelling challenges remain to be solved [163], an
approach based on metabolic modelling is likely to shed
light on the role of human gut microbial communities in
human health, therefore suggesting potential dietary changes
or personalized intervention on gut composition [164, 165].

5. Discussion and Perspective

Research in computational biology has led to detailed mod-
els for a better understanding of the individual biological
components, but arguably to a less clear picture of the
interactions among the components that result in a given
phenotype [166]. Genome-scale systems biology studies can
effectively address this issue. For instance, in biomedical
applications, this holistic view is necessary to characterize a
patient’s disease phenotype and deliver precision medicine
[17].

Since metabolic homeostasis and observable phenotype
are strictly linked, metabolism is nowadays considered diag-
nostic of the phenotype, and therefore arguably the best
indicator of the functional state of a cell. Metabolism can
also be used to prioritize genes and assess their function
and the role of gene perturbations (including knockouts).
Without such integrated analysis, a gene may e.g., incorrectly
be regarded as important only due to its highly variable
expression value.

Metabolic models are increasingly being used to con-
struct multiscale, multicellular or multitissue models. In
2012, a research effort by Karr et al. [21] provided the first
whole-cell computational model of the life cycle of a small
pathogenic bacterium, Mycoplasma genitalium. The model
includes metabolism, replication of the genome, and cell
division. Several metabolic models can be combined in
frameworks to investigate the metabolic exchanges between
individual cells and the emerging community behavior [167],
with applications ranging from microbial communities to
host-pathogen interactions and cancer proliferation [168–
170].

The availability of tissue-specific models has also led
to the generation of multitissue metabolic models [171].
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Further steps in this direction will soon allow studying
whole-body metabolism models. The first study towards this
goal used dynamic parsimonious FBA to combine steady-
state FBA with differential equations for the concentration
of metabolites in each organ [172]. As a result, a whole-
body and inherently multiscale model was generated with 14
organs plus the human serum. More recently, the first whole-
body metabolic models were generated named Harvey and
Harvetta, where themetabolic network for every organ/tissue
was built simultaneously from Recon3D [173]. Manufactur-
ing organ-on-a-chip and ultimately body-on-a-chip devices
with metabolic models (see e.g., [174]) seems the next step in
this direction.

Given the recently renewed interest of the scientific
community in understanding disease metabolism, it is highly
likely that cancer metabolism (and metabolism in other
diseases) will become the main research topic in drug devel-
opment. This will complement rather than replace standard
transcriptomic-only studies, and will provide a proxy for
the phenotypic and observable outcome. The idea is that to
improve phenotypic predictions, the signatures need to be
taken from sources of data that are closer to the phenotype.
The integration of omics data into metabolic models has
enabled the prediction and successively the validation of
biomarkers and therapeutic targets. In drug design, although
genomics, transcriptomics and proteomics are often deemed
sufficient, metabolomics can elucidate mechanisms that are
not visible from genes and protein activity. More importantly,
it can address cases where the genes responsible for a disease
are well known but not druggable, but their corresponding
downstream reactions are [175].

Genomics analysis is usually able to identify known
diseases through genemutations. However, it may not be able
to flag variants of known diseases, or identify novel diseases.
This can happen, for instance, if (i) a gene mutation is not
flagged as important; (ii) the gene is not screened at all; (iii)
the disease is not a direct effect of a gene perturbation; (iv)
individuals respond differently to the same mutation [158].
Genome-scale models can elucidate mechanistic modes of
drug action, side effects (both off-target drug binding and
downstream transcriptional effects), and potential toxicity
of drugs by linking omics data to the phenotype through a
condition-specific model [8, 176]. In a patient-specific frame-
work, such biological data and markers can be predicted in a
personalized fashion, paving the way for in silico clinical trials
[177].

The efforts of the metabolic modelling community are far
from being complete. In this regard, we envisage a joint effort
from metabolic modelling and genome-wide association
studies (GWAS) communities to identify gene-metabolite
interactions that are currently not included in metabolic
models using state-of-the-art association mappings [178].
Computational tools combining both approaches would go
towards genome-scale detection of errors and missing enzy-
matic reactions, remarkably improving the predictive ability
of metabolic models. For instance, this could be achieved by
minimizing the error between predictions of flux coupling
and experimental coexpression data integrated with GWAS
[179, 180].

Likewise, the methods for integration of omics data in
genome-scale models still show room for improvement. For
instance, in yeast and Escherichia coli, single-omic integration
in FBA has been reported to give similar accuracy to pFBA
without omic integration [78]. Reassuringly, reaction-specific
rules to constrain flux rates can halve the normalized error
of pFBA [84]. In multicellular organisms, a better correla-
tion between gene expression and metabolic fluxes can be
expected [78]. In mammalian cells, the main contributors to
the overall protein expression level aremRNA levels [181, 182],
while in most normal and cancer cell lines, mRNA and pro-
tein levels were found to correlate positively [183, 184]. While
different methods (and their parameters) can yield different
context-specific models, the accuracy in predicting essential
genes is almost always higher in context-specific models
than in the generic human models [81]. Therefore, metabolic
models can be regarded as useful tools tomechanistically link
transcriptomic data with flux rates. Usingmultiple omics data
and thermodynamic constraints simultaneously [185, 186], or
a combination of regularized FBA methods and omics data,
can improve the reliability of the predictions [187].

Compared to the well-characterized microbial metabolic
reconstructions, gaps still present in our knowledge of human
metabolism—including characterization of enzymes, the def-
inition of cell-specific metabolic functions and tissue-specific
growth mechanisms—make it more difficult to test (and
compare) metabolic models and omic integration methods.
Humanmetabolic models and methods have been tested and
cross-compared for gene essentiality through CRISPR-Cas9-
mediated loss-of-function screens, and for their ability to
predict growth rate and recapitulate known metabolic func-
tions [81]. A dataset including both omics data and measured
metabolic information is the NCI-60 panel, with metabolite
uptake and secretion rates published in 2012 [188]. While E.
coli and yeast fluxomic data is publicly available from several
experiments [189–191], to the best of our knowledge NCI-60
is the only publicly available human-cell dataset containing
expression levels, metabolic flux rates and proliferation rates,
and therefore suitable for validating FBA methods. Due to
the lack of fluxomic datasets, the difficulty in choosing a
reliable objective function, and the larger size compared to
bacterial models, further experimental validation is needed
for human metabolic models, especially when using the
full flux distribution to inform decisions or subsequent
algorithmic steps.

Finally, despite many recent advances, gathering insights
from the data generated through omic-informed models
remains a bottleneck in systems biology. We therefore envis-
age that genome-scale metabolic models will be increasingly
investigated with machine/deep learning algorithms in a
patient-specific fashion [13, 192]. In disease modelling, the
usefulness of general biomarker discovery is debatable when
information on patients is not taken into account, because
most biological components would be flagged as perturbed
in a general “disease versus normal” analysis. Conversely,
if the appropriate person-specific data is integrated with
a model, biomarkers can become the central part of pre-
cision medicine, where data acquired on patients drive
predictions, analysis and therapeutics [17]. In a modelling
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analogy, machine learning algorithms alone cannot provide
mechanistic information in the biological processes they
simulate or mimic. However, if machine learning is cou-
pled with multiomic genome-scale modelling, the combina-
tion of experimentally and model-generated omic data can
predict—and explain mechanistically—personalized therapy
predictions by including key biological information in the
learning process.
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yields for the most recent human metabolic models. We
calculate the root mean squared error (RMSE) between the
theoretical and model-predicted maximum ATP yields (per
unit of carbon source) for the most recent human metabolic
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[122] C. Gille, C. Bölling, A. Hoppe et al., “HepatoNet1: A compre-
hensive metabolic reconstruction of the human hepatocyte for
the analysis of liver physiology,”Molecular Systems Biology, vol.
6, p. 411, 2010.

[123] S. Sahoo, L. Franzson, J. J. Jonsson, and I. Thiele, “A com-
pendium of inborn errors of metabolism mapped onto the
humanmetabolic network,”MolecularBioSystems, vol. 8, no. 10,
pp. 2545–2558, 2012.

[124] N. Pornputtapong, I. Nookaew, and J. Nielsen, “Human
metabolic atlas: An online resource for human metabolism,”
Database, vol. 2015, Article ID bav068, 2015.

[125] A.Mardinoglu, R. Agren, C. Kampf, A. Asplund,M.Uhlen, and
J. Nielsen, “Genome-scale metabolic modelling of hepatocytes
reveals serine deficiency in patients with non-alcoholic fatty
liver disease,” Nature Communications, vol. 5, p. 3083, 2014.

[126] Smallbone, “Striking a balance with recon 2.1,” https://arxiv
.org/abs/1311.5696, 2013.

[127] L.-E. Quek, S. Dietmair, M. Hanscho, V. S. Mart́ınez, N. Borth,
and L. K. Nielsen, “Reducing Recon 2 for steady-state flux
analysis of HEK cell culture,” Journal of Biotechnology, vol. 184,
pp. 172–178, 2014.

[128] S. Sahoo, M. K. Aurich, J. J. Jonsson, and I. Thiele, “Membrane
transporters in a human genome-scale metabolic knowledge-
base and their implications for disease,” Frontiers in Physiology,
vol. 5, p. 91, 2014.
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