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Abstract

Study Design: Narrative review

Objective: Decision making in surgery for adult spinal deformity (ASD) is complex due to the multifactorial etiology, numerous
surgical options, and influence of multiple medical and psychosocial factors on patient outcomes. Predictive analytics provide
computational tools to analyze large data sets and generate hypotheses regarding new data. In this review, we examine the use of
predictive analytics to predict patient-reported outcomes (PROs) in ASD surgery.

Methods: A search of PubMed, Web of Science, and Embase databases was performed to identify all potentially relevant studies
up to February 1, 2020. Studies were included based on the use of predictive analytics to predict PROs in ASD.

Results: Of 57 studies identified and reviewed, 7 studies were included. Multiple algorithms including supervised and unsu-
pervised methods were used. Significant heterogeneity was observed with choice of PROs modeled including ODI, SRS22, and
SF36, assessment of model accuracy, and with the model accuracy and area under the receiver operating curve values (ranging
from 30% to 86% and 0.57 to 0.96, respectively). Models were built with data sets of patients ranging from 89 to 570 patients with
a range of 22 to 267 variables.

Conclusions: Predictive analytics makes accurate predictions regarding PROs regarding pain, disability, and work and social
function; PROs regarding satisfaction, self-image, and psychologic aspects of ASD were predicted with the lowest accuracy. Our
review demonstrates a relative paucity of studies on ASD with limited databases. Future studies should include larger and more
diverse databases and provide external validation of preexisting models.
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Introduction

Adult spinal deformity (ASD) negatively affects patient quality

of life to the same extent seen in other chronic diseases such as

chronic heart and lung disease and severe osteoarthritis and

rheumatoid arthritis.1,2 ASD affects 32% of adults, and more

than 60% of elderly adults in the United States suffer from

spinal deformity.3,4 As the population ages and life expectan-

cies rise, ASD and related surgery is becoming increasingly

common.5,6 The implementation of value-focused programs

that can identify cost variability has been shown to decrease

spending and improve health outcomes.7 As such, tools that can

predict patient-reported outcomes (PROs) in ASD have the

potential to maximize value by identifying the appropriate sur-

gery for each patient.

In spine surgery, predictive analytics has the potential to

help identify both those patients most likely to benefit from

surgery and those at highest risk for complications. Predictive

analytics has previously been used to predict patient
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satisfaction after decompression for lumbar stenosis, functional

outcomes after surgery for cervical spondylotic myelopathy

and recurrent lumbar disc herniation, and poor outcomes after

lumbar discectomy.8-11 Within ASD surgery, predictive analy-

tics has also been used to predict the need for blood transfusion,

hospital length of stay, complications, pseudoarthrosis, and

catastrophic costs,12-16 as well as postoperative PROs.17-23

Given the numerous variables that contribute to outcomes and

patient satisfaction with ASD, predictive analytics provides a

valuable tool to analyze large data sets with unclear links of

variables to outcomes. As a result, there has been substantial

heterogeneity in studies on this topic, which suggests the

importance of a review summarizing the existing evidence. The

aim of this study is to review the current literature on predictive

analytics of PROs following ASD surgery.

Methods

A literature review was conducted according to Preferred

Reporting Items for Systematic reviews and Meta-analysis

(PRISMA) guidelines to identify all articles available in

PubMed, Web of Science, and EMBASE databases as of Feb-

ruary 2020 without limitation on starting date. Search syntax

was built from terms related to “adult spinal deformity,”

“predictive analytics,” and “patient reported outcomes.” Exact

search terms (MESH, EMBASE, and Web of Science searches)

are shown in Supplemental Figure 1.

Included studies used prediction models of standardized

PROs following ASD surgery for both cervical and thoraco-

lumbar deformities. Studies examining thoracolumbar defor-

mity included patients with (1) sagittal vertical axis (SVA)

�5 cm, (2) pelvic tilt (PT) �25�, or (3) thoracic kyphosis

(TK) �60�.
Studies of adult cervical spine deformity included patients

with radiographic evidence of (1) cervical kyphosis (C2-7

Cobb angle >10�), (2) cervical scoliosis (C2-7 coronal Cobb

angle>10�), (3) C2-7 sagittal vertical axis (cSVA)>40 mm, or

(4) chin-brow vertical angle (CBVA) >25�.
Studies were excluded if they did not include full text, were

in languages other than English, or were animal studies.

Results

The PRISMA flow sheet for data collection is shown in Fig-

ure 1. A total of 109 articles were identified for review resulting

in a total of 57 articles following duplicate removal, and 42

articles were excluded based on review of the title and abstract.

The full text of 15 articles was then assessed for eligibility,

resulting in the exclusion of 8 studies which either lacked full

text, did not predict PROs, or had no PRO data. Final analysis

Records iden�fied through 
database searching (n=109)

Records iden�fied through 
other sources (n=0)

Records a�er removing 
duplicates (n=57)

Records screened on �tle and 
abstract (n=57) Records excluded (n=42)

Full text assess for eligibility 
(n=15) Studies excluded for following 

reasons:

Model did not predict PRO 
(n=3)

No PRO data (n=1)
No full text (n=4)

Studies included (n=7)
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Figure 1. Flow diagram demonstrating PRISMA identification, screening, eligibility, and inclusion. Eight studies were included in the final analysis.
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included 7 retrospective cohort studies specifically utilizing

predictive analytics for modeling of PROs in ASD surgery.

Articles reviewed are summarized in Table 1. The median

number of patients included in each study was 234 with a range

of 89 to 570. There was a wide range of variables included with

a median number of predictors of 46 (range 11-267). The most

common PRO tools utilized were the Oswestry Disability

Index (ODI), the Scoliosis Research Society Outcomes Ques-

tionnaire (SRS22), and the Short Form 36 (SF36). Numerous

methods were used to develop predictive models including

decision trees, conditional inference trees, gradient boosting

machines, extreme gradient boosting tree, extreme gradient

boosting linear models, random forest, generalized linear mod-

els, elastic net, elastic net regularized models, and unsuper-

vised hierarchical clustering. The heterogeneity of the models

and predictions prevented generalizations regarding conclu-

sions. Various measurements were also utilized to assess com-

putational modelling of the data including accuracy, area under

the curve (AUC), and mean average error.

Thoracolumbar Deformity

Oh et al17 conducted a multi-institutional retrospective review

of prospectively collected database of 234 patients collected by

the International Spine Study Group (ISSG) undergoing sur-

gery for thoracolumbar ASD using boot-strapped decision trees

to identify patients that would meet the minimum clinically

important difference (MCID) in postoperative ODI. Their

model included 46 variables and was reported to be 86% accu-

rate with a 0.96 area under receiver operating curve (AUC)

with internal validation using a 70:30 data split. Patients pre-

dicted to meet the ODI MCID had significantly greater quality

adjusted life years (QALYs) gained at 2-year follow-up.

Similarly, Scheer et al18 utilized the same ISSG database to

retrospectively review 198 patients with baseline ODI>30 and

develop a model predicting patients who would meet the ODI

MCID at 1 year. Their model incorporated 43 variables and was

internally validated with a 70:30 data split to predict which

patients would achieve the ODI MCID with 86% accuracy and

0.94 AUC. Major predictors of a positive outcome in this study

included gender, lower preoperative SRS22 score and back

pain rating, SVA, pelvic incidence to lumbar lordosis mismatch

(PI-LL), and whether the patient was undergoing a primary

surgery or a revision.

Ames et al21 developed models using a cohort of 561 from 2

independent ASD databases collected from 17 sites throughout

the United States and Europe to predict patients’ responses to

all 22 questions of the SRS-22r at 1 and 2 years follow-up. The

models were developed using 6 different prediction algorithms

(Table 1) and 150 variables. Internal validation was completed

with an 80:20 data split, and the model with the maximum

AUC was selected. Accuracy ranged from 35% to 80% for each

question with an AUC of 0.57 to 0.87. The models most accu-

rately predicted outcomes for questions assessing pain, disabil-

ity, and social/labor functioning. They were least accurate for

questions addressing satisfaction, depression/anxiety, and

appearance. Low predictability for patient satisfaction was

attributed to a low incidence of unsatisfied patients in the study.

A subsequent study22 utilizing the same database examined

570 patients and 75 variables to develop models capable of

predicting a patient’s odds of achieving the MCID on the ODI,

SF-36, and SRS-22r at 1 and 2 years follow-up using 8 model-

ing algorithms (Table 1). The goodness of fit for each model

was assessed using mean average error (MAE) unlike the

above-mentioned models, which utilized an accuracy and AUC

measurement. The models underwent internal validation using

an 80:20 data split with MAE ranged from 8% to 15%. Predic-

tions generated by the models suggested that patients with low

baselines PROs would experience the greatest gain in PROs;

however, these same patients also had the highest rate of com-

plications, suggesting them to be a high risk/reward population.

Ames et al23 applied unsupervised hierarchical clustering to

a combined ISSG/ESSG (European Spine Study Group) popu-

lation to discover distinct patient clusters and groups of sur-

geries in an effort to predict surgical quality and PROs. Using

22 variables gathered from the 570 ISSG/ESSG data set, the

authors identified 3 clusters undergoing surgery for ASD:

young patients with a coronal deformity, old patients under-

going primary surgeries, and old patients undergoing a revision

surgery. These clusters underwent 1 of 4 distinct surgery types:

surgery with a 3-column osteotomy, surgery with an interbody

fusion, surgery with a Smith-Peterson osteotomy, and surgery

without osteotomies or interbody fusions. These data were used

to predict the risk of surgical complications as well as ODI,

SRS-22r, and SF-36 outcomes. The authors noted that the

model generated from this analysis could function as a tool

to accurately assess risks and benefits of interventions in

patients with low baseline functional status. Similar to studies

cited above, patients undergoing revision surgeries had the

greatest potential for improvement in PROs but also the highest

likelihood of complications.

Cervical Deformity

Two studies applied predictive analytics to surgery for cervical

deformity. Predictive analytics was first successfully applied to

cervical deformity patients by Horn et al using univariate and

multivariate regression models to predict poor outcomes as

measured by the Neck Disability Index (NDI). Their model

included 89 patients and 11 variables and was found to be

86% accurate. Predictors of poor NDI scores included the pres-

ence of osteoporosis, a worse baseline functional status, base-

line pelvic tilt (PT) >20�, greater than 9 levels of thoracic

kyphosis, and an elevated C2-T3 SVA or global SVA

>4cm.19 Bortz et al used conditional inference tree modeling

to predict nonroutine discharge following cervical deformity

surgery, defined as discharge to a rehabilitation centers rather

than home. Their model found that patients who underwent

nonroutine discharge had poorer overall health, as measured

by the EuroQol-five dimensions (EQ-5D). However, there was

no difference in health-related quality of life or NDI

outcomes.20
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Discussion

The first studies published utilizing predictive analytics for

ASD17,18 employed supervised machine learning and boot-

strapped decision trees. These models make predictions based

on random inputs with regard to a target variable. The model

then builds a branching, tree-like structure testing how well

each variable predicts the outcome based on the fit of the vari-

able with the outcome at each branching point. This continues

iteratively until the final outcome is reached. Models are typi-

cally developed by splitting the data into a training and valida-

tion set, whereby 70% to 80% of the available data is used to

create the model which is then validated using the remaining

data. With time, the methods used to build models have become

more complex. Newer models have been built using unsuper-

vised learning and other more complex algorithms.23

As all of the studies examined questionnaires regarding

PROs for ASD (ie, SRS-22r, ODI, and SF-36), some qualitative

observations can be made regarding the nature of the data

presented. For example, the models were able to predict

responses regarding pain, disability, and the patient’s work and

social function with the highest accuracy. These questions have

well-defined, objective metrics that are easily identified by the

patient. These domains are also frequently the reasons motivat-

ing patients to seek treatment for spinal deformity. Responses

to questions on disability have less variability both pre- and

postoperatively and demonstrate lower day-to-day variability.

In contrast, one study demonstrated poorer predictions with

responses to questions assessing a patient’s mental status

(depression and/or anxiety), self-image, and overall satisfac-

tion with ROCs (eg, “How do you look in clothes” and “In the

last 6 months, have you felt so down in the dumps that nothing

could cheer you up?” and “Are you satisfied with the results of

your back management?” had the lowest AUCs of approxi-

mately 0.6).21 The cause of this is likely multifactorial. While

these questions provide some representation of a patient’s day-

to-day self-image and psychiatric state, the answers to the ques-

tions are prone to extreme variability throughout the course of a

single day—who has not felt “down in the dumps” or not liked

how they look in clothes? More data regarding a patient’s pre-

operative psychiatric state would be useful to develop accurate

predictions regarding these questions. These data are likely not

collected in a routine spine surgeon appointment and are likely

not readily available through chart review—in fact, psychiatric

records are frequently sealed from the rest of the patient’s

electronic health records and special permissions are needed

to access this information. Alternatively, this may indicate that

these aspects of a patient’s life are not consistently addressed

by ASD surgery. This is important information to keep in mind

when counseling patients.

While the predictive models studied here accurately

describe the data set from which they are derived, they are

susceptible to bias. When a limited data set is used to train

an algorithm with a high percentage of the data used for train-

ing, it is prone to bias and overfitting.24 Many of the studies

described here benefit from the use of a prospectively collected

multicenter database, which should minimize this drawback.

The use of prospectively collected data from diverse institu-

tions is key to developing accurate, generalizable predictive

models. Newer studies which eschewed the conventional deci-

sion tree model in favor of random forests and conditional

inference trees are thought to be less susceptible to model over-

fitting.24 Now, multiple algorithms are being tested on a given

set to find the algorithm with the highest accuracy and greatest

predictive power.

Unsupervised learning methods are also being explored to

create predictive models for patient outcomes. The benefit of

these models is that clustering and learning is done without

active input from the researcher, reducing the potential for

observer bias. This allows the algorithm to determine those

variables most strongly related to the outcome(s) of interest

and to detect previously unrecognized patterns in data.25 The

relationships found in data through unsupervised learning,

however, are often not intuitive and require further investiga-

tion to determine their validity.

Predictive analytics have provided models that use preo-

perative inputs to accurately predict PROs 1 and 2 years post-

operatively. The large number of preoperative variables that

are associated with PROs (as many as 267 in one study)20

suggests the importance of using these advanced statistical

tools and large datasets to develop valid models.

In general, this review of the literature reveals a major pau-

city in research regarding the use of predictive analytics for

predicting PROs in ASD surgery. Our search revealed only 7

articles written by 3 authors with similar cohort numbers in 3

studies indicating that the same or very similar cohorts may

have been used in these studies. Studies incorporating alternate

databases with more diverse patients are obviously necessary to

create broadly generalizable conclusions. Additionally, all of

the models examined were internally validated. External vali-

dation using different patient cohorts provides evidence that a

model can be applied broadly across patients and suggests a

stronger model. External validation of models further combats

the problem of overfitting which can occur with models trained

on large, complex datasets. Complex models which perform

well on the training data set but poorly on new datasets as extra

“noise” having nothing to do with the outcome of interest was

included in the model.26

More studies are needed regarding PROs for cervical defor-

mity surgery to draw meaningful conclusions. Future studies

would likely benefit from large patient databases such as those

used by the ISSG and ESSG for thoracolumbar deformity.

Conclusion

Predictive analytics has been shown to provide accurate tools

for predicting PROs in ASD surgery. This can improve ASD

outcomes by preoperatively identifying patients most likely

to have improvement in PROs and those at highest risk of

complications, readmission, and reoperation. To date, studies

completed have provided high accuracy regarding PROs for

pain, disability, and work and social function, but not for

Lehner et al 93S



satisfaction, self-image, and psychologic outcomes. These

studies have been conducted on limited data sets, primarily

obtained through the ISSG and ESSG. Furthermore, external

validation of the models developed within these studies is nec-

essary to demonstrate their validity and promote their use clini-

cally. Initiatives to validate predictive tools and pool patient

data will help develop the most accurate models and improve

patient outcomes with ASD surgery.27,28
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