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ABSTRACT Global transcriptional regulators coordinate complex genetic interac-
tions that bestow better adaptability for an organism against external and internal
perturbations. These transcriptional regulators are known to control an enormous
array of genes with diverse functionalities. However, regulator-driven molecular
mechanisms that underpin precisely tuned translational and metabolic processes
conducive for rapid exponential growth remain obscure. Here, we comprehensively
reveal the fundamental role of global transcriptional regulators FNR, ArcA, and IHF in
sustaining translational and metabolic efficiency under glucose fermentative condi-
tions in Escherichia coli. By integrating high-throughput gene expression profiles and
absolute intracellular metabolite concentrations, we illustrate that these regulators
are crucial in maintaining nitrogen homeostasis, govern expression of otherwise
unnecessary or hedging genes, and exert tight control on metabolic bottleneck
steps. Furthermore, we characterize changes in expression and activity profiles of
other coregulators associated with these dysregulated metabolic pathways, deter-
mining the regulatory interactions within the transcriptional regulatory network.
Such systematic findings emphasize their importance in optimizing the proteome
allocation toward metabolic enzymes as well as ribosomes, facilitating condition-spe-
cific phenotypic outcomes. Consequentially, we reveal that disruption of this inher-
ent trade-off between ribosome and metabolic proteome economy due to the loss
of regulators resulted in lowered growth rates. Moreover, our findings reinforce that
the accumulations of intracellular metabolites in the event of proteome repartitions
negatively affects the glucose uptake. Overall, by extending the three-partition pro-
teome allocation theory concordant with multi-omics measurements, we elucidate
the physiological consequences of loss of global regulators on central carbon metab-
olism restraining the organism to attain maximal biomass synthesis.

IMPORTANCE Cellular proteome allocation in response to environmental or internal
perturbations governs their eventual phenotypic outcome. This entails striking an
effective balance between amino acid biosynthesis by metabolic proteins and its
consumption by ribosomes. However, the global transcriptional regulator-driven mo-
lecular mechanisms that underpin their coordination remains unexplored. Here, we
emphasize that global transcriptional regulators, known to control expression of a
myriad of genes, are fundamental for precisely tuning the translational and meta-
bolic efficiencies that define the growth optimality. Towards this, we systematically
characterized the single deletion effect of FNR, ArcA, and IHF regulators of
Escherichia coli on exponential growth under anaerobic glucose fermentative condi-
tions. Their absence disrupts the stringency of proteome allocation, which manifests
as impairment in key metabolic processes and an accumulation of intracellular
metabolites. Furthermore, by incorporating an extension to the empirical growth
laws, we quantitatively demonstrate the general design principles underlying the ex-
istence of these regulators in E. coli.
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Coordination of the proteomic resources with metabolic needs is fundamental for
cell proliferation (1–3). This is majorly due to the huge energetic expenditure asso-

ciated with protein synthesis constrained by ribosomal capacity. Hence, when a bacte-
rial cell, such as Escherichia coli, is challenged with nutrient limitation, the organism
remodels its proteome allocation majorly toward the metabolic proteome that facili-
tates enhanced uptake of nutrients and its metabolism, thereby reducing the share to-
ward the ribosomes. On the contrary, under nutrient-rich conditions, proteome alloca-
tion toward ribosomes is augmented to enable faster growth with reduced synthesis
of the metabolic proteome. Broadly, this proteome allocation theory can be explained
by the trade-off existing between metabolic flux involved in generating the precursors
and amino acids by the metabolic proteome and protein synthesis flux utilizing the
amino acids by ribosomes, which results in balanced exponential growth (4). Such met-
abolic and translational efficiencies facilitated by the endogenous proteome of the
central carbon metabolism and ribosomes entail bacterial growth to be precisely con-
trolled by the joint effects of global physiological machinery (e.g., RNA polymerase,
ribosomes, and alarmones) and transcriptional regulators (4–8). Global physiological
machinery that propagates growth-dependent changes in gene expression and cellular
decision making have been addressed under nutrient shifts and antibiotic stress condi-
tions (4, 5, 9–12). However, the role of global transcriptional regulators causing promis-
cuous regulatory effects that enable the precise coordination of cellular resources for
adaptation to a specific environment remains hitherto overlooked.

Towards this, we focused on global transcriptional regulators FNR (fumarate and nitrate
reductase), ArcA (aerobic respiration control A), and IHF (integration host factor) that
occupy the top-most hierarchy of transcriptional regulatory network in E. coli (13). FNR acti-
vates the synthesis of enzymes that function primarily in anaerobic respiration or fermenta-
tion as well as represses the synthesis of certain enzymes involved in aerobic respiration
(14, 15). The presence of oxygen inhibits FNR activity, thereby affecting its regulatory effect
(14, 15). On the other hand, ArcA is part of the two-component system (ArcB-ArcA) that
negatively regulates the operons that function in the tricarboxylic acid (TCA) cycle, glyoxy-
late shunt, and the electron transport chain and the enzymes involved in fatty acid break-
down pathways (14, 15) under anaerobic or microaerobic conditions. Similar to that of FNR,
the activity of ArcA is known to be influenced by the redox state of the quinone pools and
oxygen levels that affect its phosphorylation state (15, 16). So far, genome-wide binding
studies on these global anoxic regulators, FNR and ArcA, exploring their targeted effects in
varied oxygenation and nutritional conditions have been well appreciated (17–20).
Conventionally, a broad overview of the role of these regulators in sensing metabolic redox
state and their central carbon metabolic responses have been thoroughly investigated
using gene expression and metabolic flux analyses in anaerobic, microaerobic, and anaero-
bic-aerobic transition environments (14–26). Similarly, IHF has been well characterized as a
nucleoid protein and for its regulatory effects under respiratory and diverse nutrient condi-
tions (21–24). Genome-wide binding studies revealed the cooperative nature of IHF binding
at operator sites, whereas the gene expression studies addressed its role in regulating the
bacterial motility, stress-related, and glyoxylate shunt genes (22, 25–27). However, much
less is known regarding the regulatory roles of IHF in anaerobic fermentative conditions.
Apart from the huge number of genes directly or indirectly governed by these regulators,
the complex molecular mechanisms underlying the coordination of genes within proteome
sectors that facilitate system-wide cellular responses remain uncertain. Besides, the molecu-
lar basis of modulation of glucose uptake rate per se, as a result of changes in proteome
partitions in the event of these global regulator deletions, remains unexplored. To disentan-
gle these regulatory effects on cellular physiology, it would be imperative to reexamine
them using proteome allocation and metabolomics lenses.
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Here, we sought to interrogate a fundamental question as to how these transcrip-
tional regulators orchestrate the efficient allocation of the proteome share toward met-
abolic processes and ribosomes that collectively accounts for optimal biomass synthe-
sis under an anaerobic fermentative condition. Therefore, employing a systems biology
approach, we investigated the molecular bases underlying the phenotypic shifts of the
organism as a result of the deletion of global transcriptional regulators that will pro-
vide insights into their significance in coordinating the metabolite pools to foster ex-
ponential growth. Furthermore, emphasis on changes in gene expression or activity
profiles on their coregulators or local regulators modulating specific pathways high-
lights their widespread interactions within the transcriptional regulatory network.

In this work, we characterized transcriptomic responses of regulator deletion strains
that elucidate direct or indirect control over a nitrogen sensing mechanism, repress
unnecessary genes under anaerobic fermentation, and influence the biosynthesis and
bottleneck reactions in the central carbon metabolic pathways. These primarily repre-
sent the core metabolic proteome essential for rapid growth, and their impairment
influences the interplay with the growth rate-dependent ribosomal proteome that in
turn perturbs the global metabolome of the organism. By developing an extension to
a three-component coarse-grained model (4, 7, 9, 11, 28), we systematically revealed
that these global regulators ensure fine-tuned sector-specific proteome distribution.
Direct implications of our findings also reinforce how such modulations in growth restrain
the glucose uptake via intracellular metabolites, despite no changes in gene expression
related to glucose import. Overall, our bottom-up approach serves to elucidate the under-
lying importance of global regulators on central carbon metabolism in E. coli.

RESULTS
Disparate transcriptome profiles of global regulator mutants converge to a

common phenomenon of metabolic impairment. First, to address the transcriptomic
changes caused by the disruption of global regulators, namely, FNR, ArcA, and IHF, in
E. coli K-12 MG1655 under anaerobic fermentation in glucose minimal medium, we per-
formed a high-coverage RNA sequencing (RNA-seq) experiment around the mid-exponen-
tial phase of growth (see Data Set S1 in the supplemental material, FNR_gene_expression,
ArcA_gene_expression, and IHF_gene_expression sheets). Preliminary analysis of RNA-seq
data reiterated the role of FNR and ArcA regulators as a transcriptional activator and
repressor, respectively (18–20) (see Fig. S1A and B). In contrast, the pattern of differentially
expressed genes (DEGs) in the Dihf mutant did not ascertain whether IHF acts either as a
transcriptional activator or a repressor.

We compared our gene expression data with previous studies encompassing gene
expression and binding profiles (17–20, 29) to evaluate the direct and indirect effects of these
transcriptional regulators. We observed good agreement of gene expression data with the
available expression data sets (Data Set S1, FNR comparison gene expression, ArcA compari-
son gene expression, and IHF comparison gene expression sheets). Our data showed a signifi-
cant yet lower percentage of DEGs directly regulated by FNR (upregulated [up], ;11%, P .

0.05; downregulated [down], ;14%, P , 1023), ArcA (up, ;30%, P , 1024; down, ;29%,
P, 1024), and IHF (up,;10%, P, 1024; down, ;17%, P , 1025). Moreover, DEGs showed
enrichment for RNA polymerase with either stress-related sigma factor sigma 38 or nitrogen-
related factor sigma 54, apart from the growth-associated sigma factor 70 that targets pro-
moters essential for exponential growth (Fig. S1C). The partitioning of RNA polymerase
according to various sigma factors determines the function of growth rate-dependent global
machinery (5, 6). Hence, perturbations in patterns of RNA polymerase and associated sigma
factors reflected a suboptimal functionality of growth rate-dependent global machinery as an
indirect consequence due to the loss of these regulators.

To understand the role of these regulators on key metabolic pathways, DEGs were
enriched using the KEGG pathway hierarchical classification (see Fig. S2 to S4). We
observed a common enrichment (Benjamini-Hochberg adjusted P value, 0.05) of
pathways such as amino acid metabolism and transport across all the mutants.
Additionally, we observed enrichment of pathways of the TCA cycle and anaplerosis
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and alternate carbon metabolism (e.g., lipid and steroid metabolism, glycerol, or sec-
ondary carbon degradation) in these mutants. As metabolic genes are known to be
coregulated by other global or local transcription factors, we examined whether any of
the transcription factors were differentially expressed in each of the mutants (Data Set
S1, Regs differentially expressed sheet). Several regulators were differentially expressed
in each of the mutants compared to the wild type (WT) (Data Set S1, Regs differentially
expressed sheet). Additionally, the activity of coregulators was inferred from the tran-
scription factor-gene interaction data (RegulonDB) as well as effector metabolite con-
centrations in each of the mutants. Apart from altered activity of other global regula-
tors, our data also showed altered activity of the regulators that are known to be
associated with nucleotide metabolism (NrdR), amino acid metabolism (ArgR, MetJ,
and TrpR), nitrogen metabolism (GlnG and PuuR), alternate carbon metabolism (MalT
and UlaR), and sulfur metabolism (CysB) (Data Set S1, Regs enrichment sheets for fnr,
arcA and ihf). Altogether, such enrichments underscore the metabolic impairment
prevalent as a result of the loss of these global regulators.

Perturbation in nitrogen homeostasis. We investigated the pivotal gene-level
changes associated with the significant pathways commonly enriched in all the mutants
(Fig. 1 and Fig. S2 to S4). Specifically, we observed the upregulation of putrescine
(puuABCE) and arginine degradation (astABCDE) genes in Dfnr and DarcA mutants. These
genes belong to pathways that yield glutamate and ammonia as end products that can in-
dependently satisfy E. coli’s nitrogen requirement (30–32). Perhaps, upregulation of these
genes indicated a scavenging mechanism to restore possible disruption of the nitrogen
balance in the cell. The putrescine degradation genes are directly repressed by PuuR,
whereas the arginine degradation genes are directly activated by GlnG and ArgR transcrip-
tion factors, respectively. We observed an increase in PuuR transcript levels but reduced
activity as inferred from upregulation of its target genes in the case of Dfnr and DarcA
mutants. On the other hand, we observed an increase in the activity of GlnG and ArgR in
both mutants (Data Set S1, Regs enrichment sheets for fnr and arcA).

A similar scenario of nitrogen limitation was prevalent in the Dihf mutant (Fig. 1),
wherein we observed increased gene expression of ATP-dependent nitrogen uptake
(amtB) and two-component nitrogen sensing systems (glnKLG), which are known to be
expressed under nitrogen-replete conditions (30, 33). Besides, we observed the upreg-
ulation of amino acid biosynthesis genes such as glutamine (glnA) and tryptophan
(trpACDE) in the Dihf mutant, in agreement with increased expression of anabolic
genes in response to nitrogen limitation (11). Overall, such characteristic expression
profiles elucidated an important role of these global regulators in regulating the nitro-
gen homeostasis and sensing mechanism in E. coli.

Derepression of genes unnecessary in anaerobic fermentation. Our analysis
indicated an upregulation of the TCA cycle and anaplerosis pathway in Dfnr and DarcA
mutants (Fig. 1 and Fig. S3 and S4) that involved genes coding for the aerobic respira-
tory TCA cycle, in agreement with previous data sets (18–20, 29). Apart from being
unnecessary under the anaerobic fermentative conditions, these genes also incur a
substantial protein synthesis cost (34). In addition, we observed a significant upregula-
tion of alternate carbon metabolism genes such as glycolate degradation (glcBDEF), sn-
glycerol-3-phosphate transport (ugpABCE), fatty acid degradation (fadABEIJ), and ace-
tate uptake (acs) in Dfnr and DarcAmutants. Furthermore, we observed the upregulation
of known aerobic oxidative phosphorylation (nuoAGHIJKLMN) genes and maltose ABC
transporters (malEFGPKB) in the DarcA mutant. Maltose transporters are directly activated
by MalT, which was significantly upregulated in the DarcA mutant. Collectively, this repre-
sents a hedging mechanism, wherein a bacterial cell when challenged with fluctuating or
unfavorable environmental conditions modulates its gene expression to prepare itself to
be conducive to alternate metabolic phenotypes (35–37).

Similarly, the Dihf mutant showed significant upregulation of alternate carbon me-
tabolism genes responsible for ascorbate (ulaADEFG), galactose/maltose (galP, malX),
and ribose (rbsA) catabolism (Fig. 1). We observed lowered activity of UlaR, which is re-
sponsible for complete repression of ascorbate degradation genes in conjunction with
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IHF (38). We further observed the upregulation of genes coding for transporters of sul-
fur sources (tauAB and cysAUW) as well as sulfate assimilation (cysHI) in conjunction
with increased activity of CysB regulator in the Dihf mutant. Overall, the upregulation
of genes of unused or hedging proteins under conditions of anaerobic fermentation
can impose a burden on the growth of the organism.

Regulatory control of amino acid biosynthesis and bottleneck steps in the
central carbon metabolic pathway. To effectively examine the control of amino acid
biosynthesis and specific bottleneck reactions, we monitored the absolute intracellular
concentrations of 40 metabolites of central carbon metabolism in the mid-exponential
phase using 13C-based metabolomics (Data Set S1, Abs_conc of metabolites sheet)
coupled to the corresponding gene expression changes. We examined the changes in

FIG 1 Heat map of representative DEGs in Dihf, Dfnr, and DarcA strains, each compared to WT. The figure shows specific genes enriched by KEGG pathway
classification (shown in Fig. S2 to S4 in the supplemental material) that were functionally recategorized using evidence from the EcoCyc database. Gene
expression values are obtained from the average from two biological replicates (n= 2) expressed as log2 fold change. The downregulated genes are shown
in brown, and the upregulated genes are shown in cyan. Broadly, loss of these global transcriptional regulators was found to commonly affect genes
involved in nitrogen sensing and homeostasis, unused TCA cycle and alternate carbon metabolism, sulfur sensing, and aerobic respiration-dependent
oxidative phosphorylation (OxPP). We observed changes in outer membrane porin genes, such as downregulation of ompF in the Dfnr mutant and ompC in
the DarcA mutant and upregulation of ompF in the Dihf mutant, perceived as hyperosmotic or hypo-osmotic conditions, respectively. Alteration of these
porin genes reflected the osmotic imbalance faced by the cell, which in turn has strong associations with nitrogen assimilation (43, 81).
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absolute metabolite concentrations in each mutant compared to the WT, and only
those metabolites which were found to be significantly altered (false-discovery rate
[FDR], 0.05) were further analyzed.

Among the precursor metabolites of the glycolytic pathway, a pronounced increase
in phosphoenolpyruvate (PEP) accumulation was seen in all the mutants (Fig. 2 and
3E). Presumably, this observation can be attributed to the upregulation of pck in Dihf
and DarcA mutants and upregulation of ppsA and downregulation of pykA genes in
the Dfnr mutant (see Fig. S5C). The gluconeogenic pck and ppsA genes have been
reported to contribute to PEP synthesis during glycolysis from oxaloacetate (OAA) and
pyruvate, respectively (39). On the other hand, the pykA gene, involved in the conver-
sion of PEP to pyruvate with the generation of ATP by substrate-level phosphorylation,
represents an important rate-limiting enzyme under anaerobic fermentative conditions
(40). Despite an increase in PEP levels and changes in gene expression of biosynthesis
of aromatic amino acids (tyrosine, tryptophan, and phenylalanine), we did not observe
a concomitant increase in their levels in any of the mutants.

Besides, we observed the accumulation of branched-chain amino acids derived
from pyruvate, namely, leucine and valine, in Dihf and Dfnr mutants (Fig. 3F and G).
This aligned with lowered gene expression of ilvADEM observed for both the mutants
(Fig. 3D), thereby indicating a feedback regulation of these amino acids on their bio-
synthesis. On the contrary, we observed increased gene expression of ilvB and ilvN
genes which catalyze the first step in branched-chain amino acid synthesis, without
changes in leucine and valine levels in the case of the DarcA mutant. Additionally, in

FIG 2 Schematic representation of the key steps in central carbon metabolic pathways affected by the deletion of either of the global regulators IHF, FNR,
and ArcA. The figure shows the unique pattern of regulatory control exerted on gene expression as well as metabolite levels of amino acid biosynthesis
and rate-limiting steps in glycolytic reactions. Apart from control of the oxidative and reductive arm of the TCA cycle, our data indicate the downregulation
of nucleotide biosynthesis genes in all the mutants, which succinctly explains the regulatory control of purine and pyrimidine metabolism. The genes are
represented as colored squares, and metabolites are represented as colored circles. The colors purple, blue, and red represent changes in gene expression
(squares) or metabolite levels (circles) in Dihf, Dfnr, and DarcA mutants compared to WT, respectively. The dashed lines indicate two or more reactions
connecting the metabolites. Darker colors represent upregulation, whereas light colors represent downregulation. Note that succinate and lactate represent
exometabolite yields and are not measured intracellularly. Only statistically significant gene expression and metabolite levels are depicted. Abbreviations:
3PG, glycerate-3-phosphate; 2PG, glycerate-2-phosphate; PEP, phosphoenolpyruvate; OAA, oxaloacetate; aKG, a-ketoglutarate; PPP, pentose phosphate
pathway; R5P, ribose-5-phosphate.
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the Dihf mutant, we observed an increase in levels of glycerate-3-phosphate (3PG), a
precursor for the amino acids glycine and serine, in concert with downregulation of
gpmA gene expression (Fig. 2 and Fig. S5E). However, only glycine levels were found to
be higher in both Dihf and Dfnr mutants (Fig. S5D). Such PEP and 3PG accumulations
are known to signal carbon limitation (41), and their downstream amino acids with
dysregulated patterns are known to have occurred in other stresses as well (42).

Next, we examined the TCA cycle intermediate a-ketoglutarate (aKG), which coordi-
nates carbon and nitrogen balance by modulating glycolytic flux and accumulates dur-
ing nitrogen limitation (43, 44). Indeed, both Dihf and Dfnr mutants showed an accu-
mulation of aKG in contrast to the DarcA mutant, which showed a reduction (Fig. 2
and 4E). It is quite surprising that citrate (Fig. 4D) and aKG levels were lower in the
DarcA mutants despite the upregulation of gltA and icd genes, which might indicate
reduced TCA cycle activity (45, 46).

The amino acids derived from aKG, namely, glutamate, proline, and arginine, as
well as the amino acids derived from OAA, namely, aspartate, lysine, methionine, and
threonine, were found to be significantly higher in Dihf and Dfnr mutants (Fig. 2, 4F to
I, and 5C to G). Arginine is known as a positive coeffector of ArgR activity. Hence, the
increased ArgR activity based on the increased expression of arginine degradation
genes (Fig. 1) could be attributed to high internal arginine levels despite the argR
gene itself being downregulated in the Dfnr mutant. Similarly, the reduced expression
of glutamate degradation genes (gltB and gltD) (Fig. 4C) could be attributed to

FIG 3 Integrated transcriptomics and metabolomics analysis at PEP and pyruvate node. (A and C) Ball and stick representations of pathways annotated
with genes were obtained from EcoCyc, wherein yellow color represents the precursors PEP and pyruvate, and green color represents amino acids. (B and
D) Gene expression profiles of DEGs altered in the pathways depicted as heat map were obtained by comparing each of the regulator mutants (Dihf, Dfnr,
and DarcA) with WT. Expression values were obtained from the average from two biological replicates (n= 2) expressed as log2 fold change. (E to G)
Metabolite concentrations were obtained from an average of three biological and two technical replicates (n= 6) expressed as micromoles per gram (dry
cell weight) (mmol/gDCW). Only those metabolites which are significant at least in one mutant compared to WT are projected. *, statistically significant
metabolite in each mutant compared to WT. Open colored circles represent outliers for each of the mutants. The list of the measured metabolites and
their absolute concentrations are given in Data Set S1 (List of metabolites and Abs_conc of metabolites sheets).

Role of Transcription Factors on Proteome Allocation

March/April 2021 Volume 6 Issue 2 e00001-21 msystems.asm.org 7

https://msystems.asm.org


increased ArgR activity despite the argR gene itself being downregulated in the Dihf
mutant (Data Set S1, Regs enrichment sheets for ihf). In the DarcAmutant, concomitant
with an increase in aspartate and glutamate levels, we observed increased accumula-
tion of methionine and arginine, respectively. The changes in their levels were in line
with the downregulation of methionine (Fig. 5B) and arginine biosynthesis genes
(Fig. 4C), suggesting feedback repression mediated through MetJ and ArgR, respec-
tively. Since arginine degradation and methionine or lysine biosynthesis results in the
synthesis of intracellular ammonia and succinate (31, 47), higher pools of these amino
acids possibly indicate a strategy to circumvent nitrogen limitation. Additionally, the
increased putrescine accumulation in response to nitrogen limitation can be inferred
from the increased levels of arginine and gamma-aminobutyric acid (GABA) (Fig. 4H)
observed in all the mutants. Hence, the increased expression of putrescine degradation
genes (puuABCE) (Fig. 1), despite an increase in the expression of puuR itself observed in
the Dfnr and DarcA mutants, could be explained by the inhibitory effect of putrescine
on PuuR activity. However, we observed lowered expression of the putrescine degrada-
tion genes (Fig. 1) concomitant with increased PuuR activity in the case of the Dihf mu-
tant, despite higher putrescine levels.

Our data also indicate the downregulation of nucleotide biosynthesis genes in all the
mutants (Fig. S5C), which explains their regulatory control on purine and pyrimidine

FIG 4 Integrated transcriptomics and metabolomics analysis at citrate and aKG node. (A) Ball and stick representation of the pathway annotated with genes was
obtained from EcoCyc, wherein yellow color represents the precursors citrate and aKG and green color represents amino acids. (B) Ball and stick representation
of the arginine and putrescine degradation pathway annotated with genes was obtained from EcoCyc, wherein yellow color represents GABA, and green color
represents the amino acid arginine. (C) Expression profiles of DEGs altered in the pathways depicted as a heat map obtained by comparing each of the regulator
mutants (Dihf, Dfnr, and DarcA) with WT. Gene expression values were obtained from an average from two biological replicates (n=2) expressed as log2 fold
change. (D to I) Metabolite concentrations were obtained from an average from three biological and two technical replicates (n=6) expressed as micromoles per
gram (dry cell weight) (mmol/gDCW). Only those metabolites which are significant at least in one mutant compared to WT are projected. *, statistically significant
metabolite in each mutant compared to WT. Open colored circles represent outliers for each of the mutants. The list of the measured metabolites and their
absolute concentrations are given in Data Set S1 (List of metabolites and Abs_conc of metabolites sheets).
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metabolism. This could be partly explained by the increased activity of NrdR. As nucleotide
biosynthesis, akin to that of amino acids, involves feedback repression, together with an
observed increase in precursor aspartate levels (Fig. 2), we speculate that higher levels of
deoxyribonucleotide triphosphates might have increased the activity of NrdR (48) in each
of the mutants.

Overall, we observed that increased PEP levels were mirrored as increased OAA
(inferred from aspartate pools) and pyruvate levels (inferred from leucine and valine
pools) in the cases of Dihf and Dfnr mutants and solely as increased OAA levels in the
case of the DarcA mutant, without any concomitant increase in the costly aromatic
amino acid levels in any of the mutants. Second, changes in amino acid pools as a
result of increased degradation or biosynthesis of amino acids derived from aspartate
or glutamate represent resources for the generation of intracellular ammonia and suc-
cinate. Nevertheless, such amino acid accumulations in all the mutants could be, in
part, due to the inability of the organism to efficiently utilize them toward protein bio-
mass essential for optimal growth. To summarize, we observed direct and indirect
effects on the metabolome due to the deletion of global regulators, which corrobo-
rated the upset in gene expressions in amino acid biosynthesis and other bottleneck
reactions.

Physiological characterization highlights the growth suboptimality. Severe per-
turbation in metabolic processes due to the deletion of regulators motivated us to

FIG 5 Integrated transcriptomics and metabolomics analysis at OAA node. (A) Ball and stick representation of the pathway annotated with genes is
obtained from EcoCyc, wherein yellow color represents the precursor OAA and green color represents amino acids. (B) Gene expression profile of DEGs
altered in the pathways depicted as a heat map was obtained by comparing each of the regulator mutants (Dihf, Dfnr, and DarcA) with WT. Expression
values were obtained from an average from two biological replicates (n= 2) expressed as log2 fold change. (C to G) Metabolite concentrations were
obtained from an average from three biological and two technical replicates (n= 6) expressed as micromoles per gram (dry cell weight) (mmol/gDCW). Only
those metabolites which are significant at least in one mutant compared to WT are projected. *, statistically significant metabolite in each mutant
compared to WT. Open colored circles represent outliers for each of the mutants. The list of the measured metabolites and their absolute concentrations
are given in Data Set S1 (List of metabolites and Abs_conc of metabolites sheets).
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examine their physiological effects on the organism. Our data showed a profound
effect on growth physiology, glucose, and nitrogen import, thereby elaborating on the
system-wide effect of the deletion of global regulators under anaerobic fermentation
of glucose. Characterization of the phenotype of the mutants revealed a reduction of
;16% to 25% (P , 0.05, Student’s t test) in the growth rate as well as glucose uptake
rate compared to those of the WT (see Table S1). The decrease in growth rate was found to
be positively correlated with a decrease in glucose uptake rate (Pearson correlation coeffi-
cient [PCC], ;0.98, P , 1023) (see Fig. S6A to C). As PEP is known to donate a phosphate
group to the EI (enzyme I) protein of the phosphotransferase system, thereby facilitating
the uptake of glucose (49), the decrease in glucose uptake was in agreement with the accu-
mulation of PEP observed across the mutants (PCC,;20.9, P, 0.05) (Fig. S6A to C).

Furthermore, we measured fermentation products or exometabolites, namely, for-
mate, acetate, ethanol, and lactate, arising from pyruvate and succinate arising from
PEP (Table S1). Our findings of increased succinate yield in the DarcA mutant and
reduced succinate yield in the Dfnr mutant were consistent with previous studies (20,
29), without any distinct association with the trends of growth rates or glucose uptake
rates. Additionally, we obtained higher lactate yield in the Dfnr mutant, which had
strong correlations (PCC, ;0.95, P , 0.005) with branched-chain amino acids, namely,
leucine and valine, both being derivatives of pyruvate (Fig. S6A to C). The branched-
chain amino acids leucine and valine showed a significant increase in the case of the
Dihf mutant as well. Together with a higher yet insignificant lactate yield observed in
the case of the Dihf mutant, we anticipated slightly higher intracellular pyruvate levels
in the mutant similar to that in the Dfnr mutant. However, lower but significant lactate
yields accompanied with insignificant changes in leucine and valine in the case of the
DarcA mutant reveals an antagonistic control of ArcA on the pyruvate node compared
to that of FNR and IHF.

Next, we measured the ammonia uptake rate as an indicator of the nitrogen status
of the organism. All the mutants showed a reduced ammonia uptake rate (P , 0.05,
Student’s t test) compared to that of the WT (Table S1), reflecting the nitrogen limita-
tion faced by the organism, congruent with our gene expression and metabolite data
(aKG, arginine, and glutamate).

Global transcriptional regulators control the translational and metabolic
efficiency of the organism. By exploiting the gene expression and intracellular and
exometabolite profiles, we sought to quantitatively examine these changes at the pro-
teome level that correspond to impaired biomass synthesis or growth rate and subse-
quent glucose uptake. Consequently, we recalled a proteome allocation model pro-
posed by the Hwa group (4, 7, 9, 11, 28) that quantitatively relates the cellular
ribosome and metabolic proteome contents to the growth of E. coli. We substantiate
our key findings by defining a four-partition model that projects the major subsystems,
namely, R (ribosome), M (metabolic), and U (unnecessary) sectors proportional to our
experimental measurements with a fixed core Q sector.

Proteome sectors (1) comprise the following: an R sector, defining the growth
rate-dependent ribosomal sector; M sector, defining the growth rate-dependent meta-
bolic protein sector; and Q sector, defining the growth rate-independent core pro-
teome sector (9). Q sector represents the proteome belonging to replication and cell
membrane biogenesis, etc., which are maintained at constant proportions by autoneg-
ative feedback regulation as they are essential for the growth of the organism (7, 9).
We defined an additional neutral proteome sector “U” for the unused or unnecessary
metabolic proteins that help the organism hedge against unfavorable environmental
conditions but presumably pose a substantial proteomic burden under anaerobic fer-
mentative conditions. These U sector proteins defined here do not account for exoge-
nously expressed proteins but rather endogenous proteins that can switch to being
necessary when subjected to other nutritional or respiratory conditions. However,
these U sector proteins reduce the proteome share available for R and M sectors, effec-
tively reducing the growth rate in analogy to the induced expression of exogenous
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proteins, devoid of any phenomenological parameters (9). Based on the proteome con-
servation law, all the aforementioned sectors add up to unity:

1R11M11U11Q ¼ 1 (1)

wherein the growth-related total proteome fraction (1max) comprises the sum of R, M,
and U sectors other than1Q,

1max ¼ 1R11M11U: (2)

Therefore,

1max ¼ 121Q:

The R sector was derived from the product of experimentally measured total RNA/
total protein (R/P) ratio and empirically derived conversion factor r = 0.76 (1R = R/P �
r ), obtained from reference 9, in each of the strains (Fig. 6A). This traditional method of
relative ribosome measurement has been reported to be in quantitative agreement with
mass spectrometry or b-galactosidase assay data (28). All the mutants in our study
showed a higher R/P value than the WT (see Fig. S7), with the Dihf mutant showing the
highest R/P. Notably, there exists a strong correlation between high ribosome content
and lowered ppGpp levels (7). Interestingly, our analysis supports this notion in the case
of the Dihf mutant, wherein DEGs that were reported to be positively regulated by
ppGpp were downregulated (P , 1024, Fisher’s exact test), possibly suggesting a low-
ered level of ppGpp in this mutant. This observation also reiterated the previously

FIG 6 Proteome allocation in each of the strains. (A) Pie chart depicting the quantitative distribution of the proteome
sector fractions, R sector (1R), M sector (1M), Q sector (1Q), and U sector (1U ), as percentages for the WT and the
mutants. The figure indicates a high mE

tE
ratio represented as fold changes in each mutant compared to that for the WT. (B)

The U/M protein-coding transcriptome fraction ratio and mE

tE
ratio for each of the strains with standard deviations of

biological duplicates.
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deduced overlap in ppGpp and IHF targets (24). However, such enrichments were found
to be insignificant in the cases of Dfnr and DarcA mutants. Studies have shown that de-
spite any obvious enrichments observed for ppGpp, the R sector could be modulated by
amino acid pools directly or by adjusting the expression of rRNA genes by their constitu-
tive promoters in exponentially growing cells (3, 4, 10, 12). The increase in R sector
reflects a compensatory response to ameliorate the synthesis of metabolic proteins to
maximize biomass synthesis rate. However, R sector synthesis per se incurs a huge pro-
teomic cost that reduces the proteome resources available to the M sector. Thus, assum-
ing WT has an optimal R sector given the maximum growth rate, we consider that any
excess above the optimal R sector accounts for unused or unnecessary ribosomes.

To evaluate the corresponding changes in M sector, we first performed a simulation
specifically under glucose fermentative conditions using the genome-scale metabolism
and macromolecular expression (ME) model that accounts for 80% of the E. coli pro-
teome (50, 51). From the simulation, we predicted the set of protein-coding genes
(Data Set S1, ME_nonME_genes_anaerobic sheet) for glucose fermentative conditions
and subsequently utilized them to enrich the combined list of DEGs obtained from all
the mutants (Data Set S1, Transcriptome fractions sheet) that collectively accounted
for M and U sector genes. These enriched genes were utilized to calculate the unneces-
sary/metabolic (U/M) ratio using the protein-coding transcriptome fractions computed
for each of the strains (Data Set S1, Transcriptome fractions sheet) (Fig. 6B). As
expected, we observed a consistent increase in the U/M ratio across the mutants com-
pared to that for the WT, with the highest for the Dfnr mutant followed by Dihf and
DarcA mutants. We assumed this transcriptome fraction proportional to its proteome
fraction as a reasonable approximation at the subsystem (M or U sector) or functional
categorical level rather than individual mRNA-to-protein relation for each gene (10, 28,
52). The disruption in M sector and U sector proteomes reflects the impairment in the
protein economy in the mutants. Finally, using the 1max value (;43%) reported in lit-
erature (7, 11), 1R fraction, and U/M ratio, we determined the 1M fraction as defined
in equation 2.

For steady-state growth, the R sector and M sector proteome fractions have a linear
dependency on growth rate (7, 9), described as:

l ¼ tE1R; (3)

l ¼ mE1M; (4)

where the phenomenological parameter tE refers to translation efficiency (protein syn-
thesis flux by R sector proteome), phenomenological parameter mE refers to metabolic
efficiency (metabolic flux attained by M sector proteome) and l refers to the growth
rate (h21) of the organism.

Hence, using experimentally derived growth rates, R sector proteome fraction,
and the derived M sector proteome fraction, we computed the translational and
metabolic efficiency in the mutants to quantify the extent of the regulatory defect.
By equating equations 3 and 4, we obtain the ratio of metabolic efficiency to trans-
lation efficiency.

mE

tE
¼ 1R

1M
: (5)

Intriguingly, the deletion of global regulators increased mE
tE

ratio, indicating a decrease
in translation and an increase in metabolic flux (Fig. 6A and B). By normalizing the mE

tE
ratio

for the Dihf, Dfnr, and DarcAmutants with the WT ratio, we observed concordant increases
of ;3.26-, ;3.24-, and ;2.26-fold, respectively, that succinctly quantify the significance of
these regulators toward biomass synthesis in a WT strain (Fig. 6A). Moreover, the lowered
tE and high mE as a result of an imbalance in resource allocation further highlighted the
inefficiencies of the growth-related physiological processes (RNA polymerase, ribosome,
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and metabolites ppGpp or cAMP) that enable internal adjustments to counter the limita-
tion in the absence of these global regulators.

Physiological consequences of altered mE and tE on glucose uptake rates. Since
protein levels are subjected to posttranscriptional and posttranslational regulation (1),
we focused on the intracellular metabolite concentration that overall reflects the sum
of the activity of metabolic proteins and ribosomes to describe the final physiological
state (12, 53). The amino acids and precursor pool sizes were used as a proxy to
describe the changes in tE and mE flux of the organism, given their linear negative
association (Fig. S6A to C) with growth rate and glucose uptake rate. The accumulation
of amino acids glutamate, aspartate, and their derivatives observed consistently in the
mutants owing to their inability to be incorporated into protein biomass can be attrib-
uted to the reduction in tE . Similarly, the increase in mE , implying an increase in syn-
thesis to meet the reduced translational capacity, was indicated by accumulation of
precursors namely, PEP, aKG, OAA (speculated from aspartate levels), and their down-
stream amino acids in the mutants.

Next, we probed how steady-state metabolite accumulations subjected to changes
in growth rate might affect glucose uptake rates in each of the mutants. In Dfnr and
Dihf mutants, the intracellular concentration of aKG, when normalized to cell volume
(2.3 ml/mg, obtained from reference 54), matches with its Ki (inhibition constant) value
of 1.36 0.1mM for ptsI inhibition. Thus, the higher intracellular concentration of aKG
observed in Dfnr and Dihf mutants can reduce the glucose uptake (PCC, ;20.9, P ,

0.05) by noncompetitive inhibition on the phosphotransferase system (PTS) (44, 55).
Similarly, OAA (speculated from aspartate levels), known to modestly inhibit glucose
uptake (55), was found to be present at higher concentrations in all three mutants,
with the DarcA mutant having the highest aspartate accumulation (PCC, ;20.9, P ,

0.05). Furthermore, from the accumulation of leucine (PCC, ;20.94, P , 0.01) and va-
line (PCC, ;20.84, P , 0.05), increased lactate yield (PCC, ;20.92, P , 0.01), and
higher mE (Fig. 6B), we predict a higher intracellular pyruvate pool in the Dfnr mutant,
which is known to adversely impact glucose import (55). Moreover, it is known that the
degradation of carbon-rich amino acids such as aspartate and glutamate to their re-
spective a-keto acids can affect the glucose uptake rate (55). Collectively, these obser-
vations could, in part, explain why the DarcA mutant showed slightly better glucose
uptake than the Dfnr and Dihf mutants. Additionally, the extent of reduction in glucose
uptake in each of the mutants corroborated the reduction in M sector and increase in
U sector (Fig. 6B) as well as the increase in unused R sector, given that glucose import
and processing under a minimal medium condition involves significant metabolic pro-
teome resources (56).

DISCUSSION

Scrupulous proteome allocation in response to perturbations in the internal or
external environment defines the growth physiology of E. coli (1–4, 56). Anaerobic fer-
mentation represents an energetically less favorable environmental condition charac-
terized by high carbon uptake and slow growth, wherein an efficient proteome alloca-
tion toward energy and biomass becomes imperative (31). In this study, we addressed
how global transcriptional regulators FNR, ArcA, and IHF ensure efficient proteome
allocation toward biomass synthesis in a WT strain that enables it to attain an economi-
cal phenotypic outcome or foster robustness even under such unfavorable environ-
mental conditions.

We elaborated on the role of these regulators emphasizing their direct and indirect
control over key metabolic processes fundamental for balanced physiological growth
of E. coli. For instance, the deletion of either FNR, ArcA, or IHF resulted in perturbations
of key bottleneck steps of glycolysis, amino acid and nucleotide biosynthetic reactions,
and derepression of the aerobic TCA cycle and alternate carbon metabolic proteins.
Apart from carbon, we demonstrated that global regulators exhibit control over a
nitrogen homeostasis and sensing mechanism as evident from the induction of high-
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affinity nitrogen transporters or scavengers and metabolite profiles as well as the
altered ammonia uptake. Using the growth law theory (4, 7, 9, 11, 12, 28) and pro-
teome-based ME model (36, 50, 51), we quantitatively accounted for this reduction
in metabolic proteins and an increase in unnecessary or hedging proteins when an
optimal WT strain is debilitated by global transcription regulator deletion. Owing to
the huge energetic cost associated with ribosomal synthesis itself, demand for
increasing translation to ameliorate the synthesis of necessary proteins further con-
strains the proteome share for metabolic proteins. We illustrate that disruption of
this stringent trade-off between ribosomes and metabolic protein investments
involved a lower translational and higher metabolic efficiency, thereby restraining
growth (Fig. 7).

Transcriptionally regulating the first step or final committed step suffices to control
the end product concentrations, be it the amino acid biosynthetic pathway or crucial
reactions in central carbon metabolism (34, 57). The changes in the phenomenological
parameters were manifested as accumulation of proteinogenic amino acids (gluta-
mate, aspartate, and their derivatives) and precursors (PEP, pyruvate, aKG, and OAA),
as evident from specific metabolic signatures in each of the regulator mutants. We sug-
gest these amino acid accumulations are a consequence of not being efficiently uti-
lized for protein biomass, as evident from the changes in efficiencies and increase in
ribosomes, which may be suggestive of lower ppGpp levels. As we did not observe any
changes in lon protease at the transcript level, the scenario wherein amino acid accu-
mulations occur due to protein degradation promoted by higher ppGpp levels evident
under starvation conditions seems less feasible (58). Intuitively, fueling products (par-
ticularly a-ketoacids, namely, pyruvate, aKG, and OAA) or building blocks (e.g., amino
acids that on degradation generate a-ketoacids) have their feedback mechanisms on
carbon import or amino acid biosynthesis that can independently affect the transla-
tional and metabolic proteome machinery (Fig. 7), limiting the potential of the system
to attain a growth rate similar to that of the WT (12, 53–55, 57). Overall, in the absence
of global regulators, we propose that the balance between growth rate and glucose

FIG 7 Model depicting global transcriptional factor (TF) control of the metabolic and translational
proteome machinery. The yellow and blue circles represent processes related to glucose uptake and
metabolism and to synthesis of biomass constituents toward growth, respectively. Carbon
(represented as red circles) and nitrogen sources (ammonia, represented as blue squares), following
their uptake, are processed into intracellular precursors (represented as yellow blocks) and amino
acids (represented as green circles) depending on the metabolic efficiency of the organism. These
intracellular amino acids are then converted into proteins by ribosomes depending on the translation
efficiency of the organism. The stringent interplay between the metabolic and translation efficiency
of the organism is coordinated by transcriptional regulators in conjunction with growth rate-
dependent machinery. Any imbalance transduces the signal to metabolites that feedback regulate to
restore control. In the absence of a regulator, the necessary genes utilizing metabolites and
unnecessary genes diverting the metabolites from their cellular objectives cause a negative feedback
effect, eventually causing a suboptimal growth rate. These metabolites can independently affect
many cellular reactions, as evidenced by the known kinetics of metabolite regulation. Such
detrimental changes are kept in check by global regulators complementing the linear association
between growth and glucose import.
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uptake rate is attenuated, making the organism incapable to attain a fitter phenotype,
unless forced upon a selection pressure (59, 60).

Though we explored the regulatory effects using quantitative measurements,
we observed discrepancies in gene expression, metabolite profiles, and inferred
protein activity of metabolic enzymes and coregulators, with their exact mecha-
nism still unclear (53, 57). This could be addressed by accurate determinations of
metabolites that had inconsistent responses (e.g., nucleotides) and by increasing
the number of metabolites analyzed in each of the pathways to capture the over-
riding metabolite regulation. Furthermore, we note that variation might arise
across different gene expression studies, but that would affect only the changes in
efficiencies quantitatively. However, qualitatively, the trend of dysregulation
would still hold true. Nevertheless, this work serves as a valuable template examin-
ing the coordination of genes and modulation of the activity of other transcription
factors within the metabolic sector. Mechanistically, this delineated the comple-
mentary role of global transcriptional regulators with growth rate-dependent
global machinery, predominant in exponentially growing cells. Such analyses can
be extended to other global regulators such as cAMP receptor protein (CRP) (11,
59, 61), HNS (60), Lrp (62), and Fis (63), which tempts us to anticipate similar under-
lying mechanisms of regulation, presumably not confined only to glucose ferment-
ative metabolism.

MATERIALS ANDMETHODS
Strain construction. We constructed Dfnr, DarcA, and Dihf (ihfA-ihfB) (see Table S2 in the supple-

mental material) knockouts in E. coli K-12 MG1655 (CGSC 6300), by l Red-mediated recombination using
the recombinase enzyme encoded plasmid pKD46, template plasmid pKD13 or pKD3 for the antibiotic
selection cassette, and cured by pCP20 (64). The constructed strains were verified by PCR using the pri-
mers (Data Set S1, Primers_list sheet) covering on the region of interest as well as by Sanger sequencing.
Glycerol stocks were made for each of the strains and stored at280°C.

Physiological characterization in a bioreactor. All characterizations were performed by growing
cells in 400ml M9 medium (6 g/liter anhydrous Na2HPO4, 3 g/liter KH2PO4, 1g/liter NH4Cl, 0.5 g/liter
NaCl plus 2mM MgSO4 plus 0.1mM CaCl2) with 2 g/liter glucose in a 500-ml capacity bioreactor
(Applikon). Briefly, cells from glycerol stocks were plated out on LB plus kanamycin (Kan; 50mg/ml)
agar plates, and a single colony was inoculated in LB medium. A fixed volume of 100 ml cells was used
to inoculate 50ml preculture M9 medium with 4 g/liter glucose, which was grown in a shake flask at
250 rpm in a 37°C (Eppendorf) incubator. The preculture cells, still in exponential phase, were centri-
fuged and washed with M9 medium (no carbon source) and inoculated in a bioreactor containing
400ml M9 medium with 2 g/liter glucose such that the start optical density (OD) of all the cultures
was ;0.07. The temperature of the bioreactor was maintained at 37°C, the stirrer speed was 150 rpm,
and the pH of the medium was maintained at pH 7.2 using 1 M NaOH. The pH was continuously moni-
tored using a pH probe. Dissolved oxygen (DO) levels were monitored continuously using a polaro-
graphic dissolved oxygen probe and maintained at zero by constantly sparging nitrogen. The growth
rate was measured from the slope of the linear regression line fit to the natural logarithm of the opti-
cal density values at 600-nm wavelength (OD600) versus time plot, ln(OD600) versus time (in hours), dur-
ing the exponential growth phase. The dry cell weight was experimentally determined for each strain
across the exponential phase such that an OD600 of 1.0 corresponds to 0.44 g (dry cell weight)·liter21.
Three biological replicates (n= 3) were considered for all phenotypic characterizations. To determine
the rate (65) of glucose uptake as well as the rate of secretion of mixed acid fermentation metabolites
(acetate, lactate, pyruvate, succinate, formate, and ethanol), samples were collected throughout the
exponential phase which were then centrifuged. The supernatants were used to determine the con-
centrations using a high-pressure liquid chromatograph (HPLC) (Agilent 1200 series) equipped with a
Bio-Rad Aminex HPX-87H ion exclusion column, with 5mM H2SO4 as the mobile phase. The column
temperature was maintained at 50°C and the flow rate at 0.6ml/min. The supernatants were also used
to determine the ammonia uptake rate using an enzyme-based assay (Sigma number AA0100). Given
that pyruvate, succinate, and lactate are also secreted by the bacterial culture in substantial amounts,
these metabolites were confined to exocellular metabolite measurements. Yields of biomass and
mixed-acid fermentation products were calculated by normalizing their rates with glucose uptake
rates (g/g glucose).

RNA extraction and enrichment of mRNA. The RNA extraction from two biological replicates of
each strain was performed (n= 2). Briefly, the cells were grown anaerobically until the mid-exponential
phase, after which 50ml (OD of 0.35 to 0.4) cells were harvested by centrifugation. The TRIzol-chloro-
form method was used to extract total RNA (60, 66) as detailed below. DNase treatment was performed
to remove any genomic DNA contamination. After DNase treatment, an initial enrichment of total RNA
using a MegaClear kit (Ambion) was performed as per the manufacturer’s instructions. Enrichment of
mRNA was performed using the MICROBExpress kit according to the manufacturer’s protocol, and the
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quality and integrity were checked using a Bioanalyzer. Paired-end strand-specific libraries for RNA
sequencing were prepared using NEBNext Ultra directional RNA library kit, and the sequencing was car-
ried out with HiSeq 4000 rapid run mode using 2� 150 bp format at Genotypic Technologies,
Bangalore, India.

Transcriptome data analysis. Raw read filtering, trimming, mapping, and alignment were per-
formed as reported previously (59), taking into consideration the strand-specific paired-end reads. The
error tolerance for filtering low-quality reads and adapter sequences was set to 20%, and trimmed
reads with ,50 bases were excluded. The annotations for 4,466 genes excluding the rRNA, tRNA, and
small RNA (sRNA) genes were extracted from the EcoCyc database (version 21.5) (67). Raw counts from
EdgeR (68) were then used for the analysis of differential gene expression, after filtering based on
genes with reads of ,0.5 counts per million (cpm). Differentially expressed genes (DEGs) showing $2-
fold change in expression and adjusted P values of ,0.05 (Benjamini-Hochberg) were used for all fur-
ther analyses.

Enrichment of upregulated and downregulated DEGs was performed separately for regulators FNR,
ArcA, and IHF using information available in EcoCyc (67), and statistical significance was performed
using Fisher’s exact test. Only enrichments with a P value of ,0.01 were considered for further analysis.
For sigma factor enrichment analysis, the upregulated and downregulated DEGs were separately
enriched based on sigma factor targets using data available in EcoCyc and RegulonDB (version 10.6.3)
(69). The upregulated and downregulated genes under each regulator were then validated using a
hypergeometric test in R (P value, 0.01). Only those sigma factors which regulated at least 5 genes
from either the upregulated or downregulated DEGs in each of the mutants were retained for this over-
representation analysis.

The upregulated and downregulated DEGs were separately enriched for metabolic pathways using
KEGG pathway classification (70) as defined in Proteomaps (www.proteomaps.net), and the mapped
genes were represented as Voronoi tree maps (version 2.0) (71). A hypergeometric test with P value
correction using the Benjamini-Hochberg procedure was applied to determine the significance of the
upregulated and downregulated genes within each pathway in R (R Core Team, version 2019). For
each upregulated and downregulated pathway, we arbitrarily choose at least 10 DEGs to be consid-
ered for significance analysis. DEGs not having any assigned “Accession ID” (EcoCyc version 21.5) such
as phantom genes were excluded from the analyses. The global and pathway-specific local regulators
of E. coli K-12 and their cognate gene sets were downloaded from RegulonDB (version 10.6.3). The
KEGG enriched up- and downregulated DEGs were separately analyzed for enrichment of global and
local regulators. The global and local regulators found to be significant by Fischer’s exact test (P ,
0.01) were retained for further analysis (Data Set S1, Reg enrichment sheets for fnr, arcA, and ihf). An
arbitrary cutoff of at least 5 genes was chosen to be considered for enrichment analysis.

The ppGpp enrichment analysis was performed on the complete list of upregulated and downre-
gulated DEGs separately using data available in EcoCyc, and statistical significance was assessed using
Fisher’s exact test. Only enrichments with a P value of ,0.01 were considered for further analysis.

Quantitative RT-PCR validation for RNA-seq. Quantitative reverse transcription-PCR (qRT-PCR) was
performed with the Agilent AriaMx machine using the PowerUp SYBR green PCR master mix to validate
the RNA-seq data. rpoB was used as an internal control to normalize the qRT-PCR data. DNase-treated
total RNA to cDNA conversion was performed using Superscript IV reverse transcriptase (Invitrogen)
according to the manufacturer’s instructions. All experiments were performed in biological duplicates
and technical triplicates (n= 6). The comparative threshold cycle (22DDCT) method described previously
(72) was used to quantify expression fold changes. We observed a strong correlation (.0.93) between
qRT-PCR and RNA-seq data (Data Set S1, qRT-PCR_validation sheet).

Metabolomics. Metabolite samples were harvested from anaerobically growing cells in the mid-ex-
ponential phase. Three biological and two technical replicates (n= 6) were harvested as reported previ-
ously (59) with minor changes specific to anaerobic conditions. A fast-cooling method was used to
quench the harvested cells as reported previously (73, 74). Briefly, ;15ml culture (cells at an OD of
.;5) was rapidly poured into 5ml chilled M9 medium (without glucose) in a precooled 50-ml falcon
tube. To rapidly bring the temperature of the sample tube down to 0°C, the tube was dipped in liquid
nitrogen for 10 s with vigorous agitation with the help of a digital thermometer, to prevent ice crystal
formation. Samples were then immediately centrifuged at 0°C at 7,800 rpm for 7min. The supernatant
was discarded, and the pellet was snap-frozen in liquid nitrogen and stored at 280°C until metabolite
extraction was performed.

For metabolite extraction, 7:3:5 (vol/vol/vol) methanol-chloroform-ammonium hydroxide (2% [wt/
vol]) was used as described previously (59, 74). 13C-labeled E. coli extracts were used as internal stand-
ards that were generated separately under aerobic flask conditions using the wild-type strain. The la-
beled extracts were used in the quantification of key metabolite pool sizes using an isotope-based dilu-
tion method (75). All the extracted samples were spiked with a fixed volume of internal standard taken
from the same batch at an early stage of extraction. The volume of the pooled internal standard added
to the samples was accepted only if the external 12C peak height (concentration similar to samples) and
internal 13C standard peak height differed ,5-fold (54). The liquid chromatography-tandem mass spec-
trometry (LC-MS/MS) settings (59) and chromatographic conditions (59, 76) were maintained as reported
previously. Cleaning and maintenance of the LC-MS systems were performed (77) before the actual
setup. The electrospray ionization (ESI) was operated in positive [M1H]1 and negative [M2H]2 mode
separately. MS1 parent ion was used for quantification purposes. The MS2 setting was used for second-
ary validation of metabolites, including the 12C chemical standards.
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Metabolomics data analysis. The raw files generated from the machine were processed using the
software package Xcalibur 4.3 (Thermo Fisher Scientific) Quan Browser, as has been shown in a previous
study (59). Quantitative analysis was performed wherein the peak heights of precursor ions with a sig-
nal/noise (S/N) ratio of more than 3 and less than 5 ppm error were considered. The metabolite height
ratios were obtained after normalizing the peak heights of the samples to the peak height of the internal
standards. To identify the concentrations, serial dilutions of 12C chemical standards (mix of 40 metabolites)
supplemented with the fixed volume (as in samples) from the same batch of 13C-labeled internal standards
were used to generate a calibration curve in the range of 0.781mM to 50mM. These standards were run in
biological duplicates (n=2) for the above-mentioned concentration range in the positive and negative
modes separately. All metabolite concentrations were within the calibration curve range, and those which
did not fall in this range were individually checked for that particular concentration to assess whether they
lie within the limit of quantification (LOQ) (S/N=10).

MetaboAnalyst (78) was used for identifying statistically significant metabolites. Biomass normal-
ized concentrations on metabolites were g-log transformed before analysis. Missing value imputation
was performed using the SVD impute function in MetaboAnalyst. The absolute concentration of
metabolites is expressed as micromoles per gram dry cell weight. Only those metabolites with a false-
discovery rate (FDR) value of ,0.05 (two-tailed unpaired Student’s t test) were considered for further
analysis.

We sought to identify the specific pattern of precursor or amino acid correlations with the glu-
cose uptake and growth rate across the WT and mutant conditions given that the physiological state
of the system was perturbed due to a regulator deletion. Towards this, we performed pairwise
Pearson correlation analysis (Pearson product-moment correlation) with statistical significance (P ,
0.05) between metabolites and phenomic features such as glucose uptake, growth rate, etc., in each
of the mutants compared to that of the WT in R. For this analysis, only features/metabolites found to
be statistically significant (FDR, 0.05 from Student’s t test) in each mutant compared to that in the
WT were considered for correlation analysis. The concentrations (n = 6) of technical and biological
replicates of metabolites were clubbed (n = 3) to make them comparable with phenomic features
(n = 3). These concentrations or rates were log2 normalized before assessing the correlation in R (R
Core Team, version 2019).

ME model simulations. We assessed the utilized ME and nonutilized ME protein-coding genes,
as reported previously (59), using an E. coli ME model (50, 51). The simulation involved constraining
the glucose uptake rates in the range from zero to unbounded glucose (36, 59, 79), with an addi-
tional constraint on oxygen that was set to zero and the maximization growth rate as an objective
function. Genes predicted to have a reasonable protein translation flux ($10215mmol/g [dry cell
weight]/h) in any of the simulations were classified as “utilized ME;” genes within the scope of the
ME model that showed no expression or very low expression in any of the simulations (protein trans-
lation flux, 10215mmol/g [dry cell weight]/h) were classified as “nonutilized ME” (Data Set S1,
ME_nonME_genes_anaerobic sheet). It should be noted that from the predicted gene list, only the
genes encoding metabolic proteins specific to glucose metabolism as a function of growth rate
were considered and annotated as “M” sector and unnecessary/unused “U” sector (ribosome-affili-
ated proteins were not considered). Two assumptions were considered in this analysis: (i) DEGs
mapped to the utilized ME and nonutilized ME genes correspond to the metabolic “M” sector and
unnecessary/unused “U” sector genes, respectively, and (ii) the increase in these protein-coding
transcriptome fractions corresponds to an increase in proteome fractions. DEGs utilized in the simu-
lation correspond to genes that were differentially expressed (Benjamini-Hochberg adjusted P
values, 0.05, adjusted fold change [aFC] $ 2) in at least one condition (Dfnr versus WT, DarcA ver-
sus WT, and Dihf versus WT). We mapped the DEGs in each of the mutants compared to WT to the
ME model-predicted protein-coding genes to collectively account for M sector and U sector genes.
This mapping was performed utilizing the combined list of DEGs from all the mutants to make it
comparable across the WT and all mutant strains. Additionally, DEGs (excluding transcriptional regu-
lator genes) outside the scope of the ME model were further enriched using KEGG pathway classifi-
cation as well as based on manual annotation using EcoCyc, which were then added to M sector and
U sector gene lists. Raw counts (genes with ,0.5 cpm reads were not considered) for all the 4,466
genes in WT and the mutants were used for calculation of transcript per million (TPM) (80).
Furthermore, the genes with lengths less than the mean fragment lengths of paired-end reads were
filtered out of the TPM analysis. The mean fragment lengths were computed using Picard tools
(http://broadinstitute.github.io/picard/). TPMs were assigned to all the M sector and U sector genes
annotated to DEGs. The transcriptome fraction was calculated using the product of TPM and gene
length divided by the sum product of these calculated over the sector-specific genes (Data Set S1,
Transcriptome fractions sheet). Finally, we summed the transcriptome fractions of all M sector and U
sector genes independently (36). These fractions were scaled to percentages and depicted in
Fig. 6A. The U/M ratio was calculated by dividing these protein-coding transcriptome fractions of
the U sector and M sector for each of the strains.

Total RNA estimation. Total RNA extracted from the cells using the TRIzol-chloroform method as
per the manufacturer’s instructions. Briefly, 50ml cells were harvested from the bioreactor at and OD of
around 0.35 to 0.4. Cells were pelleted by centrifugation at 4°C. The pellets were stored at 220°C until
utilized for further processing steps. The pellet was snap-frozen in liquid nitrogen followed by the addi-
tion of 300 ml TRIzol. The pellet was homogenized using a hand-held pestle for not more than 2 min. To
this homogenized pellet, 700 ml TRIzol was added, which was then vortexed and kept on ice for 15 min.
Further extraction was performed using chloroform (300 ml), and the sample was centrifuged to
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separate the protein, DNA, and RNA layers. The RNA layer was then precipitated using isopropanol as
per the instructions provided for the TRIzol method. Next, RNA was centrifuged at 4°C, and the RNA pel-
let was washed with 70% (vol/vol) ethanol at room temperature. The pellet was dried by inverting the
tubes, making sure there were no traces of ethanol, and to the dried pellet, 30 to 40 ml DNase-RNase
free water was added. This reconstituted sample was incubated in a dry bath at 55°C for 10 min, brought
to room temperature, and then stored as aliquots at 280°C until use. The total RNA was checked for its
purity and integrity by running on an agarose-formaldehyde gel and Bioanalyzer, and its concentration
was estimated using a Nanodrop. The obtained RNA concentration (mg/ml) was normalized to its respec-
tive OD at 600 nm and gram (dry cell weight) conversion factor (0.44mg/ml) to derive the final concen-
tration (mg/mg [dry cell weight]).

Total protein estimation. The total protein quantification was determined using 1.8ml of culture
at an OD of around 0.35 to 0.4 and was based on the Biuret method described previously (11). Briefly,
the cells were immediately centrifuged at 4°C and the supernatant was discarded. The pellet was
washed once with autoclaved and chilled Milli-Q water with another round of centrifugation. The pel-
let was dissolved with 200 ml of autoclaved and chilled Milli-Q water followed by snap-freezing in liq-
uid nitrogen and storage at 220°C until use. The pellets were thawed at room temperature. Once
thawed, 100 ml of 3 M NaOH was added to the suspension and mixed before incubation at 100°C for 5
min to liberate the proteins by cell lysis. After cooling the lysate to room temperature, 100 ml of 1.6%
(wt/vol) CuSO4 was added with vigorous mixing for 5 min to initiate the Biuret reaction. After centrifu-
gation, the colored solution was diluted to 1:1 with autoclaved and chilled Milli-Q water to measure
absorbance at 555 nm in a MultiScan GO (Thermo Scientific) spectrophotometer using a cuvette. Milli-
Q water treated with the NaOH and CuSO4 step was used as the blank. The bovine serum albumin
(BSA) standard was also subjected to the same conditions as the sample to analyze the concentration
of proteins. The slope obtained from the standard curve was used for the calculation of protein con-
centrations. The obtained protein concentration (mg/ml) was normalized to its respective OD at
600 nm and gram (dry cell weight) conversion factor (0.44mg/ml) to derive the final concentration
(mg/mg [dry cell weight]).

Data availability. The RNA sequencing data and the processed files from this study are available at NCBI
Geo under accession number GSE153906. The metabolomics data presented in this study are available at the
NIH Common Fund’s National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench,
where it has been assigned project identifier (ID) PR000975. The data can be accessed directly via https://www
.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Project&ProjectID=PR000975.
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FIG S4, TIF file, 2.3 MB.
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