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A B S T R A C T   

Pseudomonas aeruginosa is a major cause of life-threatening acute infections and life-long lasting chronic in-
fections. The characteristic biofilm mode of life in P. aeruginosa chronic infections severely limits the efficacy of 
antimicrobial therapies, as it leads to intrinsic tolerance, involving physical and physiological factors in addition 
to biofilm-specific genes that can confer a transient protection against antibiotics promoting the development of 
resistance. Indeed, a striking feature of this pathogen is the extraordinary capacity to develop resistance to nearly 
all available antibiotics through the selection of chromosomal mutations, evidenced by its outstanding and 
versatile mutational resistome. This threat is dramatically amplified in chronic infections, driven by the frequent 
emergence of mutator variants with enhanced spontaneous mutation rates. Thus, this mini review is focused on 
describing the complex interplay of antibiotic resistance mechanisms in P. aeruginosa biofilms, to provide 
potentially useful information for the design of effective therapeutic strategies.   

1. Introduction 

Biofilms, first described as microbial cells embedded in a self- 
produced extracellular polymeric matrix attached to either biotic or 
abiotic surfaces [1], are thought to stem from an adaptive social 
behaviour to survive in hostile environments [2]; including the human 
body during infection [3]. However, the definition of what a “biofilm” is 
has been adapted to advances in research to suit new findings. For 
instance, it has been found that some pathogenic biofilm aggregates can 
be formed without the need to attach to a surface, thus being able to 
grow within the mucus of individuals with cystic fibrosis (CF) and not in 
or on the lung tissue [4]. Due to the matrix protection, bacterial cells 
within a biofilm are significantly more recalcitrant to antibiotics and 
host immune defences than their planktonic counterparts, as shown by 
in vitro and in vivo evidence [5–8]. This fact poses a health issue, as the 
inability to clear the bacteria is directly related to the chronicity of the 
infections [9,10]. It is estimated that up to 65–80% of all infections are 
associated with biofilm formation [11], with chronic infections 
encompassing a myriad of diseases. Besides chronic respiratory in-
fections, such as those occurring in the lungs of people with CF [12], 
biofilm-related chronic infections include, among others, those related 

to indwelling medical devices, (e.g., catheters, prosthetic joints, and 
surgical implants), tissue infections, such as otitis media, rhinosinusitis, 
osteomyelitis, and chronic wounds. 

1.1. Pseudomonas aeruginosa: a paradigmatic microorganism 

Pseudomonas aeruginosa is an opportunistic pathogen that causes 
severe infections, particularly in health care settings, mostly affecting 
immunocompromised patients [13]. There is a growing prevalence of 
nosocomial infections caused by P. aeruginosa strains, which are asso-
ciated with significantly increased morbidity and mortality [14]. Like-
wise, P. aeruginosa is the main driver of chronic respiratory infections in 
CF and other respiratory diseases [10]. One of the most striking features 
of P. aeruginosa, which by itself is intrinsically resistant to many anti-
biotics, is its capacity to develop resistance to nearly all available anti-
biotics, through mutations in chromosomal genes, as well as acquire 
resistance markers through horizontal transfer, which has led to the 
worldwide spreading of a few specific multidrug-resistant (MDR) and 
extensively drug-resistant (XDR) high-risk clones [15,16]. Indeed, the 
outstanding capacity of P. aeruginosa for developing antimicrobial 
resistance is for seen in the extraordinary versatility of is vast mutational 
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resistome, not only dependent on the exposure to a specific antibiotic 
but conditioned by simultaneous or even previous exposures to other 
[17,18]. Recent studies have estimated 4.95 million deaths associated 
with antimicrobial resistance (AMR) in 2019, including 1.27 million 
deaths attributable to bacterial AMR, P. aeruginosa being the sixth 
pathogen on the list [19]. 

In addition to the threat that poses this pathogen regarding AMR, 
P. aeruginosa infections are also important to be related with biofilms, 
being an archetypal microorganism for their study. 

1.2. Tolerance to antibiotics in Pseudomonas aeruginosa biofilms 

Biofilm antibiotic tolerance mechanisms involve a wide range of 
environmental, physical, and physiological factors that, in principle, 
confer a transient protection; in opposition to conventional resistance 
mechanisms; meaning that individual cells remain susceptible to pre-
viously exposed antibiotics despite being able to survive to lethal doses 
during biofilm growth mode. 

The presence of an extracellular matrix is probably one of the most 
characteristic factors involved in biofilm antibiotic tolerance. As it is 
well known, the matrix consists of exopolysaccharides, proteins, extra-
cellular DNA (eDNA) and lipids [20,21], yet its exact composition will 
vary depending on the bacterial strain, the growth conditions, and the 
biofilm maturation stage [22]. Interactions with the matrix components, 
as anionic eDNA and alginate [23–25] can capture positively charged 
classes of antibiotics, such as colistin or tobramycin, and consequently 
reduce their activity [23,26–28], whereas neutral antibiotics, like cip-
rofloxacin, penetrate more easily into the biofilms [24]. In general, the 
transition through the matrix entails a delay in the antibiotic-bacteria 
contact and the exposition to lower concentrations, giving bacteria 
time to become tolerant [29,30]. In fact, regarding the pharmacokinetic 
(PK) and pharmacodynamic (PD) parameters of antibiotics, biofilms 
have been proposed as a third pharmacological compartment, in addi-
tion to the blood and the target tissue of the infection [31,32]. 
Accordingly, the existence of nutrients and oxygen gradients results in 
differential subcompartments [33] differentiating two main sub-
populations; one metabolically active, frequently in the outer layers of 
the biofilm, and one less active (or even inactive), in the deeper ones 
[34,35]. This should be considered, since several antibiotics only target 
processes of growing bacteria (like replication, transcription, trans-
lation, or cell wall synthesis), while others are effective on metabolically 
inactive cells, to establish the basis for combination therapies [33,36, 
37]. 

The most extreme case of decreased metabolism, also found in the 
biofilm, is represented by the persisters. This is a special growth state that 
means less than 0.1% of the biofilm population, refractory to antibiotics, 
a kind of spore-like cell state activity that can become active after fin-
ishing the treatment [38,39]. 

The lack of oxygen inside the biofilm also plays an important role in 
tolerance to some antibiotics that work under aerobic conditions (e.g., 
beta-lactams, aminoglycosides, fluoroquinolones and tetracyclines) 
[40], being only effective against bacteria on the periphery [23,41]. 
Fortunately, polymyxins and other membrane-targeting compounds 
such as SDS, EDTA, and chlorhexidine, maintain their anti-biofilm ac-
tivity [34,42–44] despite hypoxia. 

Loss of antibiotic activity could also be partly explained by the 
deficiency of reactive oxygen species (ROS) production under anaerobic 
conditions. Induction of ROS by some bactericidal antibiotics is thought 
to contribute to their killing effect, as evidenced by the emergence of 
cytotoxic hydroxyl radicals (•OH) in P. aeruginosa biofilms treated with 
ciprofloxacin [45]. The antioxidant systems are also upregulated due to 
the stringent response in biofilms [46,47], participating in their toler-
ance to antibiotics. On the contrary, in response to different forms of 
stress (oxidative stress, nitrosative stress and membrane-damaging 
agents) the up-regulation of the efflux pumps, like MexXY-OprM, Mex-
EF-OprN and MexCD-OprJ, can be triggered in P. aeruginosa as 

non-specific antibiotic tolerance mechanism [48,49]. 
Other than biofilm environment intrinsic factors leading to physio-

logical tolerance, there is also an in vivo contribution of the host im-
mune system mediated, for example, by the polymorphonuclear (PMNs) 
leukocytes action as it is demonstrated in the endotracheal mucus from 
people with CF infected by P. aeruginosa [50,51] where PMNs are known 
to consume oxygen and release eDNA that traps cationic antibiotics 
[51–53]. 

The differences between planktonic and biofilm modes of life are also 
related with differential gene expression even in the absence of antibi-
otics [54–58]. This is the case, for instance, of brlR, which is a Mer-like 
transcriptional activator [59] that stimulates the expression of the 
MexAB-oprM and MexEF-oprN efflux pumps [60], the production of the 
ABC (ATP-Binding Cassette) transporters, (like the ABC transporter 
PA1874-1877, 10 times more expressed in P. aeruginosa biofilms [59, 
61]), or alters the expression of genes encoding modification of lipo-
polysaccharide (LPS), membrane protein composition, or metabolism 
and energy generation [62]. Consequently, increased expression of brlR 
in biofilms lowered the susceptibility to hydrogen peroxide and five 
different classes of antibiotics by increasing the minimum inhibitory 
concentrations (MICs) up to 6-fold [63]. On the contrary, brlR represses 
phoPQ expression increasing susceptibility to colistin so; the reciprocal 
role of brlR enhancing colistin susceptibility while increasing resistance 
to other antibiotics, like tobramycin, provides the genetic basis for their 
use in combination [64]. The expression of other genes, like ndvB, 
coding a glycosyltransferase involved in the formation of cyclic glucans 
[65] that can sequester aminoglycoside antibiotics is also augmented in 
biofilms [64,66,67]. 

Besides the increased expression of specific genes on biofilms 
compared to planktonic, adaptive tolerance mechanisms induced by the 
presence of the antibiotic (especially favoured by sub-inhibitory con-
centrations [68–70]) results in an emerging transient tolerant phenotype 
that reverts to susceptibility once the molecules have disappeared. For 
example, the presence of colistin upregulates the two-component regu-
latory system pmr which, in turn, regulates arn genes, leading to a 
reduction of the negative charge of the LPS thus, protecting the biofilm 
surface against the cationic peptide colistin [34]. 

The induction of AmpC β-lactamase by the exposure to β-lactam 
antibiotics, as imipenem or ceftazidime, is probably the main adaptive 
tolerance mechanism in P. aeruginosa biofilms [71,72]. Bagge et al. 
demonstrated that the expression of the enzyme showed a special 
structural distribution characteristically concentrated at the periphery 
of the biofilms [29]. In addition, as seen in P. aeruginosa biofilms from 
people with CF, these β-lactamases are partially excreted by membrane 
vesicles [73], consistent with their extracellular location [71]. 

Hence, adaptive tolerance mechanisms operate in a similar way than 
persisters and an on/off model with long term consequences can be 
evidenced; if survivor cells are present once the treatment has stopped, 
the re-emergence of biofilms might happen. 

In summary, concerning recalcitrance of biofilms, there are different 
pathways that act synergistically with intrinsic tolerance providing a 
fertile ground that helps traditional antibiotic resistance mechanisms to 
develop [74]. Fig. 1 gives a general view of all the mechanisms of both, 
tolerance, and resistance, that will be discussed in the next section. 

2. Mechanisms of conventional antibiotic resistance in biofilms 

Whereas the previously reported tolerance mechanisms show clear 
impact on biofilm recalcitrance to antibiotics and have been broadly 
studied, the role that traditional resistance mechanisms play in the 
decreased susceptibility of biofilms towards antibiotics has been less 
examined. 

Nonetheless, recent studies seem to point towards tolerance as a 
preceding stage that favours the establishment of antibiotic resistance 
mutations that could otherwise occur, but might not be selected for [74, 
75]. 
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Furthermore, the tolerance conditions described above, particularly, 
the high density and proximity of cells, together with an accumulation of 
available genetic elements, make the biofilm a great environment for 
horizontal gene transfer [76,77]. 

2.1. Mutational resistance 

As mentioned before, in biofilms under treatment, matrix restrictive 
penetration results in areas of lower antibiotic concentration that, 
together with nutrient limitation, can prompt stress responses and lead 
to mutation emergence [49,78]. In addition, heterogeneity of nutrient 
and oxygen availability, results in different ecological niches that ensure 
the formation of distinct subpopulations and, consequently, fixation of 
beneficial mutations is more easily enabled [78]. Typically, the balance 
between evolution and genetic change shapes the rate of mutation [74]. 
If that rate is augmented more than usual, a priori, premature death 
could happen due to the additive effect of deleterious mutations [79]. 
Even so, in certain situations, especially those involving stressful envi-
ronments, increased mutation rate might be beneficial for the bacteria 
[80,81]. 

One characteristic of P. aeruginosa biofilms, particularly described in 
CF individuals with chronic respiratory infections, is the elevated 
prevalence of mutator (or hypermutable) strains, present in over one- 
third of the studied patients [82]. The high prevalence of mutators in 
this setting strongly contrasts with what has been documented for onset 
of chronic infections (10%) [83], environment (6%) [84], or acute in-
fections (<1%) [85]. Mutators, bacteria with an increased spontaneous 
mutation rate, frequently emerge due to defects in DNA repair mecha-
nisms, such as the mismatch repair system (MMR), or stress responses 
[86–88]. These mutators are especially relevant in the clinical setting as 
they are frequently associated with high antibiotic resistance rates [82, 
89]. Moreover, it has been demonstrated that mutagenesis is naturally 
increased in biofilms and that this condition favours development, 
adaptation, and diversification processes that could, ultimately, lead to 
the occurrence of resistance under antibiotic exposure [90–94]. 

Mutation-driven resistance has been shown to be relevant also for 
antibiotics showing potent activity against P. aeruginosa biofilms, but 
not against planktonically growing cells, such as azithromycin (AZM). 

Indeed, marked selection of resistant mutants was demonstrated to be 
linked to hyperproduction of the multidrug efflux pump MexCD-OprJ, 
associated with inactivation mutations in its negative regulator nfxB 
[95]. The emergence of such resistant mutants was dramatically 
enhanced in biofilms formed by hypermutable strains [95]. Hyper-
expression of MexCD-OprJ, showed cross-resistance to other unrelated 
antipseudomonal agents as ciprofloxacin or cefepime but hypersuscep-
tibility to others such as imipenem or tobramycin [95]. Therefore, this 
work was helpful in guiding the selection of appropriate anti-
pseudomonal therapies in CF individuals under AZM maintenance 
treatment. 

Selection and amplification of resistant mutants and, even the 
hypermutator strains themselves, has been demonstrated in 
P. aeruginosa biofilms treated with ciprofloxacin [70]. Results showed 
that mutational mechanisms were playing a major role in biofilm anti-
biotic resistance and that theoretically optimized PK/PD parameters 
failed to suppress resistance development, suggesting that the increased 
antibiotic tolerance driven by the special biofilm physiology and ar-
chitecture probably raises the effective mutant prevention concentration 
(MPC), favouring gradual mutational resistance development, especially 
in mutator strains [70]. 

Differential acquisition of resistance mutations in P. aeruginosa 
planktonic and biofilm growth have been documented in some cases, 
such as aminoglycoside (tobramycin) resistance development seemingly 
linked to LPS biosynthesis genes (orfKHLN) and electron transport chain 
components (cyoAB) [96,97]. 

Other relevant mutations involved in biofilm antibiotic resistance 
are those connected to β-lactamase hyperexpression. In a study looking 
into mixed biofilm communities of wild-type PAO1 and mutants with 
hyperproduction of either, the AmpC β-lactamase (dacB knockout), or 
the MexAB-OprM efflux pump (mexR knockout), it was shown that, 
under treatment with cefepime PAO1ΔdacB resistant mutants were 
selected for and amplified [98]. Furthermore, both, PAO1ΔmexR and 
PAO1ΔdacB mutants, seemed to locate themselves in the outer biofilm 
layers surrounding the sensitive PAO1 subpopulation and exert a 
shielding effect, which did not happen during planktonic growth [98]. 
Thus, this study demonstrated that, in biofilms, mutants showing diverse 
resistance mechanisms such as β-lactamase hyperproduction protect the 

Fig. 1. Mechanisms of antimicrobial tolerance and resistance found in biofilms and antibiotics affected by them. FQ: Fluoroquinolones; AMG: Amino-
glycosides; AZT: Azitromycin; LPS: lipopolysaccharide. Figure adapted from Ciofu O et al., Nat rev, 2022 [62]. 
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whole community, preserving wild-type susceptible populations from 
the effect of the antibiotics. Therefore, these findings represented a step 
forward to figure out antibiotic resistance dynamics in biofilms, as well 
as to understand the population biology of bacterial pathogens in 
chronic infections, where the coexistence of susceptible and resistant 
variants in dense communities is a hallmark. 

Summing up, the biofilm microenvironment and population re-
lationships and structure, together with its associated tolerance phe-
nomenon, potentiate adaptive mutagenesis; all of which creates a 
breeding ground for the emergence of antibiotic resistance. 

2.2. Horizontal gene transfer 

Another traditional source of antimicrobial resistance is horizontal 
gene transfer, which can occur via conjugation, transformation or 
transduction, as it represents a major source of genetic variability. 

For instance, it is known that conjugation in biofilms occurs at higher 
frequencies than in planktonic cultures [99–101]. Actually, biofilms 
could act as plasmid reserves maintaining and preserving MDR plasmids 
[102,103]. 

The biofilm architecture and the elevated bacterial density together 
facilitate the encounter of donor and recipient cells [77]. However, in-
dividual cells from within the diverse biofilm microenvironments were 
found to differ in their capacity to maintain incoming plasmids [100]. 

Thus, a high number of conjugation events does not guarantee 
effective gene transfer in all cases and could partially explain why some 
and not all cells acquire resistance mechanisms. 

Similarly, transformation also seems to experience a boost within the 
biofilm domain [99]. The main hypothesis behind this is that the pres-
ence of eDNA in the matrix triggers a natural state of competence which 
in turn activates DNA release systems further promoting said state, that 
also contribute to the stabilisation of the biofilm matrix [77,99,104]. 
Whilst the state of competence might play an important part in biofilm 
matrix formation, it might also result in resistance gene acquisition as an 
after effect. 

Lastly, along the same line as the case of transformation, given the 
role bacteriophages might play in biofilm matrix development and 
maintenance through the release of bacterial cytoplasmic components, 
the contribution of transduction to antibiotic resistance acquisition 
should not be ignored. On this note, phage mediated conversion of 
P. aeruginosa into a mucoid phenotype has already been reported and 
associated with poor outcomes for people with CF [105]. 

3. Final thoughts and future perspectives 

Altogether, P. aeruginosa biofilms encompass an intricate environ-
ment conducive to antibiotic therapy failure; either through its natural 
tolerance and adaptive mechanisms or via an increased rate of con-
ventional resistance events favourably selected. 

So, improving knowledge regarding P. aeruginosa biofilm, research 
should be guided to find new strategies to overcome resistance, 
considering the multitude of factors that make the eradication of 
P. aeruginosa infections difficult. From a clinical perspective, the severity 
of chronic P. aeruginosa infections is having public health consequences, 
particularly affecting the most severely infected patients in our hospitals 
and people with CF. 

After all the nuances about biofilms explained in this mini-review, it 
is obvious that, apart from antimicrobials, we need other compounds 
that help the action of our selected antibiotic, specifically targeting the 
biofilm mode of growth [106]. Starting with the numerous quorum 
sensing inhibitors that plays a key role in the regulation of P. aeruginosa 
biofilm formation but does not affect the viability of the bacteria. Other 
strategies to stand out would be the ones activating metabolic inactive 
cells by using SDS, EDTA and chlorhexidine, antibiotics like colistin or 
other compounds as organic acids or carbon sources [34,42,46, 
107–109]. More recently, the use of hyperbaric oxygen therapy (HBOT) 

metabolism-stimulating has been shown to redirect bacterial meta-
bolism towards an antibiotic-susceptible phenotype [44,110,111]. 
Similarly, Oligo-G (alginate oligosaccharide), has been demonstrated to 
be able to inhibit biofilm formation and disrupt established biofilm 
matrix in vitro, as well as c-di-GMP modulators do [112,113]. Treatment 
with eDNAases [114]; use of efflux pumps inhibitors (EPIs), directed to 
the adaptive resistance [115]; use of antioxidants like N-acetylcysteine 
to target hypermutation, SOS, and oxidative stress [116]; bacterio-
phages [117]; photodynamic inactivation [118]; or even revert acidic 
environment to neutral conditions to prevent chronic P. aeruginosa 
infection and colonization [119], should be added to the list of possible 
therapies. 

Beyond looking for new compounds or non-antibiotics strategies, it 
would be sensible to strive to improve therapeutic antibiotic strategies 
already available, as well as PK/PD parameters, to overwhelm mutation 
selection like combination of antibiotics [120–124], innovative 
sequential regimens [125,126] or improved drug-delivered for topical 
administration [127,128] recently demonstrated by ultrasound patches 
[129]. Progress in new alternative therapeutic approaches like formu-
lation of antibiotics on nanoparticles [130,131], novel anti-biofilm 
compounds, CRISPR gene editing technologies and photodynamic 
therapies [132–134] is necessary. In addition, a determined attempt on 
transferring all these options into clinical practice for the treatment of 
biofilm-related infections will need to be done. 
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