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Abstract
Plasticizers belong to hormone-like substances existing widely in the environment. According to the Environmental Protection
Agency of China, they are considered to be the fourth class of toxic chemicals due to their harmful effects on normal endocrine
system in human bodies. In the recent published work of our lab, Lactobacillus plantarum CGMCC18980 (strain P1) could
reduce the toxicity of di-butyl phthalate (DBP) in rats effectively. The purpose of this study is to further explore the adsorption
mechanism of di-butyl phthalate to L. plantarum CGMCC18980, based on optimizing the adsorption conditions. As a conse-
quence, the adsorption effect of L. plantarum CGMCC18980 attributed to relationships between exopolysaccharide, membrane
protein, and the cell wall. Experimental results demonstrated that exopolysaccharide and the cell wall were devoted to DBP
binding. An obvious adsorption layer was observed outside of L. plantarum CGMCC18980 through scanning electron micro-
scope (SEM) and transmission electron microscope (TEM). The Fourier transform infrared spectroscopy (FTIR) results showed
that the functional groups involved in adsorption were mainly C=O, C-N, and C-O, which related to lipids and polysaccharides.
Zeta potential analysis indicated that DBP adsorption had no significant relationship with surface charge. These results revealed
that exopolysaccharide may be the key factor of strain CGMCC18980 in DBP adsorption.

Key points
• Lactobacillus plantarum CGMCC18980 has the ability to adsorb di-butyl phthalate, reaching to 58.63%.
• Exopolysaccharide is considered to play a key role in adsorption process.
• Membrane protein, cell wall, and surface charge do not contribute to adsorption.
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Introduction

Phthalates (PAEs), as the most commonly used plasticizers in
the market at present, can reach 20–50% of the product (Gao
et al. 2014). With the migration of time, such substances are

easy to accumulate through the food chain and difficult to
degrade in the natural environment (Wang and Chen 2009).
Moreover, direct exposure to a phthalate mixture adversely
can affect antral follicle health in vitro (Zhou and Flaws
2017). Di-butyl phthalate (DBP), one of the plasticizers, is
most commonly used in polyvinyl chloride (PVC) processing,
which can lead to reproductive tract malformation in male rats
during sexual differentiation (Howdeshell et al. 2007), affect-
ing the secretion of human sex hormones and threatening hu-
man health (Ghisari and Bonefeld-Jorgensen 2009; Swan
2008). Meanwhile, DBP was proved to be harmful to rodents
(Higuchi et al. 2003), and further studies showed that DBP
could induce antiandrogenic effects by inhibiting steroidogen-
ic factor 1 (SF1) indirectly (Plummer et al. 2013). Some re-
search demonstrated that the exposure to DBP disrupted ovar-
ian function in animal models and in human cells in vitro
(Adir et al. 2017). DBP is such a kind of ubiquitous harmful
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substance that the correct treatment of it is particularly crucial.
Traditional methods to dispose those substances cannot
completely remove DBP so that simple and efficient methods
are sought to solve this problem urgently.

Biosorption is a hot topic in recent years, and some micro-
organisms generally regarded as safe are commonly used in
this respect, involving lactic acid bacteria (LAB). Some strains
of LAB have shown the ability in removing harmful and re-
ducing toxicity, mainly concentrated on harmful heavy metal
ions and some fungal toxins (Ge et al. 2017; Shen et al. 2018;
Wang and Chen 2009; Baralić et al. 2020; Al-Enazi et al.
2020). There are some researches on the adsorption of DBP
by LAB (Zhao et al. 2017), but its mechanism is still lacking.

In this paper, DBP, a highly toxic phthalate ester, was cho-
sen as the study object. The preliminary results in our labora-
tory showed that L. plantarum CGMCC18980 could reduce
the concentration of DBP in rats (Shi et al. 2020). This study
tried to find out the adsorption mechanism of L. plantarum
CGMCC18980 based on bacterial cells composition, FTIR
analysis, and direct electron microscope observation. At the
same time, this research may fill in the gaps in this field and
provide new ideas which have great potential and may bring
changes to the food industry in the future. Besides,
L. plantarum CGMCC18980 may be used as a DBP
biosorbent or a potential drug to ameliorate its toxicity, and
has broad application prospects, especially in the current com-
plex and changeable circumstances.

Material and methods

Strains and cultivation conditions

L. plantarum CGMCC18980 was screened from Xinjiang
dairy products in our laboratory (Hu et al. 2019).
L. plantarum LP-115 was selected as control, presented
DuPont Danisco (Shanghai, China). All strains were stored
in glycerin at −18°C at 25% (v/v). Two strains were cultured
inMRS broth (Solarbio Co., Beijing, China). DBP (200mg/L,
dissolved in methanol) was purchased from Huawei Ruike
(Beijing, China), and liquid-phase methanol from Titan
(Shanghai, China). The reagents used in this study were all
of analytical-reagent grade.

Preparation of bacterial cells

After activation, 1.00% L. plantarum were cultured in MRS
liquid medium and inoculated at 30 °C, 200 rpm for 24 h.
Both two strains were cultured in MRS medium at 30 °C for
24 h under anaerobic condition (Hernandez-Mendoza et al.
2009). The obtained bacterial cells could be used for subse-
quent experimental operations.

DBP-binding assay

The bacteria cells were harvested by centrifugation (4000
rpm, 10 min), washed with 0.90% saline at least three times,
and finally adjusted to OD600=7.00. DBP and bacterial cells
were added into the test tube and then shaken evenly. The
samples were incubated without shaking. The adsorption ratio
was determined under different conditions. The adsorption
system was centrifuged after the incubation (4000 rpm, 10
min), and the upper layer was transferred to another tube.
Ethyl acetate of the same volume was used for extraction
and the supernatant was dried. Finally, the residue was dis-
solved in 1.00 mL methanol (Zoghi et al. 2019). The residual
amount of DBP was determined by high-performance liquid
chromatography (HPLC), with the equivalent amount of DBP
(200 mg/L) taken as the control.

HPLC conditions

The concentration of DBP was measured on an HPLC system
(Shimadzu Nexera LC). The C18 column (250×4.6 mm I.D.,
5 μm; Teknokroma) was equilibrated with methanol/water
(90:10, v/v) as the mobile phase. Ten microliters of each sam-
ple was injected and eluted with a flow rate of 1.00 mL per
minute at 40 °C, and UV detection was done at 254 nm (Zhu
et al. 2013; Wang and Chen 2009). The adsorption ratio of
bound DBP was calculated with following equation:

Y ¼ 1− A
A0

� �
*100, where Y is the adsorption ratio of DBP,

A is the peak area of DBP in the supernatant, and A0 is the peak
area of DBP in blank sample.

Effect of exopolysaccharide and membrane protein
on DBP adsorption

The bacteria cells (25.00 mL) were centrifuged (4000 rpm, 10
min) and recovered in 1 mol/L NaCl solution. Ultrasonication
(78 W, 3 min 10 °C) was app l i ed to sepa ra t e
exopolysaccharide from cells (Hernandez-Mendoza et al.
2009), and the bacteria cells were obtained after centrifugation
(4000 rpm, 5 min, 4 °C), and then measured the adsorption
ratios. The membrane protein can also be removed. Dissolve
the cells in lithium chloride solution (25.00 mL, 5 mol/L) at 4
°C for 60 min after centrifugation (Smit et al. 2001). The
bacteria cells without membrane protein can be obtained after
centrifugation (4000 rpm, 5 min, 4 °C). Determine adsorption
ratios according to the previousmethod and utilize the original
bacteria cells as the control.

Effect of cell wall on DBP adsorption

The bacterial cells were centrifuged (4000 rpm, 5 min, 4 °C),
and the mixtures were prepared through ultrasound at 30 °C
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for 30 min (power 400 W, working for 3 s, intermittent 7 s),
followed with the centrifugation (10,000 rpm, 10min, 4 °C) to
get the crude cell wall extract (Yamamoto et al. 2000). The
crude cell wall extract was added to 10 mL 8% SDS and
placed in boiling water for 10 min. After that, it was quickly
cooled to room temperature and centrifuged (10000 rpm, 20
min, 4 °C). The precipitate was collected and washed twice
with sterile deionized water, and then dissolved in 0.10 mol/L
Tris-HCl buffer, adjusting pH to 7.60. Add 3 mg/mL trypsin
and incubate at 37 °C overnight. The cell wall extract was
obtained after centrifuging (10000 rpm, 20 min, 4 °C) and
washed twice in saline. Determine the DBP adsorption ratios
as mentioned above and original bacteria cells as the control.

FTIR analysis and zeta potential analysis of bacterial
cells

To determine the potential functional groups and putative
binding sites related to DBP adsorption, FTIR 6700
(Thermo Nicolet Corporation) was carried out to the analysis.
After being dried in a freeze dryer FD-2 from Bilon
(Shanghai, China) for 48 h, the bacterial cells sample (dry
weight) and KBr powder were mixed and grind in an agate
mortar (KBr: sample =100:1), and then 30.00 mg of each
sample mixture was pressed into a transparent plate (Dan
et al. 2010; Lin et al. 2011). All infrared spectra ranging from
4000 to 400 cm−1 were recorded at room temperature. The
changes of surface charge in cells before and after adsorption
can be analyzed by zeta potential. The bacterial cells were
diluted in 10 mL tube after incubation and centrifugation.
Then use the micro electrophoresis apparatus Zeta Plus
(Zetasizer 3600; Malvern Instruments, UK) to measure at
room temperature (25 °C, pH 4.00). All samples were deter-
mined under the same experimental conditions (n=30)
(Jastrzębska et al. 2015).

Characteristics of bacterial cells

Scanning electron microscope (SEM) analysis

Scanning electron microscope S-3400N (Hitachi, Japan) was
used for observation and photography. Bacterial cells were
dried overnight in a drying dish (Bergmans et al. 2005)
through gradient dehydration with ethanol (30–100%). All
the cell samples were observed under 15 kV.

Transmission electron microscope (TEM) analysis

Biological transmission electron microscope JEM-1400
(Hitachi, Japan) was applied for observation and imaging.
The bacterial cells were diluted to a certain ratio and dropped
into the copper mesh, and then they were observed under
TEM (Huang et al. 2011). The thickness of exopolysaccharide

in the cell wall was measured by digital micrograph software
(Gatan, American).

Statistical analysis

All experimental samples were carried out in triplicate, and the
data were expressed as mean ± standard deviation (SD), while
significant differences were analyzed with t test. GraphPad
Prism 7.0 was used to generate graphs and conduct data
analysis.

Results

DBP-binding assay

The DBP-binding ratios of two strains were displayed in Fig.
1. CGMCC18980 showed higher adsorption ratios at a lower
bacterial concentration (OD600 < 2.00) in this experiment (Fig.
1a). In higher cell concentration, the condition was similar,
and the ratios of CGMCC18980 and LP-115 were determined
to be 50.18% and 49.22% at OD600=4.00, respectively. The
ratios increased at the low bacterial concentration
(OD600≤4.00), while with the increasing of cells, this trend
changed slightly (Fig. 1a). OD600 of 4.00 was selected for
subsequent experiments based on the results. DBP concentra-
tions also had a great influence on the adsorption ratio. The
concentration of 5.00 mg/mL had the highest adsorption ratio
of 56.53% and 45.57% in CGMCC18980 and LP-115 (Fig.
1b), respectively. When DBP concentration reached 20.00
mg/mL, there was a significant difference between
CGMCC18980 and LP-115 (P<0.05) with a sharp drop in
the adsorption ratio of CGMCC18980 (Fig. 1b). The metabo-
lites of DBP in different time were also detected in this study,
but there were no metabolites during the incubation with
CGMCC18980 (Fig. 2). It indicated that L. plantarum
CGMCC18980 did not degrade DBP but only adsorbed DBP.

In order to explore the reaction speed, the adsorption ratios
under different time and temperature were measured (Fig. 1c
and d). After 2.50 h exposure to DBP, the ratio of
L. plantarum CGMCC18980 attained 53.46%, while LP-115
was 40.45% (Fig. 1c). In the early stage of the experiment, the
adsorption ratio of CGMCC18980 increased steadily, but the
adsorption ratio did not change significantly after 2.50 h (Fig.
1c). As shown in Fig. 2, during the 4 h adsorption incubation
process, the peak area indicated the residual DBP content. The
peak area decreased from 2282115 in the control group to
11688576 after 4 h, indicating that the concentration of DBP
in the system decreased from 200 to about 104.90 mg/L.
Moreover, after 2.5 h, the peak area in the chromatogram
did not change significantly. This meant that most of DBP
was adsorbed after the 2.50 h in the experiment of 4 h.
Besides, the ratios could be affected by temperature. In the
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range of 4 to 45 °C, the adsorbing ratio of CGMCC18980 was
39.48 to 58.63%, and that of LP-115 was 37.46 to 48.44%.
The CGMCC18980 had the highest adsorption ratio of
58.63% at 30 °C, followed by 54.91% at 37 °C, while LP-
115 showed the lower ratios of 47.14% and 48.44% at 37 °C
and 30 °C, respectively (Fig. 1d). Thirty degrees Celsius was
selected in subsequent experiments. The above results sug-
gested that CGMCC18980 was more capable than LP-115
in adsorption of DBP.

According to the previous experimental results, two strains
were selected to adsorb DBP with the condition of
OD600=4.00, 5.00 mg/mL concentration of DBP, 2.50 h and
37 °C as the optimum conditions in subsequent experiments.

Effect of exopolysaccharide, membrane protein, and
cell wall on DBP adsorption

The effect of different cellular components of L. plantarum
CGMCC18980 onDBP adsorption ratio was displayed in Fig.
3. When exopolysaccharide was removed, a significant reduc-
tion to 30% in adsorption ratio was observed, almost half of
the original ratio (Fig. 3a) and the adsorption ratio was signif-
icantly reduced (P<0.01). However, without membrane pro-
tein and only cell wall had little effect on adsorption compared
with normal cells (Fig. 3b and c). Their adsorption ratio was
around 50%; there was no significant difference (P>0.05).

FTIR analysis

FTIR spectroscopy is a useful tool to identify the correlation
between functional groups and adsorption capacity. The re-
sults of FTIR showed changes before and after adsorption in
two strains (Fig. 4). After adsorption, the surface transmit-
tance of bacterial cells in L. plantarum CGMCC18980
dropped from 88.70% to 14.70% at 1270 cm−1 (Fig. 4a).
This phenomenon was similar to LP-115 (Fig. 4b). The results
indicated that similar functional groups changed greatly after
the adsorption in two strains. The assignments of FTIR bands
and detailed wavenumber shifts for two strains are summa-
rized in Table 1. The results displayed strong band at 1653.00
cm−1 and 1068.31 cm−1, and there was a possibility of overlap
of the C=O, C-N, and C-O stretching vibrations. Those ad-
sorption peaks were mainly from lipids and polysaccharides.

Fig. 1 Adsorption ratios of DBP
in different conditions (“*”means
P<0.05): a OD600. b
Concentration of DBP (mg/mL).
c Time (h). d Temperature (°C)

Fig. 2 Liquid chromatogram of DBP at 30 °C in different times (use no
bacteria group as control). The remain time is about 4.5 min at 254 nm,
regard as DBP
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Once adsorbed, the transmittance of CGMCC18980 was low-
er than that of LP-115, indicating that there was more DBP
adsorbed on the cell wall of CGMCC18980.

Zeta potential analysis

Zeta potential results of changes in cell surface potential be-
fore and after treatment were demonstrated in Table 2. The
experimental results were −22.86 mV and −21.13 mV in
L. plantarum CGMCC18980 before and after adsorption,
and LP-115 were higher slightly. The bacteria cells were neg-
atively charged and the adsorption system was relatively sta-
ble. But there was no significant difference showed between
two strains (P>0.05), which indicated that DBP adsorption

had little relationship with cell wall surface charge to some
extent.

Characteristics of bacterial cells

Scanning electron microscopy (SEM) and transmission elec-
tron microscopy (TEM) were used to investigate the surface
morphology of Lactobacillus plantarum CGMCC 18980 be-
fore and after incubation with DBP (Fig. 5). The surface of
cells adsorbing DBP became smoother than the untreated one
after treatment (Fig. 5a and b). By comparing the electron
microscope results of CGMCC18980 before and after (Fig.
5c and d), it was clearly observed that the adsorption layer
was changed from 0.1172±0.0019 to 0.6296±0.0409 μm.

Fig. 3 Adsorption ratios of DBP
in different treatments in
L. plantarum CGMCC18980. (a)
Before and after
exopolysaccharide removal (“**”
means P<0.01). b Before and
after membrane proteins removal.
(c) Cell wall and intact cell

Table 1 FTIR bands observed
form DBP-exposed bacterial cells
and DBP-unexposed bacterial
cells

Functional groups Wave number(cm−1)

CGMCC18980 CGMCC18980+DBP LP-115 LP-115+DBP

O–H/N–H stretching 3428.96 3428.96 3428.96 3428.96

C–H stretching 2928.79 2928.79 2928.79 2928.79

C=O amide 1 1653.00 1653.00 1653.00 1653.00

N–H amide 2 1535.33 1535.33 1535.33 1535.33

O–H deformation 1461.96 1461.96 1461.96 1461.96

C–N stretching 1267.76 1267.76 1267.76 1267.76

C–O polysaccharides 1068.31 1068.31 1068.31 1068.31

C–X Alkyl Halide 724.04 724.04 724.04 724.04
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Discussion

The experimental results expounded that the adsorption ratio
of L. plantarum CGMCC18980 on DBP reached 58.63% at
the optimal conditions. Compared with the best results of
45.00% in Leuconostoc mesenteroides DM1-2 (Zhao et al.
2017) and 24.34% in Lactobacillus plantarum CCFM436
(Tong et al. 2016), CGMCC18980 was considered to have a
high adsorption ability. When the cell proliferation reached a
certain level, the adsorption ratio basically did not change,
which was consistent with other reports (Piotrowska 2014).
The phenomenon that adsorption ratios decreased with the
increase of DBP concentration was similar to Lactobacillus
acidophilus in adsorbing aflatoxin (Di Gregorio et al. 2017).
In the previous 2.5 h, most of the DBP-binding were complet-
ed, which indicated that adsorption was a rapid process
(Oluwafemi and Da-Silva 2009). The adsorption ratio fluctu-
ated less based on the results considering temperature in this
study. Many literatures focusing on aflatoxin (Haskard et al.
2001), bisphenol A (Endo et al. 2007), and zearalenone (Vega
et al. 2017) have been reported. In this study, CGMCC18980
performed good adsorption capacity of DBP.

Through optimizing the adsorption conditions, measuring
the changes of functional groups on the cell surface, and

ana lyz ing the componen t s on the ce l l su r face ,
exopolysaccharide was considered to play a key role in ad-
sorption, and L. plantarum CGMCC18980 showed an excel-
lent ability of adsorbing DBP. Electron microscopy results
revealed the adsorption of DBP intuitively. FTIR data ex-
plained that the C=O, C-N, and C-O groups of two strains
varied a lot, and it was related to lipids and polysaccharides.
These results agreed with other reports about the adsorption of
toxin and patulin (Guo et al. 2013; Hatab et al. 2012).
However, some people believed that amino and carboxyl
groups of bacterial cell walls were the main reason for the
bacteria to bind to mycotoxin (Hatab et al. 2012). Others also
thought that both protein and polysaccharides components on
cell walls were involved in toxin removal (Alaleh et al. 2014;
Wang et al. 2015). Although the zeta potential data showed no
significant difference between two strains, the slight differ-
ence of surface chargemay be caused by the cell wall structure
(Martinez et al. 2008). Similar results have been found by
other researchers when they studied the adsorption mecha-
nism of patulin (Guo et al. 2013) and of aflatoxin B1 (AFB1)
removal by adsorption in LAB (Haskard et al. 2000).

The high affinity occurred in L. plantarum CGMCC18980
may attribute to more adsorption sites in itself, especially in
exopolysaccharide. An overview of probable adsorption
mechanism inCGMCC18980 during the process was illustrat-
ed in Fig. 6. According to the results mentioned above, most
of DBP was captured by exopolysaccharide on cell wall, re-
lating to the functional groups of C-O, C-N, and C=O. It was
speculated that exopolysaccharide was the key portion in-
volved in adsorption.

In this study, L. plantarum CGMCC18980 was testified to
have observably adsorption ratio of DBP, and the
exopolysaccharide was probably an important factor of ad-
sorption. Harmful substances are ubiquitous, like aflatoxin
M1(AFM1) contamination found in Iranian cheese and
Portuguese yogurt (Kamkar 2006; Martins and Martins

Fig. 4 FTIR absorption spectra of two strains before and after DBP adsorption: a L. plantarum CGMCC18980; b L. plantarum LP-115

Table 2 Zeta potential (mV) before and after DBP adsorption of cells
with pH = 4.0

Strains Zeta potential (mV)

Before DBP adsorption After DBP adsorption

CGMCC18980 −22.86±0.59a −21.13±0.31a

LP-115 −20.20±0.26a −20.90±0.44a

a The same letter means that there is no significant difference between the
groups (P > 0.05)
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2004), and subsequent research considered that LAB could
effectively reduce the free AFM1 content in liquid medium
and yogurt processing (El Khoury et al. 2011). Biosorption
is regarded as a promising method of the treatment and LAB

belongs to GRAS so that it can be prepared into probiotic
powders or applied to specific functional foods as a potential
biological remover. By ingesting these products, consumers
can make LAB exhibit its ability to reduce hazardous sub-
stances and drop the damages to body’s endocrine system
eventually. What’s more, if the cells applied to specific foods
in the future, further consideration should be given to whether
the LAB can still maintain effects after fermentation.

L. plantarum CGMCC18980, which screened by our lab-
oratory, showed excellent ability in the adsorption of DBP.
Results of FTIR suggested that the functional groups C=O, C-
N, and C-O, which related to lipids or polysaccharides, were
involved in DBP adsorption. Furthermore, our results revealed
that exopolysaccharide played a key role in adsorption.
Obvious differences could be seen before and after adsorption
through electron microscope observation, and L. plantarum
CGMCC18980 showed obvious adsorption layer, while the
zeta potential results exposed that DBP adsorption had noth-
ing to do with the bacterial surface charge. Admittedly, the
adsorption process of DBP is quite complex, and our

Fig. 5 Electron microscopy
images of L. plantarum
CGMCC18980: (a) SEM images;
(b) SEM images after adsorption;
(c) TEM images; (d) TEM images
after adsorption

Fig. 6 Overview of the potential DBP-adsorption mechanism
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investigation is only a small part and not comprehensive
enough indeed. More deeper elements and factors need to be
taken into account, such as the composition and structure of
exopolysaccharide, as well as other components of the cell
wall. In the further study, more detailed mechanism needs to
be explained. Once the mechanism of action is revealed, it is
considerable and promising to be applied to functional foods
or potential drugs that are beneficial to health in the future.
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