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Abstract

Predicting which species are likely to cause serious impacts in the future is crucial for targeting management efforts, but the
characteristics of such species remain largely unconfirmed. We use data and expert opinion on tropical and subtropical
grasses naturalised in Australia since European settlement to identify naturalised and high-impact species and subsequently
to test whether high-impact species are predictable. High-impact species for the three main affected sectors (environment,
pastoral and agriculture) were determined by assessing evidence against pre-defined criteria. Twenty-one of the 155
naturalised species (14%) were classified as high-impact, including four that affected more than one sector. High-impact
species were more likely to have faster spread rates (regions invaded per decade) and to be semi-aquatic. Spread rate was
best explained by whether species had been actively spread (as pasture), and time since naturalisation, but may not be
explanatory as it was tightly correlated with range size and incidence rate. Giving more weight to minimising the chance of
overlooking high-impact species, a priority for biosecurity, meant a wider range of predictors was required to identify high-
impact species, and the predictive power of the models was reduced. By-sector analysis of predictors of high impact species
was limited by their relative rarity, but showed sector differences, including to the universal predictors (spread rate and
habitat) and life history. Furthermore, species causing high impact to agriculture have changed in the past 10 years with
changes in farming practice, highlighting the importance of context in determining impact. A rationale for invasion ecology
is to improve the prediction and response to future threats. Although our study identifies some universal predictors, it
suggests improved prediction will require a far greater emphasis on impact rather than invasiveness, and will need to
account for the individual circumstances of affected sectors and the relative rarity of high-impact species.
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Introduction

Many invasive plants cause substantial environmental, econom-

ic and social impacts [1,2,3]. Invasive plants represent the subset of

imported species that successfully naturalise and spread [4].

Considerable effort has been devoted to explaining and predicting,

on the basis of plant traits, origin and propagule pressure, which

species are likely to be most invasive [5,6]. However, invasiveness

as an ecological phenomenon, and impact defined as the

ecological, social, and economic consequences of invaders,

although frequently confounded [4,7,8], are distinct concepts

[4]. In fact limited research suggests that invasiveness (measured as

mean rate of spread) is a poor predictor of impact across diverse

taxa [7]. Predicting which species will ultimately become

problematic, as opposed to being invasive per se, remains difficult

and is largely overlooked [9,10,11]. New invasions continue, so it

is particularly critical to anticipate which species will cause greatest

impact. In this paper we test whether there are predictors for

species among tropical and subtropical grasses that have

naturalised in Australia that went on to cause serious impact.

The term ‘weed’ is suggestive of impact but has often been used

synonymously with ‘naturalised species’ in the literature, and

consequently is not useful in categorising impact. For example, we

found that of the 155 naturalised tropical and subtropical grasses

in Australia, 98.7% have been reported as a weed overseas and

93.5% in Australia (Table S1). Furthermore, most definitions of

impact have focussed on ecological effects of plant invasions, such

as nutrient cycling and hydrology [9,12], rather than impacts that

specifically affect environmental, economic or social values that

might be the target for management and policy responses [13]. For

example, ‘transformers’ have been defined without special

reference to possible management objectives as ‘‘invasive plants

that change the character, condition, form or nature of ecosystems

over substantial areas’’ [4]. We therefore developed an evidence-

based approach, using predefined criteria, to identify the subset of

high-impact species already causing serious impact to the

environment, pastoral industry or agricultural industries. Our

approach thereby acknowledges that criteria for impact differ with

sectors and need to be defined for each. This methodology

contrasts with other approaches, such as meta-analysis [12] or

data-mining [9] used to describe ecological impacts and their

patterns in published quantitative studies. However, it has the

advantage of allowing explicit consideration of the context under

which invasions are occurring and the types of impact of greatest

management concern. Also, published quantitative information on

impact is unavailable for most species.
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Very few studies have tested species-level predictors of impact,

and the issue of whether traits relate to invasiveness or impact per se

has rarely, if at all, been addressed [9]. A common assumption is

that high-impact species are more invasive. High-impact species

were faster invaders in China when impact was determined by

number of publications [14,15], but was not significant in a global

study that categorised impact according to ecological effects on

species populations [7]. Other factors are also expected to be

important predictors of impact in particular sectors, although we

are unaware of any systematic analyses. For example, high-

biomass, often perennial, grasses are known to cause serious

environmental impacts through altering the grass-fire cycle [16],

many serious pastoral weeds have low palatability or high toxicity

[17], and some of the most serious weeds in agricultural systems

are the result of the development of herbicide resistance [18].

Exotic grasses in northern Australia offer a good model system

for testing predictors of impact because they can cause profound

negative impacts to the environment and agriculture

[19,20,21,22,23] and their impacts in northern Australia are

particularly severe [20,23,24,25,26]. Exotic grasses are also diverse

in northern Australia, and their importation, naturalisation and

impacts there are relatively well documented. This includes

maintenance of a Commonwealth Plant Introduction (CPI) list

from 1929 to 1997 which records approximately 145,000 plant

accessions imported by CSIRO and agricultural agencies and

agricultural faculties during that period [27].

We tested whether it was possible to predict which naturalised

species became high-impact overall, and by impacted sector

(environmental, pastoral and agricultural). Weed risk assessments

are typically aimed at preventing introduction of any high-impact

species [28], so it makes sense to determine whether there are

generic predictors as well as sector-specific ones. We also tested

whether any generic predictors of high-impact species were the

same as predictors of spread rate. Predictors of impact were

included for which data were available for the full set of

naturalised species and which we considered might have a bearing

on impact and spread rate: namely life history traits, introduction

pathway, naturalisation history and spread rate (for impact). When

the costs of escaped exotic species vastly outweigh the benefits

those species might bring, correctly identifying high-impact species

is more important than avoiding labelling a harmless species as

high impact [29]. Previous studies have shown that model

outcomes can be sensitive to how false positives and false negatives

are weighted [30]. We therefore also test whether changing this

assumption will affect predictors of high-impact species.

Methods

A list of tropical and subtropical grass species that had

established naturally self-sustaining populations (naturalised) in

Australia was compiled using records in the Australian Virtual

Herbarium (which includes all Australian herbaria), the literature

[21,31,32,33], authoritative web databases and taxonomic exper-

tise (B.K. Simons, Queensland Herbarium). Higher classifications

(sub-families and tribes) were based on Kellogg ([34,35]) and

Simon ([36]) and species designations followed Simon & Alfonso

([33]). Grasses were categorised as tropical/subtropical on the

basis of their biology and native range distribution (van Klinken

et al., in prep.). For each species we recorded plant traits, first date

of introduction and naturalisation, likely introduction pathway,

range and spread rates, whether the species was actively spread

and promoted in Australia as pasture or turf, and whether it

caused high impact on one or more sectors (Table 1).

We focused on plant traits that were available for all species and

which we considered might have a bearing on spread rate and

impact. For each species we recorded life history (annual,

perennial, or annual/biennial/perennial), growth habit (tufted,

stoloniferous and/or rhizomatous) and habitat preference (terres-

trial species or semi-aquatic, thriving in seasonally inundated or

waterlogged habitats). Native origin was excluded, as a separate

analysis of the same species found no difference in native range

between all naturalised species and the high-impact species (van

Klinken et al., in prep.). Photosynthetic pathway (C3 or C4) was

also excluded from the analysis because there were too few C3

grasses (seven species) in the data set to make it a reliable predictor.

A range of sources, including herbarium records, the literature

and CPI records, were used to determine the first recorded date,

the first recorded date in CPI records, and most likely pathway of

introduction into Australia. The most likely introduction pathway

was categorised as: pasture or turf, contaminant of imported seeds,

crop, ornamental, or unexplained. For some species there were

multiple introduction and naturalisation events, and potentially

more than one pathway for introduction, in which case the

primary pathway was identified based on eventual use. Herbarium

records and the literature were consulted to determine when each

species was first recorded as naturalised. The naturalised species

that were subsequently widely promoted and actively spread in

Australia as pasture or turf were identified using the literature

[37,38,39] and consultation with relevant pasture scientists.

Herbarium records (records collected through to 31 December

2009) were used as the best available estimate of distribution

within Australia and to calculate incidence rate (number of records

[incidence] per decade since naturalisation). Distribution within

Australia was described as the number of Interim Biogeographic

Regionalisation of Australia (IBRA Version 4.0) regions, although

temperate Tasmania was included as a single biogeographic region

(rather than as 10 small, temperate regions), giving a total of 71

regions. Spread rate (number of IBRA regions per decade) was

based on the 2009 distribution of each species. Duplicate

collections and records that clearly did not represent naturalisation

(e.g. those from research stations, glasshouses, botanic gardens,

agricultural colleges, demonstration farms and experimental plots)

were excluded from the analysis, unless the collection label

unambiguously indicated that the species had self-propagated.

Impact
Evidence for species having high impact on the environment,

pastoral industry and agriculture (cropping and horticulture) was

assessed against criteria [40] as follows:

‘‘Environmental’’. Species that have become dominant

(defined as percent herbaceous cover) in environmental reserves

as a result of natural spread (implying an ability to invade), and not

dependent on human related disturbance (e.g. excludes roadsides

that are regularly slashed, high-use areas such as campgrounds,

and land that has historically had heavy, prolonged grazing).

Environmental impact has not been quantified for most grass

species, so it was assumed that dominance under these circum-

stances equated to serious impact [20]. Specific examples meeting

these criteria were required for a species to be considered as high-

impact.

‘‘Pastoral’’ and ‘‘Agricultural’’. Species that the respective

sector considers as currently having a serious negative impact, and

therefore requiring specifically targeted control work, or signifi-

cantly altered on-farm practice (e.g. change in stock management).

We excluded species whose impacts are largely preventable

through industry-standard, on-farm practice, and ‘‘systems weeds’’

Predictors of Weed Impact
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such as cropping weeds that are managed as part of a suite of

competitors.

For each species specific examples of impact which met all the

criteria were sought from literature, authoritative websites and

unpublished sector reports, and phone-interviews with over 20

targeted professionals (Table S4). Examples were then cross-

validated, including by interviewing experts with broad knowledge

within a sector and direct knowledge of the reported impacts and

the context in which it occurred. The compiled list was then

circulated on the ‘‘enviroweeds’’ list-server to identify any

omissions which were then followed up further.

Analysis
Our goal was to find the best set of predictors for which

naturalised species became high-impact. Spread rate (regions

invaded per decade) was identified as an important predictor (see

results), so an additional analysis was undertaken to determine

whether the same factors predicted spread rate as impact.

Testing predictors of impact within sector, while still controlling

for genus, was constrained by the relatively small number of high

impact species. We therefore present quantitative trends for each

sector, and results from an analysis for the two sectors

(environment and pastoral) for which by-sector analysis was

possible.

Predictors of high-impact species. We used generalized

linear mixed effect models with a binomial error structure to

predict the binary variable ‘high-impact’, which was 1 if the

species met the criteria in the impact section, and 0 otherwise. The

structure of the random effect was very simple, only the intercept

for each genus was allowed to vary. This allowed species to be

more or less likely to be high-impact based on their genus. We also

tested genus nested within tribe, but tribe did not explain any of

the variance above that explained by genus, so was dropped from

the analysis. Henceforth we refer to these models as glme. Because

there were few high-impact species, only nine predictors were used

(see Table 1) and no interactions were tested. Date of first

naturalisation was used rather than time of introduction as it was

considered more likely to be explanatory. Number of regions,

incidence and incidence rate were excluded as they were highly

correlated with each other and with spread rate (see results). All

models were fitted using the ‘lme4’ library ([41], lme4: Linear

mixed-effects models using S4 classes) in the statistical computing

language R [42].

Model fitting was done in two ways. First we used a standard

approach, fitting a separate glme to every unique combination of

the nine predictors (n = 512) using the ‘combinations’ function in

the ‘gtools’ library ([43], gtools: Various R programming tools).

We kept genus as the random effect in all cases. We then

compared the performance of each glme using AICc and relative

AICc weights, which compare the AICc support for each model

[44]. We calculated AICc using the AIC.mer function in the

AICcmodavg (Mazerolle, 2013, AICcmodavg: Model selection

and multimodel inference based on (Q)AIC(c). R package version

1.30.). This analysis was conducted with the full set of species, and

just those species that naturalised on or prior to 1988, the last year

of naturalisation for a high-impact species. In a second analysis we

used an approach inspired by statistical learning. Instead of using

AICc to measure performance we directly tested how good a

classifier each glme was using leave-one-out cross validation to

estimate misclassification rates. Each row in the dataset repre-

sented one species and consisted of the set of predictors in Table 1,

the genus of the species, and if it was high impact. One at a time,

134 rows (out of 155 rows) in the dataset were held out

(explanation of which rows follows) and a glme was fit to the

remaining 154 row dataset. That glme was applied to the held-out

species and used to predict the probability that it was a high

Table 1. Predictors tested or excluded from model-fitting analyses.

Predictor Type Units or levels Explanation

Included in analyses

Historical

*No. reg Continuous No. regions Number of regions in Australia in which species has been recorded

spr.rate Continuous regions/decade Number of regions in which the species is recorded as naturalized divided
by the number of decades since the species first became naturalized.

nat Continuous Year Year the species was first recorded as naturalised in Australia

Act.spr (active spread) Binary [no, yes] Was the species actively spread and promoted by people?

intro Categorical 5 pathways The introduction pathway into Australia.

Biological

semi.aqua Categorical [no, yes] Is the species semi-aquatic?

ann.per Categorical [annual, perennial, both] Is the species an annual or a perennial?

tuft Categorical [no, yes, variable] Is the species tufted or not?

rhizo Categorical [no, yes, variable] Does the species have Rhizomes?

stolon Categorical [no, yes, variable] Does the species have stolons?

Excluded from analyses

Native origin Categorical 7 regions Native to which of 7 global biogeographic regions

Incidence Continuous No. records Number of herbarium records in Australia

Incidence rate Continuous Records/decade Average number of herbarium records in Australia per decade since
naturalised

Photosynthesis pathway Categorical [C3,C4] Photosynthesis pathway

See text for details of the analysis. Genus was always used as a random effect. Predictors only included in the spread rate analysis are indicated by asterisks.
doi:10.1371/journal.pone.0068678.t001

Predictors of Weed Impact

PLOS ONE | www.plosone.org 3 July 2013 | Volume 8 | Issue 7 | e68678



impact species. We could not use all 155 species as hold-out species

because 21 were the only representative of their genus in the data

set. This meant that if they were held out the glme would be fitted

without that genus, and thus prediction on the held-out species

would be impossible.

We measured how well each glme worked as a classifier using

Weuc, the weighted Euclidean distance between the glme and a

hypothetical ‘perfect classifier’ [45].

Weuc~min
t[½0,1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{wð Þf tð Þ2zw 1{p tð Þð Þ2

q
ð1Þ

where t is the classification threshold, a number between 0 and 1,

above which a probability is classified true. f(t) and p(t) are the false

positive and true positive rates at a given threshold, t.

f tð Þ~
Pi~I

i~1 a qi,t,high:impið Þ
#non:high:imp

ð2aÞ

p tð Þ~
Pi~I

i~1 a qi,t,1{high:impið Þ
#high:imp

ð2bÞ

a q,t,kð Þ~
1 : q§t ^ k~0

0 : otherwise

�
ð2cÞ

Where qi is the probability of species i being a high-impact

species and is estimated using the cross validation outlined above, I

is the total number of species for which a probability could be

estimated (I = 134). high.impi is 1 if species i is high-impact and 0 if

not. a(q, t, k) is a function that is either: 1 if the species is falsely

predicted to be a high-impact species given classification threshold

t and 0 otherwise (k = high.impi); or 1 if species i is correctly

classified as a high-impact species given classification threshold t,

and 0 otherwise (k = 1–high.impi). #non-high.imp is the total

number of non-high impact species among species for which a

prediction could be made. Finally, #high.imp is the total number

of high impact species among species for which a prediction could

be made. w is the relative weight given to true positives versus false

positives; if w = 1 we do not care about false positives and only try

to maximise true positives, if w = 0 we only try to minimise false

negatives, and when w = 0.5 we give the two types of errors equal

weight.

In the context of invasive species, those species which do

become highly damaging are generally difficult to control and

costly to a large number of people, thus, we may tolerate a high

false positive rate to achieve a high true positive rate. AIC

implicitly assumes equal weighting of true and false positives. We

scaled Weuc so that it lies between 0 (perfect classifier) and 1

(random guessing) for all values of w. We tested two values of w,

w = 0.5 (equal weight) and w = 0.9 (true positives weighted more

heavily).

To explore the effect of important predictors we used a

bootstrap procedure to estimate uncertainty around the coeffi-

cients of the best supported model, logit(Pr[high.impact]),spr.ra-

te+semi.aqua+(1|genus). For each genus we randomly selected the

same number of rows from the data set with replacement as there

were species in that genus. This ensured that the number of species

within each genus remained the same between resamples.

Resampled data that contained fewer than 15 high-impact species

were rejected and redrawn, to ensure the glme fitting would

converge. A glme was then fitted to the resampled data set, the

intercept and the coefficients for spr.rate and semi.aqua were

recorded for each genus. This process was repeated 10,000 times

to generate distributions of intercepts and coefficients, from which

means and 95 percent confidence intervals were taken.

Predictors of spread rate. To determine which factors

influenced spread rate we used glmes to predict log(spr.rate) for

each species using the same set of predictors as was used to predict

high impact status, but including the number of regions in which a

species has been recorded (Table 1). We allowed only a random

intercept for each genus. Again we used AICc and AICc weights

for model selection.

By-sector analysis. We carried out a separate AICc analysis

for species that had a high impact within each sector (environ-

mental, pastoral and agricultural). With so few high-impact species

for each sector, the traits of each high-impact species could have a

disproportionately large effect on the prediction of which species is

high-impact (a form of noise fitting). To test against this possibility

we carried out a randomisation following the method in the

documentation for the lme4 library (see above, and help for

‘simulation’ function in lme4; [41]). We also excluded introduction

pathway from the analysis as this categorical predictor had five

levels, greatly increasing the number of parameters that had to be

estimated, and leading to convergence problems.

Results

Overview of Naturalised Grass Flora and their Impacts
We recognise 155 species from five subfamilies as having

naturalised in tropical and subtropical Australia (Table S2 and S3).

Only 21 species (13.5%) were identified as having a high impact:

13 to the environment, seven to the pastoral industry and five

species in agriculture (Table S4). Of these only four (19.0%) were

considered high-impact for more than one sector, namely to the

environment and pastoral industry (Eragrostis curvula and Hypar-

rhenia hirta), and to the environment and agriculture (Megathyrsus

maximus and Hymenachne amplexicaulis).

Taxonomy and Life History Traits
Naturalised species represent seven grass subfamilies, although

all but seven species belong to the Panicoideae (Tribes Paniceae

and Andropogoneae) and Chloridoideae (Tribe Cynodonteae)

(Table S2). Four of the five poorly represented subfamilies

(Arundinoideae, Bambusoideae, Ehrhartoideae and Micrairoi-

deae), together with two panicoid species (Steinchisma hians and

Hymenachne amplexicaulis) are C3 species, the remainder being C4.

Only 10 (6.5%) species are semi-aquatic, the remainder being

terrestrial (Table S2). Life histories and growth forms are diverse,

even within species (Table S5). Most species were either perennials

(60.6%, mostly tufted or rhizomatous) or tufted annuals (28%).

Some tufted species also had stolons and/or rhizomes.

Distribution and Incidence
Naturalised species on average were recorded from 16 IBRA

regions (maximum = 57) and represented by 123 unique herbar-

ium records (maximum = 705). Number of regions was strongly

correlated with number of herbarium records (Number of

regions = 0.868 x0.637, where x = number of records), with no

highly-sampled but geographically restricted species (Figure 1a).

Spread rate and incidence rate (number of records per decade)

were also correlated (Figure 1c). This suggests that distribution,

spread rate, incidence (number of records) and incidence rate were

all measuring distributional extent, rather than abundance. High-

Predictors of Weed Impact
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impact species showed the same relationship but with none being

localised or poorly sampled (Figure 1a). As a result high-impact

species were on average reported from more regions (25.5 vs 14.8)

and more often (303 vs 111 records) (Figure 1a).

Predictors of Impact (All High-impact Species Pooled)
Among naturalised species those having a high impact were

more likely to be semi-aquatic, and to have spread more quickly

(Table 2). The best model included only these two predictors, they

were included among predictors in all top 10 ranked models, and

the best model that excluded spread rate performed poorly

(Table 2). They were also the best single predictors, although both

performed poorly individually (Table 2). The effect of being semi-

aquatic can be seen in the raw data: 50.0% of the semi-aquatic

species (n = 10) were classified as high-impact, which is much

greater than the 13.5% expected if being semi-aquatic had no

effect. Likewise, high-impact species included those that had

higher spread rates than would be expected from their current

distributional extent (Figure 1b). The historical predictors active

spread and naturalisation date also appear in many of the top

ranked models but added little to model performance, having

worse AICc values than the model containing only spread rate and

semi-aquatic. Genus had little effect, resulting in a model ranked

367 out of 512 (Table 2). Results were much the same if only

species naturalised up to 1988 are included in the analysis (Table

S6).

Using leave-one-out cross validation we show that the glme’s do

have reasonable predictive ability. Weuc values for the top ranked

models were generally less than 0.5, i.e better than twice as

accurate as randomly guessing if a species will be high impact

(Table 3). Weighting true and false positives equally, as in the

previous analysis, produced much the same result, with spread rate

and being semi-aquatic remaining the most important predictors

(Table 3). The best models did include additional predictors but

this should be viewed with caution as the cross validation test does

not explicitly penalise extra predictors in the same way as AICc.

When true positives were weighted more strongly than false

negatives (w = 0.9), to reflect the importance of identifying high

impact species, there were some important differences. In general

the glmes were poorer classifiers, performing around 50% better

than random guessing (right hand Weuc in Table 3), as opposed to

around 60% better than random guessing when w = 0.5 (left hand

Weuc Table 3). This may be due to the effect of genus, which was

included as a random effect in all models. When false positives and

true positives were weighted evenly, genus by itself was a

reasonable predictor, being nearly twice as good as random

guessing (Weuc = 0.554). However, when true positives were more

heavily weighted (w = 0.9), genus alone was only marginally better

than random guessing (Weuc = 0.898). When true positives were

weighted higher than false positives, spread rate and semi-aquatic

were less dominant. The best model without spread rate was

ranked 5th when w = 0.9 and 81st when w = 0.5 (Table 3). Further,

the best model without either spread rate or semi-aquatic was

ranked 17th when w = 0.9 (active spread+intro+rhizo) and 267nd

when w = 0.5 (tuft).

Using coefficients from the best supported model in Table 2, the

probability of being high-impact increased by an average of 0.63

(95% CI: 0.331–1.064) logits for every one region per decade

increase in spread rate. This slope is significantly greater than 0.

The average probability that a semi-aquatic species was high

impact was 0.188 (0.057–0.445); for terrestrial species the average

probability of being high impact was 0.029 (0.009–0.054),

assuming spread rate was near 0 (i.e. comparing intercepts).

Predictors of Spread Rate
The best predictors were number of regions and naturalisation

date (Table 4). Using coefficients from the best model in Table 4,

the relationship between spread rate and year of naturalisation was

positive but had a relatively small slope (0.0215). Thus, for every

50 years later a species was naturalised its spread rate increased by

1.07 regions per decade.

Predictors of Impact by Sector
Three genera were represented by more than one high-impact

species within a sector (Table 5). One of them, Cenchrus, was also

the best represented among all naturalised species whereas five of

the six naturalised Sporobulus species were considered to be high-

impact. In contrast, naturalised Paspalum species were well

represented in Australia, but included no high-impact species,

and only one out of 15 naturalised Eragrostis species (E. curvula) was

high-impact.

Statistical analyses of predictors of impact within sector were

only possible for the environmental and pastoral sector (Table S7).

Figure 1. Relationship between distribution and incidence (a) and spread rate (b), and spread rate and incidence rate (c) (n = 155
species). High impact species are shown as squares and actively spread species as closed symbols (b).
doi:10.1371/journal.pone.0068678.g001

Table 2. Best models predicting high-impact species with
model performance measured by AICc.

AICc DAICc
AICc
weight Rank Model

Fixed effects for the top 10 ranked models

47.977 0 0.14 1 spr.rate+semi.aqua

48.704 0.727 0.097 2 spr.rate+semi.aqua+act.spr

49.431 1.454 0.068 3 spr.rate+semi.aqua+nat

49.71 1.733 0.059 4 spr.rate+semi.aqua+act.spr+intro

50.142 2.165 0.047 5 spr.rate+semi.aqua+nat+act.spr

50.637 2.66 0.037 6 spr.rate+semi.aqua+intro

51.281 3.305 0.027 7 spr.rate+semi.aqua+ann.per

51.309 3.333 0.026 8 spr.rate+semi.aqua+nat+act.spr+intro

51.369 3.392 0.026 9 spr.rate+semi.aqua+tuft

51.491 3.515 0.024 10 spr.rate+semi.aqua+rhizo

Best model without spr.rate

56.295 8.318 0.002 60 semi.aqua+act.spr+intro

Random effect only

69.63 21.66 0 367 (1 | genus)

Top three models with one fixed effect

55.262 7.286 0.04 43 spr.rate

61.557 13.581 0 175 semi.aqua

67.027 19.051 0 312 intro

False positives and false negatives are equally weighted in this approach. Model
performance was measured by AICc. For all models the random effect is
(1|genus). DAICc is the difference in AICc between the top ranked model and
the model displayed under ‘Model’. AICc weight is a measure of relative support
for each model. Rank gives the rank of each model out of the 512 models
tested.
doi:10.1371/journal.pone.0068678.t002
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Convergence did not occur for the agricultural analysis as the

number of high-impact species was too low (five) and there were

no strong patterns.

Among naturalised species, high-impact environmental weeds

were more likely to be semi-aquatic (contributing to its importance

as a predictor of high-impact species overall, see above), have

faster spread rates and be actively spread (Table 5). High-impact

environmental species had a wide range of spread rates, including

four of the five fastest spreaders (Figure 2), three of which had been

actively spread. Being actively spread was by itself an important

predictor of high impact, over and above its effect on spread rate

(Table S7).

The only significant predictor for high-impact pastoral weeds

was life history (Table S7), with all seven species being perennial

(Table 5). There were no high-impact pasture species with high

spread rates (.4 regions/decade) (Figure 2). Introduction pathway

could not be included in the analysis (see methods), but five of the

seven (71%) high-impact pastoral species have entered as a

contaminant of seeds, compared to only 14% overall. This could,

however, be confounded by genus, as all five species were from the

same genus, Sporobolus.

High-impact agricultural weeds had a high proportion being

semi-aquatic, an average spread rate comparable to that of high-

impact environmental species, and the lowest proportion of

perennial species (Table 5).

Discussion

At least 1,000 tropical and subtropical grass species are known

to have been imported into Australia [27]. Of those, 155 species

have naturalised, 115 have spread to at least five biogeographic

regions and 21 were identified as high-impact species for the

environment or production systems. This is less than a third of the

‘major weeds’ identified in a previous study (n = 64; [21]), in part

Table 3. Best models predicting high-impact species using a statistical learning approach.

w = 0.5 w = 0.9

Weuc rank Model Weuc rank model

0.383 1 spr.rate+semi.aqua+rhizo 0.480 1 spr.rate+semi.aqua+tuft

0.383 2 spr.rate+semi.aqua+tuft+rhizo+stolon 0.486 2 spr.rate+semi.aqua

0.39 3 spr.rate+semi.aqua 0.486 3 spr.rate+semi.aqua+nat+tuft

0.39 4 spr.rate+semi.aqua+stolon 0.512 4 spr.rate+semi.aqua+nat+stolon

0.39 5 spr.rate+semi.aqua+tuft+rhizo 0.512 5 semi.aqua+act.spr+intro+rhizo

0.39 6 spr.rate+semi.aqua+tuft+stolon 0.513 6 spr.rate+nat+act.spr+intro+tuft+rhizo

0.39 7 spr.rate+semi.aqua+rhizo+stolon 0.519 7 spr.rate+semi.aqua+nat+tuft+rhizo

0.395 8 spr.rate+semi.aqua+tuft+rhizo+nat 0.519 8 spr.rate+semi.aqua+nat+tuft+stolon

0.398 9 spr.rate+semi.aqua+tuft 0.525 9 spr.rate+semi.aqua+nat+rhizo

0.404 10 spr.rate+semi.aqua+intro+tuft 0.525 10 spr.rate+semi.aqua+tuft+rhizo

Best model without spr.rate

0.456 81 semi.aqua+ann.per 0.513 5 semi.aqua+act.spr+intro+rhizo

Best model without spr.rate or semi.aqua

0.914 267 tuft 0.539 17 act.spr+intro+rhizo

Three best single predictor models

0.456 80 spr.rate 0.625 80 spr.rate

0.49 117 semi.aqua 0.787 360 act.spr

0.548 267 tuft 0.801 383 intro

Random effect only

0.554 278 (1|genus) 0.898 466 (1|genus)

Model weighting assumption was tested by comparing true positives and false negatives equally (w = 0.5) (comparable to Table 2) and weighting true positives more
heavily than false negatives) (w = 0.9). Weuc is expressed as a proportion of the maximum possible value given the value of w, thus in both cases a perfect classifier
would have a Weuc of 0, and a classifier that is guessing randomly will have a Weuc of 1.
doi:10.1371/journal.pone.0068678.t003

Table 4. Best models predicting spread rate, model
performance measured by AICc.

AICc DAICc AICc weight Model

377.296 0 0.494 No.reg+nat

380.035 2.74 0.126 No.reg+nat+semi.aqua

380.219 2.923 0.115 No.reg+nat+act.spr

382.589 5.294 0.035 No.reg+nat+stolon

382.676 5.38 0.034 No.reg+nat+rhizo

382.849 5.553 0.031 No.reg+nat+tuft

383.08 5.784 0.027 No.reg+nat+act.spr+semi.aqua

383.254 5.958 0.025 No.reg+nat+ann.per

384.553 7.257 0.013 No.reg+nat+act.spr+rhizo

385.092 7.797 0.01 No.reg+nat+act.spr+tuft

Model performance was measured by AICc, with log(spr.rate) as the response.
For all models the random effect is (1|genus). DAICc is the difference in AICc
between the top ranked model and the model displayed under ‘Model’. AICc
weight is a measure of relative support for each model.
doi:10.1371/journal.pone.0068678.t004
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because the criteria we used required evidence of impact leading

to practice change for industry, as well as consideration of the

circumstances under which species become dominant in environ-

mental settings. High-impact species were on average no different

to all naturalised species in most respects, but had higher spread

rates and were more likely to be semi-aquatic. However, spread

rates were in turn strongly correlated with other predictors so need

to be interpreted cautiously. Although prediction performance was

reasonable overall, it declined when attempting to predict high-

impact species (minimise false negatives), which is the main focus

Table 5. Comparison of all species and high-impact species by sector.

All species High impact species

Environmental Pastoral Agricultural

Total species 155 13 7 5

Taxonomy

Most common genera Cenchrus (16) Cenchrus (4) Sporobolus (5) Echinochloa (2)

Eragrostis (14)

Paspalum (11)

Traits

Life history: Peren. & peren./ann. 110 (71.0%) #12 (92.3%) #7 (100%) 2 (40.0%)

Habitat: semi-aquatic 10 (6.5%) #3 (23%) #0 (0%) 3 (60.0%)

Introduction pathway

Contaminant 14 (9.0) 1 (7.7%) 5 (71%) 0 (0%)

Invasiveness

Spread rate (regions/decade)* 1.9260.11 #3.49±0.34 #1.9660.35 3.4660.31

Actively spread 60 (38.7%) #10 (76.9%) #2 (29%) 2 (40%)

Only predictors (Table 1) that differed between sectors (see text) are included. Statistical analysis was only possible for environmental and pastoral weeds, and only for a
subset of parameters (#). The most influential predictors are indicated in bold. Proportions are given in brackets.
*mean 6 SE.
doi:10.1371/journal.pone.0068678.t005

Figure 2. Spread rate of each species (n = 155) including high impact species in each sector. High impact species in each sector are
highlighted in separate panels (black dots). Data points are randomly jittered across the y-axis to make visualisation clearer. The very large outlier is
explained in the bottom panel.
doi:10.1371/journal.pone.0068678.g002
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of biosecurity. Predictive ability is likely to improve greatly if

predictions are by sector, but analyses are limited by the relative

rarity of high-impact species.

High-impact species are principally the focus of management

and policy efforts to limit the impact of invasive plants. However,

surprisingly little work has been done to identify them objectively,

and mostly this has been restricted to a single sector such as the

environment (e.g. [7]). The criteria-based approach we developed

allowed us to identify a total of 21 species impacting the

environment, pastoral sector or agriculture (cropping and horti-

culture). Importantly, it explicitly required consideration of the

context in which invasion and impact occurs (e.g. historical and

current disturbance regimes for environment, and farming

practices for production) which is an important determinant of

impact [13]. This excluded, for example, many environmental

weeds that reach high densities only under human-mediated

disturbance regimes. In most cases quantitative data on impacts

were lacking, a ubiquitous problem for invasive species [9,12,13],

and rarely considered context. Nonetheless, our approach did

allow short-listing of the 145 species previously recorded as weeds

in Australia, and the evidence requirements against each criterion

provided a much more rigorous and transparent approach than

was previously available. This list will clearly be sensitive to the

criteria employed. For example, criteria for high-impact environ-

mental species considered the context, but not the spatial extent (as

recommended by [11]), of impact, so species were included that

meet the criteria for high environmental impact, but in very

restricted settings.

High-impact species were similar to the total naturalised species

pool in most respects, although they only comprised species that

were widely distributed in Australia (at least eight biogeographic

regions), and they were more likely to be semi-aquatic and have

higher spread rates when calculated as biogeographic regions per

decade. However, spread rate was in turn explained by range size

and how recently it had become naturalised in Australia. Range

size and spread rate were highly correlated so, as all high-impact

species were widely distributed, the correlation between high

impact species and spread rate may not be explanatory. Spread

rate was also highly correlated with incidence and incidence rate

(rate of regions being invaded since naturalisation). Correlations

between our measure of spread rate and impact may therefore not

be explanatory, which may be why our findings contradict an

earlier study which found no correlation between spread rate

(measured as km/yr) and impact [7]. Species that became

naturalised later spread faster, possibly because spread rates for

species that have been naturalised for longer are already

approaching their asymptote [46].

Weed risk assessments are used to try to predict what species will

become damaging [47]. Our finding that high-impact species have

similar characteristics to other naturalised species suggests this task

will be difficult. This makes the already difficult problem of

correctly identifying relatively rare events (in this case that a

naturalised species will become high-impact) [48] much more

difficult. Further, risk assessments can be sensitive to how models

are optimised in terms of false positives and false negatives, which

in turn depends on the application [30]. For example, most

analyses weight false positive and false negatives equally, whereas

biosecurity is mostly concerned with minimising the risk of missing

false negatives (failure to identify a serious threat). Our models

were less successful, and required a wider range of predictors,

when more weight was given to identifying high-impact species.

Previous work has shown that species with congeners considered to

be weeds are more likely to have negative impacts [49]. We show

that when false negatives are given more weight, genus becomes a

very poor predictor, suggesting that using taxonomy as a predictor

of impact will be sensitive to how false negatives are weighted. The

generality of this result needs to be tested - does it apply to other

groups and in other regions? To determine how much weight we

should place on detecting true positives (versus avoiding false

positives), we need to give careful consideration not only to the

risks that exotic species pose, but also the benefits they might bring

[29].

Most high-impact species impacted only one sector, none

impacted both agricultural and pastoral sectors, and high-impact

environmental species included those of great value to the pastoral

industry [20,26,50]. Furthermore, some species identified as

causing high impact to agriculture in a prior study [40] were no

longer considered as such due to a change in farming practices

(V. Osten, pers. comm.). Similar changes in impact resulting from

changes in land management have been observed elsewhere,

although most studies focus on changes that increase the threat of

invasives [51]. Taken together, these aspects highlight the

importance of context in determining impact [9,13]. As might

be expected, different predictors appeared to be important for

high-impact species in different sectors. For example, there were

differences in life history between sectors, with all pastoral and all

but one high-impact environmental species being perennial,

compared to only half of high-impact crop-sector species. This is

consistent with pasture and environmental weeds needing to out-

compete perennial grasses to cause serious impacts in northern

Australia [52] (but see [9], who found the annual grass life form to

be the best predictor of environmental impact in a global analysis

of invasive plants), and annuals being favoured in annual cropping

systems. Semi-aquatic species were more likely to be high-impact

environmental species, suggesting that semi-aquatic habitats are

especially susceptible systems in Australia [24,26]. Certainly this

group included two of the three high-impact species naturalised

since 1970, the result of pasture introductions specifically aimed at

improving productivity of semi-aquatic pastoral systems [53].

Similar results are apparent for aquatic species [54], although

aquatic grass species were not represented in our study. On

average, high-impact environmental and agricultural, but not

pastoral, species were faster invaders than expected. This could be

the result of often relatively well-resourced management programs

aimed at containing pasture weeds [17,55], and the active

dispersal of many high-impact environmental species as pasture.

Conclusions

The importance of avoiding conflation of invasion (spread) with

impact [4,7], and quantifying, explaining, predicting and respond-

ing to impact [9,56,57] is increasingly being recognised. Our study

is one of the first to focus on predictors of species that cause serious

impacts and that considers all impacted sectors. Spread rate and

habitat were the only universal predictors of impact we found; but

even they were not important for each sector. Furthermore, spread

rate was difficult to interpret, and does not lend itself to screening

tests aimed at identifying a high-impact species, because a plant

would have to be widely established before its rate of spread could

be measured, and also because it may not be explanatory.

Improved predictions will therefore require a deeper understand-

ing of the circumstances in which impact occurs in affected sectors.

This represents an important shift of focus for invasion science

which to date has focussed largely on predicting invasiveness [5],

and on predictors of ecological impacts of invaders [9,12] rather

than on understanding and predicting impacts on environmental

or production values, and the circumstances under which those

impacts occur. Within the language of risk assessments [8] it
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suggests greater emphasis is required to characterise consequences

of, rather than likelihood of, invasion, as many species are

successful invaders yet fail to cause serious impact. Recent calls to

shift focus to impacts on ecosystem services (e.g. [13]) represent a

shift in the right direction. However, important challenges remain,

not least because of the relatively low numbers of high-impact

species (low base rates). We expect that the greatest improvements

to weed risk assessments will come from developing the theoretical

and empirical basis for understanding the circumstances under

which some invasive plants cause serious impact to particular

sectors.
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