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Abstract

Background: Spatial heterogeneity in tumor tissue has been linked to patient prognosis.
To exploit both structural and semantic cues in whole slide images (WSIs), we propose
Dual eXplanatory Framework (DuXplore), a dual-branch deep learning framework that
integrates tissue architecture and cellular morphology for hepatocellular carcinoma (HCC)
prognosis. Method: At the macroscopic level, DuXplore constructs a multi-channel tis-
sue organization probability map (MTOP) to represent the spatial layout of eight tissue
categories within the WSIs. At the microscopic level, a feature-guided Fused Structure
Tensor (FST) based on tissue composition is employed to extract representative cell mor-
phology patches. Accordingly, MTOP representations are modeled by Macro-Net, while
FST-guided patches are modeled by Micro-Net. Each branch produces a 32-dimensional
prognostic embedding, which are fused and passed through a multi-layer perceptron with
a Cox proportional hazards head to generate patient-level risk predictions. To further
elucidate the distinct contributions of the two branches, we conducted model-agnostic
interpretability analyses, including occlusion sensitivity mapping (OSM) on MTOP and
nuclear morphometrics from CellProfiler on high- versus low-risk tiles. Result: DuXplore
achieves promising performance with C-indices of 0.764 on the public Cancer Genome
Atlas (TCGA) dataset and 0.713 on the Eastern Hepatobiliary HCC (EHBH) cohort from our
clinical center, along with significant patient risk stratification (log-rank p < 0.001). OSM
highlighted necrosis and central fibrosis as high-risk and marginal fibrosis as protective;
these patterns were corroborated by multivariable Cox using reproducible structural pa-
rameters (N-ratio, FIB-center, FIB-edge). Micro-level analysis revealed that higher nuclear
staining intensity, increased texture irregularity (GLCM features), and greater morpholog-
ical heterogeneity characterize high-risk tiles, aligning with pathological understanding.
Conclusions: DuXplore advances prognostic modeling by coupling structure-aware micro-
sampling with macro architectural encoding, delivering robust, generalizable survival
prediction and biologically plausible explanations. While validated on HCC WSIs, broader
multi-center, multi-omics studies are warranted to refine sampling scales and enhance
clinical translation.

Keywords: hepatocellular carcinoma; whole slide image; survival risk prediction; tissue
interaction modeling
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1. Introduction
In recent years, studies have revealed that the spatial interaction patterns among

different tissue components within tumor regions not only reflect underlying biological
heterogeneity but also have significant prognostic implications. For instance, patients
with head and neck squamous cell carcinoma exhibiting close spatial proximity between
PD-1+ T cells and PD-L1+ tumor cells respond better to immunotherapy [1]. In metastatic
melanoma and osteosarcoma, the co-occurrence frequency of immune cells with antigen-
presenting or immunosuppressive cells has also been shown to correlate significantly
with survival outcomes [2,3]. Moreover, in non-small cell lung cancer and combined
hepatocellular–cholangiocarcinoma, the proportional areas of different tissue types can ef-
fectively distinguish patient prognosis subgroups [4,5]. These findings collectively suggest
that intra-tumoral tissue interactions are a critical source of prognostic information.

As the gold standard in digital pathology, WSIs [6] offer unique advantages in pre-
serving structural integrity and spatial continuity, thereby capturing authentic spatial
distributions and interaction patterns of tumor tissues. However, the enormous size of
WSIs presents computational challenges for downstream modeling. Thus, a key issue in
high-throughput pathology analysis is how to compress WSIs effectively while retaining
their essential structural and interaction information.

Weakly supervised survival prediction from WSIs is currently routinely formulated as
a multiple-instance learning (MIL) problem. The CLAM model [7], originally proposed for
subtype classification, was re-trained with its attention-based pooling module paired with
a Cox head, achieving a competitive C-index on more than 3000 TCGA slides. Similarly,
the TransMIL model [8] has been adapted for survival modeling tasks, with its transformer
self-attention architecture validated on 11,000 TCGA cases to establish the state-of-the-
art (SOTA) performance in the pan-cancer field. Additionally, the DeepSurv model [9],
which utilizes a Cox proportional hazards deep neural network, has also contributed
significantly to personalized survival predictions. Although both models can generate
slide-level representations, they still treat image patches as independent instances and
overlook the inherent hierarchical organization of tissues—this limitation serves as the core
motivation for our integration of explicit structural priors into deep survival modeling.

While most existing survival models overlook the spatial organization of tissues, a few
recent studies have explicitly incorporated structural priors into WSI-based prognostic mod-
eling. One representative example is PathFinder [10], which models WSIs at a macroscopic
level by constructing multi-class tissue distribution maps and applying attribution analy-
sis to link specific tissue structures—such as necrosis and invasive margins—to adverse
outcomes. Although this approach successfully captures architectural-level prognostic
cues, it neglects fine-grained cellular patterns that are often critical in digital pathology.
In contrast, another line of research has introduced dual-branch frameworks that jointly
model macroscopic architectural features and microscopic semantic features [11]. In these
designs, a macroscopic branch encodes tissue-level organization, while a microscopic
branch extracts cellular representations from tiled patches, enabling multi-scale feature
fusion. Although these frameworks have improved over earlier purely patch-based models,
their microscopic sampling strategies remain largely empirical, typically based on simple
rules such as random or uniform selection rather than structure-informed design, meaning
that the micro-level representation is not fully informed by the underlying structural priors.

To address these limitations, we propose a structure-aware patch sampling strategy
for the microscopic branch. Building on the macroscopic pipeline, this strategy performs
stratified patch extraction based on eight predefined tissue categories, enhancing the
microscopic branch’s ability to capture structural context and generalize across WSIs.
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Based on this approach, we further develop DuXplore—a dual-branch deep learning model
that combines macroscopic structural features with microscopic cellular representations.

Evaluated on both the public TCGA dataset [12] and a private clinical cohort from
our institution, DuXplore demonstrates robust prognostic performance, achieving C-index
scores of 0.764 and 0.712, respectively. Notably, without incorporating any additional
clinical variables, the model effectively stratifies patients into distinct risk groups. Kaplan–
Meier survival analysis [13] reveals statistically significant differences between the high-
and low-risk groups (log-rank p < 0.01).

2. Materials and Methods
2.1. Data Acquisition

We evaluated the proposed method on two independent cohorts of patients diagnosed
with HCC. The first cohort was derived from TCGA project. WSIs and associated clinical
annotations were obtained via TCGA Data Portal, while survival information, including
overall survival (OS) time, was supplemented through the UCSC Xena platform. The
second cohort, referred to as the EHBH dataset, is a proprietary single-center database
constructed at our institution. All patients were pathologically confirmed with primary
HCC and underwent curative surgical resection, with complete clinical profiles and follow-
up survival data. The WSIs were digitized using the KF-PRO-120-HI scanner (Jiangfeng
Bio, Jinhua, China), and the follow-up duration ranged from 0.167 to 290 months, providing
comprehensive long-term survival information.

During image preparation, we excluded slides exhibiting staining artifacts, blurring,
tissue folding, missing survival data, or lacking coverage of the tumor core. For patients
with multiple WSIs, an experienced pathologist selected the most representative slide
encompassing the tumor core for subsequent analysis. All selected slides were stained with
hematoxylin and eosin (H&E) [14].

After quality control, the final dataset included 172 WSIs from 172 patients in TCGA
cohort and 167 WSIs from 167 patients in the EHBH cohort.

2.2. Macro–Micro Encoding

Although WSIs provide ultra-high-resolution information at both tissue and cellular
scales, their massive data volume poses significant computational challenges. Direct
modeling at the cellular scale is not only computationally expensive but also prone to
redundancy and feature noise. To address this, we propose a tissue-structure-guided dual-
scale abstraction strategy that captures pathological features from both macroscopic and
microscopic spatial perspectives, as illustrated in Figure 1.

 

Figure 1. Macro-Micro Input Encoding. MTOP, multi-channel tissue organization probability map;
FST, Fused Structure Tensor.
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2.2.1. MTOP

Transfer learning [15] has demonstrated remarkable effectiveness in deep learning
tasks in recent years. Prior studies have shown that models trained on large-scale tissue
classification tasks can generalize well to similar domains without requiring further fine-
tuning. Leveraging this advantage, we adopted the PathFinder network, pre-trained on
a large-scale tissue classification dataset, to perform rapid and accurate tissue structure
recognition. This approach helps mitigate the risk of classification errors due to limited
sample sizes.

Specifically, WSIs from both TCGA and the EHBH cohorts were first preprocessed
via background removal using the OTSU thresholding [16] and color normalization via
the Vahadane method [17]. The processed WSIs were then divided into fixed-size image
patches Ii,j at a magnification of 20×. Each patch was fed into the PathFinder model to
predict its tissue category, encoded as:

z(i,j) = argmax
(

PathFinder
(

Ii,j
))

, z ∈ R8 (1)

Based on the predicted tissue labels, we constructed spatial channel maps Mz for
each tissue category within a downsampled spatial grid. This allowed us to compress
the high-resolution distribution of tissue labels into a compact 2D spatial representation,
defined as:

Mz(p, q) =

1, if z(i,j) = z and (p, q) =
(

i
L , j

W

)
, Mz ∈ Rm

L ×
n
W

0, otherwise
(2)

where (p, q) denotes the coordinates after downsampling, m, n are the dimensions of the
original WSI, and L, W are the horizontal and vertical downsampling factors, respectively.

By concatenating all eight tissue-specific channel maps, we generated the final MTOP:

M = Concat(M1, M2, . . . , M8), M ∈ R
m
L ×

n
W ×8 (3)

2.2.2. FST

We designed a Fused Structure Tensor based on the spatial composition of tissue types
within each WSI. Specifically, we first computed the proportion rz of each tissue category
z ∈ [0.7] across the entire WSI, defined as:

rz =
∑i,j 1

(
z(i,j) = z

)
∑7

z′=0 ∑i,j 1
(

z(i,j) = z′
) , for z ∈ [0, 7] (4)

where rz denotes the spatial proportion of the z-th tissue type in the whole WSI.
Based on the computed proportions rz, we performed category-wise stratified sam-

pling over all patches in the WSI. For each patient, a total of N = 27 patches were sampled,
with the number of patches drawn from each tissue category z determined as:

nz = ⌊rz · N⌋ and
7

∑
z=0

nz = 27 (5)

Here, nz represents the number of patches sampled from the z-th tissue type. If some
tissue types occupy extremely small proportions and do not provide enough patches, the
shortfall is compensated by sampling additional patches from dominant tissue types.
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The final set of sampled patches is denoted as:{
I(1), I(2), . . . , I(27)

}
, I(k) ∈ R3×L×W (6)

All selected patches are concatenated along the channel dimension in their sampling
order to construct a unified input representation for the microscopic branch (FST):

FST = Concat
(

I(1), I(2), . . . , I(27)
)

, FST ∈ R3×27×L×W (7)

2.3. Establishment of DuXplore

We independently constructed two prognostic models based on macroscopic structural
features and microscopic semantic features, respectively, and conducted a systematic
performance comparison. For the macroscopic branch model (Macro-Net), as illustrated
in Figure 2, the input is the MTOP for each patient, with the prediction targets being the
overall survival time and censoring status.

 

Figure 2. Macro-Net architecture. FC, Fully Connection layer; MaTRS, macro tumor risk score.

The model is built upon a ResNet50 backbone [18], with the input channel dimension
adapted to 8 to accommodate the eight tissue types. The overall architecture consists of three
main components: an Encoder, a Feature Projection Module, and a Risk Prediction Head.

Specifically, the input image M ∈ Rm
L ×

n
W ×8 is first processed by the encoder to extract

spatial features:
KMacro_2048 = fMacro_encoder(M) (8)

where fMacro_encoder denotes the encoder network (ResNet50), and KMacro_2048 represents
the resulting 2048-dimensional feature vector.

This high-dimensional representation is then compressed into a 32-dimensional vector
via a fully connected layer:

hMacro_32 = fprojection(KMacro_2048) = ReLU(BN(FC(KMacro_2048))) (9)

where fprojection denotes the feature projection module, FC is the fully connected layer, BN
is batch normalization, and ReLU is the activation function.

Finally, a linear prediction head generates the macroscopic structure-based risk score,
referred to as Macro tumor risk score (MaTRS):

MaTRS = headMacro_pred
(
hMacro32

)
(10)

For the microscopic semantic branch model (Micro-Net), illustrated in Figure 3, we
similarly operate at the patient level, but the input is replaced with a fine-grained patch
set obtained via the FST. The goal is to generate a micro-level tumor risk score (MiTRS) for
each patient.
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Figure 3. Micro-Net architecture. FC, Fully Connection layer; MiTRS, micro-level tumor risk score.

This model is also built upon a modified ResNeXt50 backbone. The input channel
number is adjusted to 81 (3 × 27) to accommodate the concatenated 27 RGB patches per
patient. The overall architecture comprises three key components: an Encoder, a Feature
Compression Module, and a Risk Prediction Head.

Formally, given the input image tensor FST ∈ R3×27×L×W , the encoder first extracts
spatial features:

KMicro_2048 = fMicro_encoder(FST) (11)

where fMicro_encoder denotes the encoder network, and KMicro_2048 is the resulting 2048-
dimensional feature representation.

Next, the high-dimensional feature is projected into a compact 32-dimensional embed-
ding via a fully connected compression layer:

hMicro_32 = fMicro_comp(KMicro_2048) = ReLU(BN(FC(KMicro_2048))) (12)

where is fprojection the feature compression module; FC, BN, and ReLU represent the fully
connected layer, batch normalization, and activation function, respectively.

Finally, a linear prediction head generates the MiTRS.
To further integrate the complementary strengths of macroscopic structural and micro-

scopic semantic information for enhanced survival risk prediction, we developed a unified
prognostic framework—DuXplore.

Specifically, within the DuXplore architecture, we removed the original prediction
heads from both Macro-Net and Micro-Net, retaining only their respective feature extraction
backbones. The extracted macroscopic and microscopic features are then jointly modeled
and fed into a unified fusion prediction head, which outputs a comprehensive patient-level
tumor risk score (PaTRS).

Optimization Objective

To perform survival risk prediction, we adopted the Cox proportional hazards model
as the output layer, enabling semi-parametric modeling of censored survival data. During
training, we optimized the model using the negative log partial likelihood [19], formulated as:

Lloss = − ∑
i:δi=1

ĥ − log ∑
j∈R(ti)

eĥj

 (13)

where ĥ denotes the predicted PaTRS for the i-th patient, δi is the censoring indicator, ti is
the observed survival time, and R(ti) represents the risk set, the set of patients still at risk
at time ti.
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2.4. Performance Comparative Evaluation

To ensure a fair and reproducible comparison across different survival prediction
frameworks, all models were trained and evaluated under a unified data processing and
training protocol. The same patient-level data split was applied to all methods, with
five-fold cross-validation conducted on the internal cohort to assess model stability and
an independent external cohort used for generalization testing. For all models, WSIs
were divided into non-overlapping patches of 224 × 224 pixels at 20× magnification, and
identical preprocessing procedures were applied to ensure consistency across datasets.

We compared four representative paradigms of WSI-based survival modeling, includ-
ing DeepSurv, CLAM, TransMIL, and PathFinder. In DeepSurv, a ResNet-50 network was
used as the feature extractor before Cox proportional hazards modeling. All models were
trained from scratch for up to 100 epochs using the Adam optimizer [20] with an initial
learning rate of 1 × 10−4. A learning rate decay strategy was applied, reducing the learning
rate by a factor of 0.1 when the validation performance plateaued. L2 regularization with a
weight decay coefficient of 1 × 10−5 was used to mitigate overfitting [21]. To ensure robust
evaluation, we conducted all experiments using 5-fold stratified cross-validation, which
was also used for hyperparameter tuning.

2.5. Explanation of the Decision-Making Process of the Model

To explore the discriminative basis of Macro-Net, we first employed OSM [22] to
locally occlude MTOP and generate risk-sensitive heatmaps, where red/blue represent
higher/lower mortality risk, respectively.

Pathologists observed three distinct patterns in these visualizations: necrotic areas
consistently signaled high risk; fibrosis within tumors indicated risk propensity; while
fibrosis at tumor margins exhibited protective effects. Based on this observation, we
hypothesize that necrosis and central fibrosis may correlate with poor prognosis, whereas
marginal fibrosis may confer protective benefits.

To test this hypothesis, we formalized these regional features into three structural
parameters: Necrotic area ratio (N-ratio), Tumor margin fibrosis area (FIB-center), and
Tumor interior fibrosis area (FIB-edge). Area proportions were obtained via pixel counting,
with edge regions defined by distance transformation and maintained at a fixed thickness.
These parameters were subsequently incorporated into Cox regression analyses to quantify
their relationship with survival outcomes.

To interpret the patch-level features received by Micro branch that correlate with
prognosis, we applied CellProfiler 2.1.0 to automatically extract quantified image vectors
from high- and low-risk tiles. We used CellProfiler 2.1.0 to identify and segment tumor
cell nuclei within each tile, then measured the shape, intensity, and texture of the nuclear
area for each nucleus. A total of 732 feature vectors were extracted, excluding null values
and normalized to describe the aggregated morphology of tumor nuclei within the tile.
Each feature vector contained nuclear information including mean, median, and standard
deviation of nuclear size; contour length; orientation; ellipticity; texture entropy; centroid
moment; and other metrics.

2.6. Statistical Analysis

All statistical analyses were performed using R software (version 4.2.2) and Python
(version 3.8). Model performance was evaluated from three complementary perspectives.
Discrimination was measured by Harrell’s concordance index (C-index) [23], quantifying
each model’s ability to correctly rank patient survival times. Calibration was assessed
using the Integrated Brier Score (IBS) [24], evaluating agreement between predicted and
observed survival probabilities over time. Prediction accuracy was quantified by the



Diagnostics 2025, 15, 2981 8 of 17

inverse probability of censoring–weighted mean absolute error (IPCW-MAE), reflecting
the absolute difference between predicted and observed survival times while accounting
for censoring.

All metrics were computed under the same five-fold cross-validation protocol. For
each model and metric, results are reported as the mean and 95% confidence interval (95%
CI) estimated across folds using a t-based interval (df = 4). For the C-index, pairwise
comparisons between two models were conducted using paired t-tests on fold-wise scores,
and overall differences among multiple models were assessed using one-way repeated-
measures ANOVA across folds. The same fold-wise procedure was applied to the IBS and
IPCW-MAE. On the independent external cohort, we report point estimates obtained from
the model selected by validation performance to characterize generalization.

Kaplan–Meier survival analysis was used to estimate survival probabilities, and
log-rank tests were employed to assess statistical differences between risk groups [25].
Multivariate Cox regression analysis was conducted to identify independent variables
significantly associated with overall survival.

All statistical tests were two-sided, and a p-value < 0.05 was considered statisti-
cally significant.

3. Results
3.1. Comparative Study of Input Stragety in Macro-Micro Encoding

To systematically evaluate the impact of different input configurations on survival
prediction performance and to identify the optimal settings for DuXplore, we conducted
a series of comparative input strategy experiments in both the Macro-Branch and Micro-
Branch components.

In the Macro-Encoding module, we compared two patch sizes—150 × 150 and
224 × 224—for constructing multi-channel tissue structure maps. Under identical net-
work architectures and training setups, all images were converted into 8-channel structural
maps based on dominant tissue categories and fed into the ResNet backbone for Cox-based
survival modeling. As shown in Figure 4A, the 224 × 224 configuration achieved a signifi-
cantly higher average C-index of 0.717 [95% CI: 0.692–0.741], compared to 0.686 [95% CI:
0.649–0.724] for the 150 × 150 setting (p < 0.05). These results suggest that larger patch sizes
help better capture structural topology and improve the model’s discriminative ability in
survival risk prediction.

 
Figure 4. Encoding-Strategy Sampling. (A) Comparison of Macro Branch Strategies under five-
fold cross-validation; (B) Macro Branch Strategies under five-fold cross-validation. **: p < 0.01,
***: p < 0.001, ****: p < 0.0001.

For the Micro-Encoding module, we systematically evaluated the effect of patch
sampling strategy and patch quantity on model performance. Using the TCGA cohort,
we designed three sampling strategies: Global Random Sampling (Random), Tumor-Only
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Sampling, and Category-Based Sampling. Each was tested under four sampling sizes: 8, 16,
27, and 36 patches per patient. As illustrated in Figure 4B, the Category-Based strategy with
27 patches yielded the best performance, achieving an average C-index of 0.710 [95% CI:
0.682–0.737], consistently outperforming other settings. In contrast, Random and Tumor-
Only strategies exhibited higher performance variability and significantly lower C-indices
(p < 0.001).

Based on these results, we selected the Macro-Branch configuration using 224 × 224
structural patches and the Micro-Branch configuration using 27 category-guided patches as
the optimal input settings for the final DuXplore framework.

3.2. Performance of DuXplore

DuXplore was implemented using its optimal input configuration, consisting of the
MTOP constructed with 224 × 224-sized patches and the FST composed of 27 category-
guided patches. By integrating multi-scale information within a unified feature space,
DuXplore generates patient-level prognostic risk scores for tumor outcome assessment.

We compared the prognostic performance of three model architectures under their
respective optimal input settings. As shown in Figure 5A, DuXplore consistently achieved
the highest C-index across all cross-validation folds, with an average of 0.764 [95% CI:
0.746–0.782], significantly outperforming both the Macro branch (average C-index = 0.717)
and Micro branch (average C-index = 0.710) (p < 0.01). These experiments were conducted
on the TCGA cohort.

Figure 5. Performance of the DuXplore (A) Comparison of the three model architectures under
five-fold cross-validation; (B) Kaplan–Meier survival analysis of high- and low-risk groups in TCGA
cohort, stratified by the median PaTRS score; (C) Kaplan–Meier survival analysis on the exter-
nal EHBH cohort without modifying the parameters. Shaded areas in panels (B,C) represent the
confidence intervals of the survival curves. **: p < 0.01.

To evaluate generalizability, we directly transferred the trained DuXplore model to
the independent EHBH cohort without any fine-tuning. The model achieved a C-index of
0.713 on EHBH, confirming its robust performance.

We further conducted Kaplan–Meier survival analysis based on the DuXplore-
generated PaTRS scores. Patients in each cohort were stratified into high-risk and low-risk
groups according to the median PaTRS score. In TCGA cohort, patients in the high-risk
group had significantly worse survival outcomes compared to the low-risk group (p < 0.001,
Figure 5B). A consistent trend was observed in the independent EHBH cohort, where the
high-risk group also exhibited significantly poorer survival (p < 0.001, Figure 5C).

To assess the clinical relevance of PaTRS, we performed univariate and multivariate
Cox regression analyses on the TCGA cohort. In univariate analysis, both PaTRS (p < 0.001,
HR = 3.87, 95% CI: 2.513–5.959) and T stage (T3/T4) were significantly associated with
worse survival. In multivariate Cox analysis including clinical covariates such as TNM
stage, gender, and race, only PaTRS remained statistically significant (p < 0.001, HR = 3.877,
95% CI: 2.386–6.302), suggesting it serves as an independent prognostic factor.
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Similarly, in the EHBH external validation cohort, PaTRS maintained its statistical
significance in both univariate (p < 0.001, HR = 3.097, 95% CI: 1.687–5.686) and multivariate
analysis (p < 0.001, HR = 3.284, 95% CI: 1.735–6.216). Other clinical factors, such as age,
gender, hepatitis status, antiviral treatment, smoking, alcohol consumption, and diabetes
history, showed no statistical significance. Detailed results are presented in Tables S1–S4.

3.3. Comparative Evaluation with Other Survival Models

We further compared DuXplore with four representative deep learning survival mod-
els, DeepSurv, CLAM, TransMIL, and PathFinder, to evaluate relative performance across
different modeling paradigms. As shown in Table 1, DuXplore achieved the highest dis-
crimination on the TCGA cohort, with a mean C-index of 0.764 [95% CI: 0.746–0.782],
exceeding all baseline approaches. PathFinder and TransMIL followed closely, reaching
0.752 [0.734–0.770] and 0.739 [0.721–0.757], respectively. In terms of calibration and absolute
error, TransMIL obtained the lowest Integrated Brier Score (0.149 [0.143–0.155]), while
PathFinder recorded the smallest IPCW-MAE (0.220 [0.210–0.230]). DuXplore yielded
comparable scores (IBS = 0.152 [0.146–0.158], IPCW-MAE = 0.223 [0.213–0.233]), indicating
balanced performance across all evaluation metrics.

Table 1. Performance comparison of survival models on the TCGA cohort.

Model C-Index IBS IPCW-MAE

DeepSurv 0.684[0.666–0.702] 0.174[0.167–0.181] 0.252[0.238–0.266]
CLAM 0.719[0.701–0.737] 0.161[0.154–0.168] 0.239[0.227–0.251]

TransMIL 0.739[0.721–0.757] 0.149[0.143–0.155] 0.232[0.221–0.244]
PathFinder 0.752[0.734–0.770] 0.151[0.145–0.157] 0.219[0.211–0.231]

DuXplore (Proposed) 0.764[0.746–0.782] 0.152[0.146–0.158] 0.223[0.213–0.233]
Values in brackets indicate the 95% confidence intervals. Bold values denote the best performance for each metric.

When tested on the independent EHBH cohort (Table 2), DuXplore maintained the
strongest overall discrimination with a C-index of 0.718, outperforming PathFinder (0.709)
and TransMIL (0.702). It also achieved the lowest IPCW-MAE (0.226), reflecting accurate
time-to-event estimation on unseen data. The Integrated Brier Score remained competitive
(0.159), slightly above that of TransMIL (0.156) and PathFinder (0.157).

Table 2. Performance comparison of survival models on the EHBH cohort.

Model C-Index IBS IPCW-MAE

DeepSurv 0.662 0.182 0.260
CLAM 0.689 0.168 0.244

TransMIL 0.702 0.156 0.236
PathFinder 0.709 0.157 0.231

DuXplore (Proposed) 0.718 0.159 0.226
The external validation set adopts point estimation. Bold values denote the best performance for each metric.

3.4. Explanation in Macro and Micro Branch

OSM visualization revealed distinct responses of Macro-Net across different tissue
regions: Necrotic areas consistently exhibited strong high-risk signals, while fibrosis at
tumor margins primarily contributed low risk, and fibrosis within the tumor core emerged
as high-risk zones (see Figure 6). This phenomenon suggests that central and peripheral
fibrosis may exert opposing prognostic effects.
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Figure 6. Explanation of Macro Branch. Each whole slide image (WSI) is presented in three formats:
the original WSI (left), the global segmentation map (middle), and the merged image of OSM and the
global segmentation map (right). The first row of images displays risk zones based on necrotic area
distribution (indicated by black banded curves). The second row highlights the prognostic significance
of intra-tumoral fibrosis (green banded curves). The third row demonstrates the prognostic value
of tumor margin fibrosis, contrasting with intra-tumoral fibrosis (red banded curves). High-risk
(masked in red) and low-risk (masked in blue).

Building on this, we quantified and incorporated only three predefined structural
parameters into Cox multivariate regression within the EHBH dataset: N-ratio, FIB-edge,
and FIB-center. The effect directions of the analysis results were consistent with visual
observations (see Table 3): both N-ratio and FIB-center showed positive associations with
poor outcomes, while FIB-edge demonstrated a protective association with better outcomes
(HR < 1). In summary, Macro-Net not only highlights key regions associated with prognosis
in OSM but also provides statistical validation through the aforementioned reproducible
macrostructural indicators.

Table 3. Multivariable Cox for Structure parameter.

Covariate Coef Se_Coef HR Cl_Lower Cl_Upper p_Value

N-Ratio 0.2430 0.1001 1.2751 1.0480 1.5514 0.0152
FIB-Center 1.4127 0.6028 4.1070 1.2600 13.3863 0.0191
FIB-Edge −0.2477 0.1097 0.7806 0.6295 0.9679 0.0240

To validate the interpretability of risk assessments generated by the Micro branch,
we focused our analysis on nuclear morphology. Utilizing CellProfiler, we extracted
quantifiable nuclear-level features to reveal the discriminative basis of the Micro branch.
Specifically, we sampled tissue sections from patients in the top 10% and bottom 10% of
MiTRS scores and extracted 732 nuclear morphological features spanning dimensions such
as size, shape, texture, and staining intensity. We then applied a dual-criterion feature
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selection process: First, Lasso regression was applied for feature dimensionality reduction,
identifying candidate factors most correlated with risk scores (Figure 7A). Second, Mann–
Whitney U tests compared distribution differences between high- and low-risk groups
to identify significantly differential features. Finally, the intersection of these two steps
yielded key features satisfying both “correlation with scores” and “significant intergroup
differences” (Figure 7B).

 

Figure 7. Explanation of Micro Branch (A) The names and coefficients of the most significant
measurements that correlated with TiRS after lasso; (B) Inter-group differences and the intersection
features of lasso-related vectors. * p < 0.05; ** p < 0.01; *** p < 0.001.

Results indicate the most representative measurements include maximum staining
intensity of cell nuclei, median variance of grayscale co-occurrence matrix (GLCM) for



Diagnostics 2025, 15, 2981 13 of 17

nuclear texture, median of GLCM second-order moments, and standard deviation of the
ratio between nuclear area and bounding rectangle area. In other words, nuclei in high-risk
sections exhibit higher staining intensity, more pronounced textural irregularities and
granularity, and greater morphological variability; conversely, low-risk sections demon-
strate textural orderliness and consistent nuclear morphology. Representative visualization
panels illustrating these morphological differences between high- and low-risk regions
have been provided in Supplementary Figure S1.

Collectively, these findings indicate that micro branch captures fine-grained features
consistent with pathological knowledge.

4. Discussion
Although existing prognostic models have formally achieved dual-branch collabora-

tive modeling of structural and fine-grained information, their fine-grained information
selection strategies often fail to comprehensively reflect the complexity of the tumor mi-
croenvironment. This limitation may cause models to overlook critical information when
generalizing to heterogeneous patient populations.

Methodologically, we propose a structure-aware sampling strategy for the micro-
branch within the dual-branch collaborative network to comprehensively capture fine-
grained features of the tumor microenvironment. To determine an appropriate sampling
scale, we conducted a series of comparative experiments using 9, 18, 27, and 36 patches
per case. As shown in Figure 5B, the Category-based strategy consistently outperformed
both Random and Tumor-only sampling across all settings and achieved the best stability
and overall performance under the 27-sample configuration (average C-index = 0.7097,
p < 0.001). Notably, while previous studies typically adopt around 16 patches per case,
our cross-sectional analysis empirically optimized the sampling quantity, revealing that
excessive or insufficient patch numbers both reduce efficiency and stability. These findings
indicate that the proposed structure-aware sampling not only enhances prognostic robust-
ness but also maximizes the utilization efficiency of microenvironment information at an
empirically optimized sampling scale.

To further evaluate the prognostic effectiveness of the proposed framework, we com-
pared DuXplore with four representative deep survival models on both the TCGA and
EHBH cohorts. Across all metrics, DuXplore demonstrated consistently strong discrimi-
nation, achieving the highest C-index on both datasets. On the TCGA cohort, DuXplore
achieved a mean C-index of 0.764 [95% CI: 0.746–0.782], outperforming all baselines, while
TransMIL and PathFinder obtained slightly lower Integrated Brier Score and IPCW-MAE
values, respectively. These performance differences are expected, as the C-index primarily
reflects relative risk ranking, whereas IBS and MAE emphasize calibration and absolute
time estimation. Models with global attention (TransMIL) or explicit topological constraints
(PathFinder) may thus yield better calibration, while DuXplore’s multi-scale, structure-
aware representation enhances ranking discrimination.

On the external EHBH cohort, DuXplore maintained the highest C-index (0.718) and the
lowest IPCW-MAE (0.226), suggesting robust generalization across data distributions. Overall,
these results highlight that integrating structural and semantic priors enables DuXplore to
achieve a favorable balance between discrimination, calibration, and prediction accuracy.

However, despite the encouraging results achieved in predictive performance by the
aforementioned methods, relying solely on performance improvements is insufficient to
support the application of these models in clinical settings. In other words, even if a
model achieves a high C-index, it does not fully demonstrate that the features relied upon
for prediction are intrinsically linked to prognosis [26,27]. Therefore, this study further
conducted a systematic interpretability analysis of both macro and micro branches to reveal
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the key pathological features relied upon by the model during prediction and to assess
whether these features possess biological plausibility.

Structural features reflecting spatial interactions within WSIs were identified as key
correlates for the macro branch’s prognostic modeling. Among these, the distribution of
fibrotic regions appeared to provide informative cues for survival prediction rather than
deterministic effects. Previous studies have similarly reported that fibrotic regions located
within or surrounding tumors exhibit distinct prognostic orientations: those within tumors
tend to correlate with poorer outcomes [28], whereas peri-tumoral fibrosis is generally
associated with a more favorable prognosis [29]. Interestingly, even without explicit
prior knowledge, the network appeared to capture these associations between tissue
organization and prognosis, suggesting that the learned representations may implicitly
encode biologically relevant spatial patterns. In parallel, prognostic indicators such as
necrotic areas remain well-recognized by pathologists, yet their reliable quantification is
still challenging within routine workflows.

By comparing nuclear texture features between high- and low-risk groups in Micro
Branch, we found the model’s decision criteria align closely with traditional pathological
understanding. Specifically, high-risk sections exhibit stronger nuclear staining intensity,
more complex and irregular texture undulations, and greater morphological heterogeneity,
whereas low-risk sections display more ordered texture structures and relatively consistent
nuclear morphology. These features have long been associated with tumor cell malignancy
and invasiveness. Thus, Micro Branch’s focus on these indicators demonstrates that it does
not merely output risk scores as a “black box,” but rather captures biologically meaningful
subtle clues.

In summary, this study represents an innovative methodological advancement in prog-
nostic modeling for primary liver cancer. By introducing a structure-aware sampling strategy
within the micro-branch of our dual-branch synergistic network, we enable the model to
comprehensively capture fine-grained features of the tumor microenvironment while demon-
strating superior and stable performance across multiple sampling scales. Furthermore, the
complementary modeling of macro and micro branches enhances the model’s ability to com-
prehensively characterize both macroscopic tumor structure and local cellular morphology,
achieving performance surpassing either branch alone. Moreover, most features in our dual-
branch model remain readily interpretable for pathologists with relevant expertise. While
our model does not prioritize maximizing accuracy at all costs, it demonstrates remarkable
robustness and generalization when applied to validation samples.

Nevertheless, this study has certain limitations. The current framework focuses solely
on histopathological information without integrating molecular or clinical modalities,
which may restrict its overall generalizability. Moving forward, DuXplore can be naturally
extended into a multimodal learning paradigm that jointly models histology, molecular
profiles, and clinical covariates. Built upon its dual-branch design, additional modules
could be introduced to encode transcriptomic or genomic representations, while clinical
indicators such as AFP level, TNM stage, and vascular invasion could be integrated through
late fusion or attention-based mechanisms. This multimodal extension would enable
complementary information from biological and clinical domains to be leveraged, thereby
improving predictive precision, interpretability, and clinical utility.

Furthermore, although the proposed structure-aware sampling strategy demonstrated
robust advantages in prognostic prediction, its optimal sampling scale and generalizability
require further validation across diverse cancer types and more complex pathological
contexts. Future efforts should therefore focus on constructing multi-center, multi-modal
datasets to comprehensively evaluate the robustness and adaptability of this framework.
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Additionally, refining structure-guided sampling mechanisms may further promote the
clinical translation of prognostic modeling within the precision medicine paradigm.

5. Conclusions
In this work, we present DuXplore, a dual-branch prognostic framework that explicitly

integrates macro-scale tumor architecture with micro-scale tumor-microenvironment inter-
actions through a structure-aware sampling strategy. By empirically optimizing the number
of patches to 27 per case, the micro-branch captures fine-grained morphological cues that
are biologically aligned with established pathological criteria, while the macro-branch
encodes spatial tissue organization that implicitly reflects clinically relevant stromal pat-
terns. Extensive experiments on TCGA and the external EHBH cohort show that DuXplore
achieves state-of-the-art discrimination (C-index 0.764 and 0.718, respectively) and main-
tains robust calibration across data distributions. Interpretability analyses further reveal
that the model’s decisions are driven by histopathological features—fibrotic distribution,
nuclear pleomorphism, and textural heterogeneity—that corroborate expert knowledge,
bridging the gap between predictive power and biological plausibility.

Despite these advances, DuXplore is currently limited to histopathology; incorporation
of genomic, transcriptomic, and clinical covariates constitutes a logical next step. Future
work will extend the dual-branch design to a multimodal paradigm, validate the structure-
aware sampling strategy across multiple cancer types and institutions, and refine guidance
mechanisms for patch selection to accelerate clinical deployment. Collectively, our study
demonstrates that principled integration of structural priors and microenvironmental detail
can yield prognostic models that are not only highly accurate and generalizable but also
interpretable and ready for translation into precision-oncology workflows.
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//www.mdpi.com/article/10.3390/diagnostics15232981/s1, Figure S1: Visualization of morpholog-
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regression; Table S2: TCGA Multivariate Cox regression; Table S3: EHBH Univariate Cox regression;
Table S4: EHBH Multivariate Cox regression.
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Abbreviations
The following abbreviations are used in this manuscript:

MTOP Multi-channel tissue organization probability map
FST Fused Structure Tensor
WSI Whole Slide images
DuXplore Dual explanatory Framework
HCC Hepatocellular carcinoma
TCGA The public cancer Genome Atlas
OS Overall Survival
EHBH Eastern Hepatocellular HCC Dataset
H&E Hematoxylin and Eosin
MaTRS Macro tumor risk scores
MiTRS Micro tumor risk scores
PaTRS Patient level tumor risk scores
GLCM Grayscale co-occurrence matrix
MIL multiple-instance learning
SOTA State-of-the-art
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