
Graph theoretical measures of fast ripples
support the epileptic network hypothesis
Shennan A. Weiss,1,2,3 Tomas Pastore,4 Iren Orosz,5 Daniel Rubinstein,6 Richard Gorniak,7

Zachary Waldman,6 Itzhak Fried,8 Chengyuan Wu,9 Ashwini Sharan,9 Diego Slezak,4

Gregory Worrell,10,11 Jerome Engel Jr,5,10,12,13,14 Michael R. Sperling6 and Richard J. Staba5

The epileptic network hypothesis and epileptogenic zone hypothesis are two theories of ictogenesis. The network hypothesis posits
that coordinated activity among interconnected nodes produces seizures. The epileptogenic zone hypothesis posits that distinct re-
gions are necessary and sufficient for seizure generation. High-frequency oscillations, and particularly fast ripples, are thought to
be biomarkers of the epileptogenic zone. We sought to test these theories by comparing high-frequency oscillation rates and networks
in surgical responders and non-responders, with no appreciable change in seizure frequency or severity, within a retrospective cohort
of 48 patients implanted with stereo-EEG electrodes. We recorded inter-ictal activity during non-rapid eye movement sleep and semi-
automatically detected and quantified high-frequency oscillations. Each electrode contact was localized in normalized coordinates.
We found that the accuracy of seizure onset zone electrode contact classification using high-frequency oscillation rates was not sig-
nificantly different in surgical responders and non-responders, suggesting that in non-responders the epileptogenic zone partially en-
compassed the seizure onset zone(s) (P.0.05). We also found that in the responders, fast ripple on oscillations exhibited a higher
spectral content in the seizure onset zone compared with the non-seizure onset zone (P,1×10−5). By contrast, in the non-
responders, fast ripple had a lower spectral content in the seizure onset zone (P,1×10−5). We constructed two different networks
of fast ripple with a spectral content .350 Hz. The first was a rate–distance network that multiplied the Euclidian distance between
fast ripple-generating contacts by the average rate of fast ripple in the two contacts. The radius of the rate–distance network, which
excluded seizure onset zone nodes, discriminated non-responders, including patients not offered resection or responsive neurostimu-
lation due to diffuse multifocal onsets, with an accuracy of 0.77 [95% confidence interval (CI) 0.56–0.98]. The second fast ripple net-
work was constructed using the mutual information between the timing of the events to measure functional connectivity. For most
non-responders, this network had a longer characteristic path length, lower mean local efficiency in the non-seizure onset zone,
and a higher nodal strength among non-seizure onset zone nodes relative to seizure onset zone nodes. The graphical theoretical mea-
sures from the rate–distance and mutual information networks of 22 non- responsive neurostimulation treated patients was used to
train a support vector machine, which when tested on 13 distinct patients classified non-responders with an accuracy of 0.92 (95%CI
0.75–1). These results indicate patients who do not respond to surgery or those not selected for resection or responsive neurostimula-
tion can be explained by the epileptic network hypothesis that is a decentralized network consisting of widely distributed, hyperexci-
table fast ripple-generating nodes.
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Introduction
Different theoretical frameworks of ictogenesis have been
constructed to understand the mechanisms generating sei-
zures and interpret seizure outcome after therapy to control
or eliminate seizures. Two predominant theories of ictogen-
esis are the epileptogenic zone (EZ) hypothesis1–3 and the
epileptic network hypothesis.4–10 The EZ is defined as ‘the
region that is indispensable for the generation of seizures,
or the area of cortex that is necessary and sufficient for initi-
ating seizures andwhose removal (or disconnection) is neces-
sary for the complete abolition of seizures’.1 The EZ is
inferred retrospectively as the region within the resection
margins in patients with seizure-free outcomes.1,3 The EZ,
for example, might encompass the site of seizure onset (seiz-
ure onset zone or SOZ) or could reside within the SOZ as a
focal MRI lesion, but in either case, the EZ must also be re-
sected to achieve seizure freedom2 (Fig. 1). Several EZs may
exist independently, and in this case, patients are thought to
have a worse outcome from epilepsy surgery.11 Also, the EZ
may be dynamic and new EZs could potentially develop after
a surgery that targeted the initial EZ.12–14

High-frequency oscillations (HFOs) (ripples: 80–250 Hz/
fast ripple FR:250–600 Hz) are considered biomarkers of the
EZ.15,16 FRs are closely linked to epileptogenesis17,18 and in
patients, specific to the SOZ and EZ and rare outside the
EZ.19 By contrast, ripples can be pathologic events,20 but are
important physiologic events in the normal hippocampus21

and other brain areas.19,22 In patient studies that investigate
seizure outcome following epilepsy surgery, the resection of
FR predicts seizure freedom better than ripples.23–29 If regions
generating high rates of FR are not resected or identified,30

seizure freedom is much less likely to be achieved.23–30

However, at the individual patient level, resection of FR sites
does not always predict outcome.30–32 Furthermore, in some
seizure-free patients, sites with high rates of FR do re-
main.30–32 Recently, it has also been suggested that HFOs sites
are functionally connected whichmay be important in predict-
ing response to epilepsy surgery.33–35

In contrast to the EZ hypothesis, the epileptic network hy-
pothesis postulates that epileptogenesis and ictogenesis
might be distributed and connected by functional and struc-
tural brain networks outside the SOZ. The initial area of ap-
parent seizure involvement is not really an onset area,
because ‘onset’ could be expressed in any part of the network
and might even vary from seizure to seizure in each patient
(Fig. 1).4,36 The pragmatic implications of the epileptic net-
work hypothesis have been important in understanding
and predicting the response to focal resection37–39 and re-
sponsive neurostimulation (RNS).3,40–42 In contrast to resec-
tive surgery, RNS electrically modulates part(s) of the
network and exhibits clinical benefits that slowly improve
over time.40–42 The epileptic network hypothesis has been in-
vestigated using graph theory, a mathematical method for
describing both the global and local properties of networks
consisting of nodes connected by edges.43

Structural and functional MRI studies as well as neuro-
physiologic studies using diverse approaches have provided
strong evidence for the epileptic network hypothesis.
Structural MRI studies have shown that patients with focal
epilepsy have significantly lower fractional anisotropy in
most fibre tracts, even those far from the presumed EZ.44

Also distant from the EZ cortical thickness can be de-
creased45 and changes in a structural graph theoretical meas-
ure called node abnormality occur.46 Graph theoretical
measures of the networks characterized by resting-state
fMRI,5,7,9 EEG5,7,9,37,38,47–52 and magnetoencephalogra-
phy53 connectivity are altered in patients with focal epilepsy,
both in the presumed EZ37,38,47,48,50,51 and at distant
sites.49,52–54 Ictal EEG functional connectivity
networks have been constructed using the epileptogenicity
index,8,55–57 and the coherence of the broad band EEG sig-
nal.39,58,59 Studies using the epileptogenicity index have
shown that a greater number of interconnected epileptogenic
regions correlate with lower likelihood for seizure-free out-
come,8,55–57 while studies using broad band coherence
have shown that stronger opposing interactions between
brain areas that lower network synchrony also constrains
seizure spread.59 Furthermore, decreased synchronization
at the time of seizure onset is predictive of good outcome.39

In this study,we evaluated the EZand epileptic networkhy-
potheses using inter-ictal HFOs recorded during non-rapid
eye movement (REM) sleep in surgical patients who re-
sponded to therapy, i.e. had a reduction in seizures after treat-
ment, and patients who had no change in seizure frequency or
severity after treatment (non-responders).Wepostulated if the
EZ hypothesis is correct and FRs are a biomarker of the EZ,
then the classification accuracy of the SOZ using FR should
be lower in non-responders than responders due to discord-
ance between the location of SOZ and EZ. However, if the
epileptic network hypothesis is correct, then the spatial distri-
bution of FR-generating sites and connectivity between these
sites, especially outside the SOZ, should be different between
non-responders and responders. We used multi-site depth
electrode recordings to construct FR networks, graph theory
to characterize the network, and support vector machine
(SVM) learning to predict response to surgery.

Materials and methods
Patients
This retrospective study of diagnostic accuracy utilizing ma-
chine learning used consecutive recordings selected from 19
patients who underwent intracranial monitoring with depth
electrodes between 2014 and 2018 at the University of
California Los Angeles (UCLA) and from 29 patients at the
Thomas Jefferson University (TJU) in 2016–2018 for the pur-
pose of localization of the SOZ. These patients were assigned
to the training and testing sets of this study on the bases of data
availability at the time of analysis and were not randomized.
Patients had pre-surgical MRI for MRI-guided stereotactic
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Figure 1 Illustration of two potential mechanisms accounting for epilepsy surgery failure andHFO and spike biomarkers. (A) In
the EZ hypothesis, the EZ (red) is necessary and sufficient for seizure generation. When the EZ overlaps with the SOZ (green), and the SOZ is
resected, the patient is a surgical responder. However, if the EZ is discordant with the SOZ, and the SOZ is resected instead of the EZ, the patient
will be a surgical non-responder. In the epileptic network hypothesis, the nodes of the epileptic network (black) are connected to each other by
weighted connections. If the SOZ node (green) is the hub and themost strongly connected (red edges) to the other nodes, then resecting the SOZ
node alone will result in a surgical response. In contrast, if the non-SOZ nodes are most strongly connected with each other (red edges), and
weakly connected (blue edges) with the SOZ node, the patient will be a surgical failure if only the SOZ node is resected. (B) Illustration of the HFO
subtypes detected using the topographical analysis method. Each panel includes the iEEG trace (above), the 80–600 Hz band-pass filtered iEEG
(middle), and the corresponding contour lines of isopower in the time-frequency spectrogram (below). Each contour line is shown in blue, groups
of closed-loop contours are in green, open-loop contours are in dark red. Note that sharp-spikes produce HFOs after band-pass filtering but no
closed-loop contours.
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electrode implantation, as well as a post-implant CT scan to
localize the electrodes. All patients provided verbal and writ-
ten consent prior to participating in this research, which was
approved by the UCLA and TJU institutional review boards.
The inclusion criteria were at least one night of intracranial re-
cording at a 2000 Hz sampling rate uninterrupted by seizures
and at least 4 h of inter-ictal non-REM intracranial electro-
encephalogram (iEEG) recordings. One to two days after im-
plantation, for each patient a 10–60 min iEEG recording from
all the depth electrodes that contained large amplitude, delta-
frequency slow waves (i.e. non-REM sleep) was selected for
analysis. Only iEEG that was free of low levels of muscle con-
tamination and other artefacts was selected. Among all pa-
tients enrolled in the research study, recordings that met the
inclusion criteria were available for �60% of the UCLA pa-
tients, and 78% of the TJU patients. At UCLA research re-
cordings were not always performed. No other patients were
excluded on any other basis. The attending neurologist deter-
mined the SOZ from visual inspection of video-EEG during
the patient’s habitual seizures. The SOZ was aggregated
across all these seizures during the entire iEEG evaluation
for each patient and did not include areas of early propaga-
tion. The non-SOZ included all remaining contacts and was
often separated from the SOZ by sub-centimetre distances.

Electrode localization
T1- and T2-weighted MRIs were obtained for each patient,
prior to electrode implantation. FreeSurfer (http://surfer.nmr.
mgh.harvard.edu/) was used on the T1-weighted MRI to con-
struct individual subject brain surfaces and cortical parcella-
tions according to the Desikan–Killiany atlas.60 With the
assistance of a neuroradiologist the Advanced Neuroimaging
Tools61 was used to co-register the post-implantation CT
with the pre-implantation MRI, and the position of each elec-
trode contactwas localized to theDesikan–Killiany atlas. Then
an in-house pipeline (https://github.com/pennmem/neurorad_
pipeline) was used to transform the position of each electrode
contact from individual subject space to an averaged
FreeSurfer space with normalized Montreal Neurological
Institute (MNI) coordinates (defined by the fsaverage brain).

EEG recordings and HFO detection
For each patient, clinical iEEG (0.1–600 Hz; 2000 samples
per second) was recorded from 8 to 16 depth electrodes,
each with 7–15 contacts, using a Nihon-Kohden 256-channel
JE-120 long-term monitoring system (Nihon-Kohden
America, Foothill Ranch, CA, USA). A larger number of elec-
trodes with more contacts were implanted at TJU. The refer-
ence signal used for the recordings performed at UCLA was a
scalp electrode position at Fz in the International 10–20
System. The reference signal used for the TJU recordings
was an electrode in the white matter.

HFOs and sharp-spikeswere detected in the non-REMsleep
iEEG using previously published methods (https://github.com/
shenweiss)29,62–65 implemented in Matlab (Mathworks,

Natick, MA, USA). In brief, the HFO detector reduced muscle
and electrode artefacts in the iEEG recordings using an inde-
pendent component analysis-based algorithm.65 Events were
then detected, quantified and classified in the referential and bi-
polar montage iEEG recordings per contact by utilizing a
Hilbert detector followed by a topographic analysis of each
event29,62,65 (Supplementary Methods). Following automatic
detection of HFO and sharp-spikes, false detections of clear
muscle and mechanical artefact were deleted by visual review
in Micromed Brainquick (Venice, Italy).

Statistics, graph theoreticalmeasures
and SVM
Receiver operating characteristic (ROC) curves were gener-
ated using the perfcurve function in Matlab, and 95% confi-
dence intervals (CIs) were estimated using 1000 boot-strap
replicas. HFO frequency, power and duration values were fit
with generalized linear mixed-effects models (GLMMs) in
Matlab with patient as the random-effects term, and SOZ
and location as fixed-effects predictors. Violin plots that are
like box plots but also show the smoothed probability density
values of the data at different values, were generated in
Matlab. All graph theoretical measures were calculated using
the Brain Connectivity Toolbox (https://sites.google.com/site/
bctnet/)66 (Supplementary Methods). The adjacency matrix
for the distance networks was calculated as the Euclidian dis-
tance (mm) between every electrode contact (i.e. node) using
normalized MNI coordinates. The adjacency matrix for the
rate–distance networks was calculated by the average rate
(/min) of the events recorded by two respective nodes multi-
plied by the Euclidian distance (mm) between these nodes.
The adjacency matrix for the mutual information (MI) net-
works were calculated using event ‘spike trains’ defined by
the onset times of each event and then calculatingMI between
nodes using the adaptive partition using inter-spike intervals
MI estimator.67 We compared the MI values between nodes,
the local efficiency of nodes, and the strength of nodes using
GLMMs with patient as the random-effects term, and SOZ
and responder/non-responder, and the interaction between
SOZ and responder/non-responder as fixed-effects predictors.
Networks were visualized using BrainNet viewer.68 Principal
component analysis (PCA) and Wilcoxon rank-sum tests
were performed in Matlab (Supplementary Methods). The
SVM was trained and tested using Matlab functions fitcsvm
and predict. The model was trained after normalizing the
data and using a Radial Basis Function kernel that was auto-
matically scaled.Wedefined as true positive a patientwhowas
correctly classified as a non-responder by the SVM. Estimates
of the 95% CIs used the binomial method.

Data availability statement
The datasets generated during and/or analysed during the
current study are available from the corresponding author
on reasonable request.
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Results
Patient characteristics
A total of 35 patients withmedically refractory epilepsy were
included in the exploratory portion of the study and 69% of
them were male (Supplementary Table 1). The patients had
diverse aetiologies of their epilepsy (Supplementary
Table 1) with 13 of the 35 who had non-lesional epilepsy
on MRI. Overall, the SOZ was localized to the mesial tem-
poral lobe in 4 patients, lateral temporal lobe in 2, mesial
and lateral temporal lobe in 7, temporal lobe and extra-
temporal areas in 12 and extra-temporal in the remaining
10 (Supplementary Table 1).

A total of 21 of the 35 patients had a resection or thermal
ablation performed, eight patients were implanted with a re-
sponsive neurostimulation device (Neuropace™, RNS), one
patient had resection and RNS, one patient received a vagal
nerve stimulator due tomultifocal seizures, one patient had a
corpus callosotomy due to bilateral multifocal seizure onsets,
two patients were not offered any surgical intervention due
to multifocal seizure onsets and one patient declined RNS
(Supplementary Table 1).

Of the 30 patients who had a resection, ablation, and/or
were implanted with an RNS device 19 had a reduction in
seizures corresponding with Engel Class I though IVa out-
come and were classified as ‘responders’ in this study. Nine
patients had no change in seizure frequency (Engel IVb or
IVc), including one who died of definite sudden unexpected
death in epilepsy (SUDEP) 6 weeks after surgery, and were
classified as ‘non-responders’. Two of the 30 patients
were lost to follow-up prior to 1 year, and these patients
were not classified as responders or non-responders. We sep-
arately examined the four patients who were not offered re-
sective or ablation surgery or RNS due to diffuse multifocal
seizures (Supplementary Table 1).

Differences between surgical
responders and non-responders in
SOZ classification accuracy using
HFO and spike rates
According to the EZ theory, if the EZ and SOZ are discord-
ant, then a resection that targets the SOZ should result in lit-
tle to no improvement in post-operative seizure outcome
(Fig. 1A). We used rates of HFO as a proxy for the
EZ24,26,27,30,31,69,70 to test the hypothesis that there is less
overlap of EZ with the SOZ in non-responders than in re-
sponders. We calculated ROC curves for each HFO subtype
and sharp-spikes (Fig. 1B) rates in classifying the SOZ for
each of the patient cohorts (Fig. 2A–E). Results show the
area under the ROC curve (AUC) for SOZ classification
was not significantly different for the HFO subtypes or
sharp-spikes rates between responders and non-responders
(bootstrapping, n= 1000 surrogates, P. 0.05, Fig. 2B and
C). The responders with a seizure-free outcome had AUCs

for SOZ classification that trended larger than the
non-responders, but only the AUC of FR on spikes (fRonS)
approached significance (P= 0.05, Fig. 2D). In the four pa-
tients with multifocal seizures who did not receive resec-
tion/ablation or a RNS device (i.e. no resection/RNS
group), the AUC for FRs on oscillations (fRonO) and
fRonS trended smaller than in the responders and non-
responders (P= 0.05, Fig. 2E). Since FRs are thought to be
a biomarker of the EZ, these results suggest the EZ overlaps
with the SOZ asmuch in non-responders as it does in respon-
ders, and both groups have greater overlap of EZ with SOZ
than patients with diffuse multifocal seizures.

Classification accuracy for the SOZ has been found to
vary by HFO subtype and neuroanatomic region.71–73 In
the whole brain at high specificities, rates of HFO on spikes
and sharp-spikes were more sensitive for the SOZ than rates
of HFO on oscillations among the 35 patients (P, 0.05,
Fig. 2A). In accord with prior studies,72 we found that sharp-
spike rates were comparable toHFOs for classifying the SOZ
(P. 0.05, Fig. 2A–D). In the non-responders and no resec-
tion/RNS groups, ripples on oscillation (RonO) rates were
equally sensitive compared with HFO on spike rates, but
fRonO rates were less sensitive (P, 0.05, Fig. 2C and D).
When we examined SOZ classification accuracy by neuroa-
natomic region (Supplementary Fig. 1), we found that
HFO and sharp-spike rates trended better in classifying the
SOZ in the frontal lobe neocortex and limbic regions (i.e.
cingulate gyrus, perirhinal gyrus, para-hippocampal gyrus).
In the hippocampus, fRonO rates performed relatively well
for classifying the SOZ, and RonO rates performed at
chance21 (P, 0.05). The lowest SOZ classification accuracy
using the sharp-spike or HFO rates was in the occipital lobe
neocortex.19 Because the EZ does not always equate with the
SOZ,3 these differences in SOZ classification accuracy do
not imply superior accuracy for predicting post-operative
seizure outcome.32

Differences in fast ripple spectral
frequency between surgical
responders and non-responders
Since the HFO rates in the responders and non-responders
classified the SOZ with equal accuracy, we reasoned there
could be a subset of HFO with unique properties that are
more strongly associated with the SOZ. Using a GLMM re-
sults show in the responders, the peak spectral frequency of
fRonO was higher in the SOZ than in the non-SOZ (P, 1×
10−5, Table 1, Fig. 3A). By contrast, in the non-responders,
the peak frequency of fRonO was lower in the SOZ than the
non-SOZ (P, 1× 10−5, Table 1, Fig. 3A). In the no resec-
tion/RNS group there was no difference in fRonO spectral
frequency between the SOZ and non-SOZ (Table 1,
Fig. 3A). fRonS occurred far less often than fRonO and we
did not find significant differences in fRonS peak spectral fre-
quency in the SOZ than non-SOZ for responders or non-
responders (Table 1, Fig. 3B). In the case of the no
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Figure 2 SOZ classification accuracy differences using high-frequency oscillation and spike rates in seizure-free patients,
surgical responders, surgical non-responders, and those not offered surgery. ROC curves for SOZ classification using HFO subtype
and sharp-spike rates for the different patient cohorts, (A) all patients, (B) responders, (C) non-responders, (D) seizure-free responders, (E) no
resection/RNS. rono, ripples on oscillations; rons, ripples on spikes; frono, fast ripples on oscillations; frons, fast ripples on spikes; AUC, area under
the ROC curve. Dashed lines and brackets indicate 95% CIs calculated using bootstrapping (n= 1000 surrogates). The AUC for fRonO trended
lower in the no resection/RNS group (bootstrapping, P= 0.05). The AUC for fRonS trended higher in the seizure-free group compared with
non-responders (bootstrapping, P= 0.05), and was significantly greater than the no resection/RNS group (bootstrapping, P, 0.05).
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resection/RNS group, fRonS peak frequency was significant-
ly higher in the non-SOZ (P,1× 10−5, Table 1, Fig. 3B).

We examined the effects of neuroanatomic location on
fRonO and fRonS frequency in the SOZ and non-SOZ. We
found that in almost all patient groups, neuroanatomic loca-
tion significantly influenced the peak spectral frequency of
fRonO and fRonS (P,1× 10−5, Table 1). Mean fRonO
peak frequency was higher in the SOZ than the non-SOZ
for frontal and temporal lobe neocortex and limbic regions
(Supplementary Fig. 2A). Mean fRonS peak frequency was
higher in the SOZ than the non-SOZ only in the frontal
lobe neocortex (Supplementary Fig. 2B). To determine
whether FRs with a higher spectral frequency was better bio-
markers of the EZ we compared, in the different patient co-
horts, the AUCs for SOZ classification of FR rates. In
calculating these rates, we combined fRonO and fRonS
events (Fig. 3C1) and examined FR events with a peak spec-
tral frequency .350 Hz (Fig. 3C2). We found that the AUC
for SOZ classification with FR. 350 Hz was significantly
higher in the responders as compared with non-responders.
Thus, in non-responders, the SOZ was relatively more
discordant with the EZ at the group level (bootstrapping,
n= 1000 surrogates, P, 0.05).

Next, we examined whether there were differences in rip-
ple peak spectral frequency, HFO power, or duration be-
tween responders and non-responders. GLMMs for these
parameters indicated that ripple on spike (RonS) peak spec-
tral frequency was slightly lower in the SOZ for responders,
but slightly higher in the SOZ for non-responders (P, 1×
10−5, Supplementary Table 2). RonO peak power was
slightly increased in the SOZ for responders, but the effect
size was significantly larger for non-responders (P, 1×
10−5, Supplementary Table 3). RonS peak power was in-
creased in the SOZ of non-responders, but the effect size
was significantly larger for the responders (P,1× 10−5,
Supplementary Table 3). fRonO peak power was slightly de-
creased in the SOZ of responders (P= 0.006) but was in-
creased in the SOZ of non-responders (P,1× 10−5,

Supplementary Table 3). fRonS peak power was significantly
increased in the SOZ of responders (P, 1× 10−5), but not
non-responders (Supplementary Table 3). Regarding HFO
duration, we found no clear effects of the SOZ that were re-
lated to response to surgery (Supplementary Table 4).

Differences in the fast ripple
(.350 Hz) rate–distance networks of
surgical non-responders
Since we found no difference in classification accuracy of the
SOZ using HFO rates between responders and non-
responders, except when using FR. 350 Hz, we considered
whether the spatial distribution of HFO-generating sites,
specifically fRonO and fRonS with peak spectral frequency
.350 Hz, would discriminate responders from non-
responders. For this analysis, we computed the radial dis-
tance of the network formed from electrodes that recorded
at least a single FR. 350 Hz. This measurement was made
in Euclidian space and was independent of neuroanatomical
boundaries and white matter tracts. We selected this criter-
ion because prior research has shown that the occurrence
of one FR can predict seizure recurrence.24,26,69 Since the
no resection/RNS patients were considered non-responders
a priori they were included in the non-responder’s group to
permit binary classification. We excluded non-responder
IO010 because we were unable to characterize the complete
network due to iEEG contamination on 40%of the electrode
contacts. Analysis showed for most patients the radius of the
FR network (Fig. 4B) was larger than the radius of the SOZ
(Figs. 4A and 5A). One outlier was patient 4100 who had no
FRs. 350 Hz. This patient reported an Engel IVb outcome
and underwent prolonged post-operative scalp EEG
monitoring. After withdrawing anti-seizure drugs, no sharp-
waves, spikes or seizures were recorded. Among all the pa-
tients, the radius of SOZ and radius of FR distance networks
performed sub-optimally at classifying non-responders from

Table 1 Results of generalized linear mixed-effects models fitting fRonO frequency in the different patient cohorts

Response variable
Intercept
estimate

Intercept
P-value SOZ estimate

SOZ
P-value Location estimate

Location
P-value d.f.

All patients fRonO
freq

5.556 (5.51 5.60) 0 −0.081 (−0.086 −0.076) 0 0.016 (0.014 0.017) 0 41 168

Responders fRonO
freq

5.470 (5.41 5.52) 0 0.178 (0.170 0.187) 0 0.012 (0.010 0.013) 0 17 619

Non-responders
fRonO freq

5.646 (5.53 5.76) 0 −0.352 (−0.362 −0.343) 0 0.010 (0.008 0.011) 0 15 283

No resection or RNS
fRonO freq

5.523 (5.47 5.58) 0 −0.004 (−0.015 0.008) n.s. 0.014 (0.012 0.017) 0 6022

All patients fRonS freq 5.591 (5.54 5.64) 0 −0.021 (−0.039 −0.003) 0.02 0.009 (0.005 0.012) ,1× 10−5 6302
Responders fRonS freq 5.522 (5.45 5.60) 0 0.005 (−0.024 0.030) n.s. 0.0175 (0.013 0.023) 0 2430
Non-responders
fRonS freq

5.613 (5.56 5.67) 0 −0.008 (−0.036 0.020) n.s. 0.005 (−0.0005 0.01) n.s. 2649

No resection or RNS
fRonS freq

5.768 (5.69 5.85) 0 −0.097 (−0.14 −0.05) ,1× 10−5 −0.018 (−0.031 −0.005) ,1× 10−3 465

n.s. not significant. The random-effect term was the patient, the fixed effects were the SOZ, and the location of the electrode. Brackets indicate 95% CI.
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responders (Fig. 5A2). In comparison to the responders, the
radius of the SOZ and FR distance networks was larger only
for the non-responders who were not selected for resection/
RNS due to multifocal onsets, or patients with bilateral

SOZ sites who underwent resection and had an Engel IVb/
c outcome (Fig. 5A1).

Since many responders had FR sites outside the SOZ,
which were probably not resected, and there were small

Figure 3 Fast Ripples (FR) with a higher spectral content are better markers of epileptogenic brain regions. Violin plots of FR on
oscillation (fRonO, A) and FR on spike (fRonS, B) peak spectral frequency in the SOZ (red) and non-SOZ (blue) in all patients, responders,
non-responders and patients not offered resection or RNS. Asterisk indicates mean. In the responders, the peak spectral frequency of fRonO was
higher in the SOZ than in the non-SOZ (GLMM, P, 1× 10−5). In the non-responders, the peak spectral frequency of fRonOwas lower in the SOZ
than the non-SOZ (GLMM, P, 1× 10−5). In the no resection/RNS group, fRonS peak spectral frequency was significantly higher in the non-SOZ
(GLMM, P, 1× 10−5). (C, D) ROC curves for seizure onset zone classification using the rate of all fast ripples, including fRonO and fRonS
irrespective of frequency (C), and higher-frequency fast ripples (D, fRonO and fRonS. 350 Hz) for the different patient cohorts. The area under
the ROC curve of FR (.350 Hz) rates was significantly different in responders compared with non-responders (bootstrapping, P, 0.05). Dashed
lines and brackets indicate 95% CIs calculated using bootstrapping (n= 1000 surrogates).
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differences in the spatial distribution of FR-generating sites
between responders and non-responders, weighting the
edges of the distance graphs by the average FR (.350 Hz)
rates from the two electrodes could improve the sensitivity

in discrimination patient’s response to surgery. We con-
structed two rate–distance graphs for the patients. The first
graph included all electrodes with at least one FR
(.350 Hz), while the second graph was a subset of the first

Figure 4 Example of SOZ networks and FR rate–distance networks. Glass brain renderings of the (A) SOZ distance networks and the
(B) FR (.350 Hz) rate–distance networks for three representative responders (top) and two non-responders (bottom). (A) The edge colour
corresponds to the geometric distance (mm) between electrode contacts inside the SOZ. (B) The electrode contacts in the SOZ are coloured red
and those in the non-SOZ yellow. The edge colour corresponds to the geometric distance multiplied by the average FR rate between the two
electrodes. The FR distance networks (not shown) can be inferred from (B) since the node locations are identical, but the edge weights are
calculated as the Euclidian distance between the nodes alone (not shown).
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Figure 5 The radius of FR rate–distance networks classifies non-responders withmoderate accuracy. FR (.350 Hz) rate–distance
network for each patient group and classification accuracy of non-responders (resection non-responders, RNS non-responders and no surgery)
from responders (resection responders, RNS responders). (A) Scatterplot of the radius of the SOZ and the radius of the FR distance network for
the 31 patients. (B) ROC curves of the radius of the SOZ network (black) and radius of the FR network (magenta) for classifying non-responders.
(C) Scatterplot of the log-transformed radius of the FR rate–distance network, and the log-transformed radius of the corresponding non-SOZ
networks. (D) ROC curves of the radius of the FR rate–distance networks (black) and corresponding non-SOZ networks (magenta). After
bootstrapping (n= 1000 surrogates, not shown), the AUC for the FR non-SOZ rate–distance radius was 0.77 (95%CI 0.56–0.98). (E) ROC curves
of the radius of the rate–distance networks of the different biomarkers. (F) ROC curves of the radius of the corresponding non-SOZ networks of
the different biomarkers.
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and included only electrodes in the non-SOZ.We found that
these rate–distance networks, and the radius of these net-
works, performed better at classifying responders with a
smaller radius from non-responders (Figs. 4B and 5B1, B2).
The radius of the rate–distance network constructed from
electrodes in the non-SOZ had an AUC of 0.77 (95% CI
0.56–0.98) for classifying non-responders (Fig. 5B2). To ver-
ify FRs.350 Hzwere superior to otherHFO subtypes in dif-
ferentiating responders from non-responders, we constructed
the same rate–distance networks using all FR as well as other
HFOs. This analysis showed the radius of RonS rate–distance
networks was best in classifying responder from non-
responders but had low sensitivity at high specificities
(Fig. 5B3). In the case of the rate–distance networks for the
non-SOZ, the radius of the rate–distance using FR.

350 Hz performed the best in classifying responders and non-
responders (Fig. 5B4).

Differences in the fast ripple
(.350 Hz) mutual information
networks of surgical non-responders,
and classification of non-responders
using machine learning
Long-range synchronization74 and propagation34 ofHFOs is
known to occur, and we used MI to assess the timing be-
tween FR (.350 Hz) recorded from every pair of electrode
contacts. Constructing FR networks using MI provides a
measure of how much information in the occurrence of FR
at one electrode tells us about FR on another electrode. In
this analysis, we were able to construct FR MI networks in
13 of the 19 responders, and 9 of the 12 non-responders.
In the others, FR events occurred too infrequently. FR net-
works with nodes in the non-SOZ were found in only 11
of the responders and 8 of the non-responders.

Across patients, the topology of FR MI networks was
heterogenous and within the responder and non-responder
cohorts, the topology remained inconsistent (Fig. 6). To
identify network features that distinguished responders
from non-responders we applied GLMMs to MI, local effi-
ciency and nodal strength that accounted for within-patient ef-
fects. We first examined the MI between SOZ:SOZ, SOZ:
non-SOZ and non-SOZ:non-SOZ nodes (Fig. 7B). We found
a trend that the MI value of the edge depended on whether
the respective nodes were in the SOZ (P= 0.09), but no differ-
ence between responders and non-responders (Supplementary
Table 5). Our first global measure, the characteristic path
length, which is the average shortest path length in the cor-
relational FR MI network, was longer in some non-
responders (e.g. see 4110 in Fig. 6), but some responders
also exhibited a long path length too (e.g. see 4145 in
Fig. 6, Wilcoxon rank-sum test, P= 0.18, n= 8 and 11,
Fig. 7A, Supplementary Fig. 3).

We next calculated the local efficiency, which is the inverse
shortest path length in the network computed on the neigh-
bourhood of the node, for all the connected nodes for each

patient (Fig. 7C). We found a trend that the local efficiency
is affected by whether the node was in the SOZ (P= 0.12,
Supplementary Table 5), and the patient’s status as a re-
sponder/non-responder (P= 0.10, Supplementary Table 5).
Our second global measure, the mean local efficiency of
the non-SOZ nodes, was increased in many responders com-
pared with non-responders (rank-sum, P= 0.08, Fig. 7A,
Supplementary Fig. 3).

We next examined the nodal strength for all the connected
nodes in all the patients (Fig. 7D).We found that the location

Figure 6 Examples of FR mutual information networks.
Glass brain renderings of the FR (.350 Hz) mutual information
networks defined by mutual information between fast ripple ‘spike
trains’ recorded from paired electrode contacts. Nodes in the SOZ
are coloured red, nodes in the non-SOZ are coloured yellow. The
size of the node corresponds to the node strength. The edge colour
corresponds to the mutual information value between nodes.
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Figure 7 Graph theoretical measures of the fast ripple MI networks improve the discrimination of non-responders. (A) 3D
scatter plot of the FR (.350 Hz) MI global graph theoretical measures (three univariate Wilcoxon rank-sum tests, P. 0.05). (B) Violin plot of MI
computed for SOZ–SOZ edges (red), SOZ–NSOZ edges (green), NSOZ–NSOZ edges (blue) across all the responder and non-responder
patients (GLMM, P. 0.05). (C) Local efficiency of SOZ (red) and NSOZ (blue) nodes across responder and non-responder patients (GLMM, P.
0.05). (D) Nodal strength of SOZ (red) andNSOZ (blue) nodes across responder and non-responder patients. The location of the node within the
SOZ significantly influenced nodal strength (GLMM, P, 0.05), (E, F) 3D scatter plots of the PC scores derived from PCA of the three global
measures (A) from all the patients in the training set (E) and combined exploratory and test set (F). The PC2 score was significantly different in the
responders compared with non-responders for the training set (rank-sum, P= 0.03) and the combined exploratory and test set patients
(rank-sum, P= 0.01). However, only in the latter group did the effect survive after Bonferroni–Holm correction. The PC1 and PC3 scores were
not significantly different rank-sum, P. 0.05). (G,H, blue) The ROC curve for non-responder classification in the exploratory dataset (G, n= 19
responders, n= 11 non-responders/no resection or RNS) and in the test dataset (H, n= 9 responders, 4 non-responders/no resection or RNS) by
the SVM-1 trained using the SOZ, and FR (.350 Hz) distance, rate–distance and threeMI global metric predictors derived from all the exploratory
dataset patients. (G, H, red) The ROC curve for non-responder classification using SVM-2 in the exploratory (n= 12 responders, n= 10
non-responders/no resection or RNS) and test set patients (H, n= 9 responders, 4 non-responders/no resection or RNS). SVM-2 excluded RNS
implant only patients in the exploratory dataset prior to training and testing. AUC: area under the ROC curve.
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of the node within the SOZ significantly influenced nodal
strength (P, 0.05, Supplementary Table 5), and that the
interaction of the location of the node within the SOZ and
the patient’s status as a responder/non-responder trended to-
wards significance (P= 0.12, Supplementary Table 5). We
computed our third global measure, the difference in nodal
strength among summed non-SOZ nodes relative to SOZ
nodes and found that it appeared to vary in several of the re-
sponders relative to non-responders (rank-sum, P= 0.60,
Fig. 7A, Supplementary Fig. 3). None of these three global
measures calculated using the other HFO types, including all
FR irrespective of frequency, could visibly cluster surgical re-
sponders away from non-responders (Supplementary Fig. 4).

To account for the variability in the topology of the FR
networks we sought to combine the three global measures.
A SVM is trained by constructing a hyperplane of the multi-
dimensional data for classification purposes,75 to test if the
three measures would contribute to an accurate hyperplane,
we applied PCA to the three global measures (Fig. 7E). The
scores of principal component 1 (PC1) were not significantly
different between responders and non-responders (rank-
sum, P= 0.35), but PC2 scores were significantly different
(rank-sum, P= 0.03), and PC3 scores trended towards sig-
nificance (rank-sum, P= 0.101). However, after multiple
comparison correction (Bonferroni–Holm, six comparisons,
family-wise error rate α= 0.05), the difference in PC2 scores
did not meet significance. To further test if FR MI network
measures differ in responders and non-responders, the dis-
tinct test set of 13 patients (Supplementary Table 6) was
combined with the exploratory dataset for the PCA calcula-
tion. In this case, the PC2 score differences between respon-
ders and non-responders increased in significance (rank-sum,
P= 0.01, n= 12 and 20, Fig. 7F) and survived after multiple
comparison correction (Bonferroni–Holm, three compari-
sons, family-wise error rate α= 0.05). Thus, the variance
in the three global FR (.350 Hz) MI network measures
combined explained by PC2 indicate that the three mea-
sures would serve as useful factors for the SVM to construct
an accurate hyperplane. As a control, we applied the PCA
analysis to the FR MI networks constructed using FR irre-
spective of frequency in the combined exploratory and
test sets. In this case, for the three PCs, values did not differ
between responders and non-responders (rank-sum P.

0.05, Supplementary Fig. 5).
We next trained the SVM using the three global mea-

sures of the FR (.350 Hz) MI networks, as well as the dis-
tance, rate–distance radii calculated in the exploratory
dataset patients only. The trained SVM was tested to clas-
sify non-responders from responders in the distinct test of
13 patients who had resection, unilateral RNS, or were
not deemed resection/RNS candidates due to multifocal
seizures (Supplementary Table 6). We first tested the accur-
acy of the trained SVM on the patients in the exploratory
dataset (Fig. 7G, Supplementary Table 7). We included
SOZ node radius in the SVM, because we also sought to
identify patients not offered surgery based on iEEG moni-
toring. The false-negative patient 4100 was excluded from

the training set. We found that the SVM (SVM-1) could
classify the non-responders in the training set with 99% ac-
curacy (Fig. 7G, Supplementary Table 7). However, in the
test dataset, the sensitivity of SVM-1 using a threshold
SVM score of 0.5 was 0.25 (95% CI 0.05–0.53), the speci-
ficity was 1.0 (95% CI 0.75–1.0), the positive predictive
value (PPV) was 1.0 (95%CI 0.75–1), the negative predict-
ive value (NPV) was 0.75 (95% CI 0.39–0.91) and the ac-
curacy was 0.77 (95% CI 0.55–0.98) (Supplementary
Tables 6 and 8). Since the sensitivity of SVM-1 was low,
and all but one of the RNS patients was classified as a re-
sponder, we hypothesized that excluding the patients treated
with RNS alone from the training set would improve the sen-
sitivity of classifying of non-responders in the test set
(Fig. 7F). This SVM (SVM-2), which may have limited gener-
alizability because it excluded patients in the training set,
classified non-responders in the test set with a sensitivity of
0.75 (95% CI 0.39–0.9), a specificity of 1.0 (95% CI 0.75–
1), a PPV of 1.0 (95% CI 0.75–1), a NPV of 0.9 (95% CI
0.75–1) and accuracy of 0.92 (95% CI 0.75–1) at a score
threshold of 0.5 (Fig 7F, Supplementary Tables 6 and 8).
We also calculated ROC curves of non-responder classifica-
tion in the test set by the SVMs at variable threshold scores
(Fig. 7H). In this case, the AUC for correct classification for
SVM-1 and SVM-2 was 0.944 and 0.778, respectively.

Discussion
Substantial evidence has accumulated supporting the epileptic
network hypothesis in epileptogenesis and ictogenesis,4–10 but
the neurophysiological mechanisms that underlie these net-
works are not well understood, particularly in the context
of prior established frameworks.76,77 Using bilateral invasive
EEG recordings in a large and diverse cohort, we provide evi-
dence that shows in patients without post-operative reduction
in seizure frequency or in patients deemed poor candidates for
resection or RNS, FR can form a decentralized network con-
sisting of widespread, hyperexcitable FR-generating nodes.
FR networks are believed to be a mechanism for ictogenesis
and our results imply that an FR network could continue to
generate seizures even after a portion of the network was re-
moved or disconnected, though in thiswork, we did not quan-
tify the resection volume. These results also suggest that in
patients who are seizure free, epileptogenic regions that
meet the criteria of an EZ might also be a focal FR network
where critical hubs have been removed but some remote sites
remain (Fig. 1A). In support of this notion intraoperative re-
cordings of staged resections have shown that FR sites present
in the initial recording, disappear in subsequent recording fol-
lowing a resection of the presumed hubs of the FR network.26

In contrast to the numerous studies investigating FR as a
biomarker of the EZ in post-operative seizure-free patients,
we postulated that a corollary of the EZ hypothesis is a larger
discordance between FR-generating sites and the SOZ(s) in
non-responders (Fig. 1A), which does not necessitate a single
EZ region.We found ripple and FR rates are equally accurate
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for defining the SOZ(s) in seizure-free responders, all re-
sponders, and non-responders, suggesting that at least a
portion of the putative EZ was resected or disconnected
in the non-responders. The EZ theory states that the EZ
is indispensable for seizure generation,1,2 so it is unexpect-
ed that patients would not experience some reduction in
seizure frequency after surgery. However, in support of
the EZ hypothesis, the rate of FR (.350 Hz) and fRonS
in seizure-free patients was better in classifying the SOZ
in responders than non-responders, suggesting that the
SOZ may have been more discordant with the EZ in the
non-responders at the group level.

Our findings add to a growing literature that has used the
epileptic network hypothesis and graph theory4–10 to under-
stand epileptogenesis18,20 and ictogenesis.78–80 Prior studies
examining static and dynamic correlational iEEG networks
in epilepsy surgery patients have been critical of the utility
of using HFOs for improving epilepsy outcomes,37,38,81 but
our study demonstrates the feasibility and utility of con-
structing FR networks that could also improve seizure out-
come. Thus, it is important to understand the mechanisms
responsible for FR networks and how to localize these net-
works to help plan epilepsy surgery.82,83

Neurophysiological mechanisms
underlying fast ripple networks
The FR rate–distance and MI networks distinguished non-
responders more accurately when FRs, 350 Hz were ex-
cluded. This is because in responders, FRs. 350 Hz were
found more often in the SOZ and in non-responders, they
were found more often in the non-SOZ. Very fast and ultra-
fast ripples with spectral frequency .500 Hz have been
previously reported as specific biomarkers of the EZ.84–86

Modelling studies have shown that FR spectral frequency
is partially determined by the reversal potential of
GABAergic synapses, with a more depolarizing reversal
potential producing higher-frequency FR.87 Our results
suggest including spectral frequency of FR in the analysis,
and ultimately understanding the mechanisms that gener-
ate FR, are important.

In the patients in which FR MI networks could not be
characterized, the classification of non-responders relied en-
tirely on the distance and rate–distance networks. The rate–
distance network is an intuitive measure of the spatial geom-
etry of FR-generating sites weighted by the FR rates, and the
radius gauges how widespread and active the FR-generating
sites are relative to each other. This network does not con-
sider anatomical or functional connectivity between sites.
In contrast, the MI networks used MI to compare FR timing
between sites. This measurement is sensitive to FR synchrony
and propagation, and is thus ameasure of FR functional con-
nectivity. In humans, FR can propagate over short distances
(average of 16 mm) in channels inside the SOZ,34 though
longer distances in FR synchrony are possible.74

Evidence for FR networks during epileptogenesis is found
in the unilateral hippocampal kainic acid model of mesial

temporal lobe epilepsy.88,89 The injected hippocampus
generates FR and other epileptic activity and during delta
EEG rhythms, drives and synchronizes FR in the frontal
neocortex.89 In our study, FRs were detected during
non-REM sleep, and it is possible that coupling with delta
rhythms could similarly drive remote FR and thus contrib-
uted to the MI of FR.

We found that the characteristic path length was some-
times longer in the FR MI networks of non-responders, al-
though the MI values of the individual edges were similar.
While an increase in the number of nodes generating FR
alone could have contributed to the longer path length, we
interpret the difference as an indication of asynchrony be-
tween FR-generating sites in the non-responders. TheMI va-
lues between nodes were too low for the propagation of FR
between nodes to account for the longer path length. Thus,
since the spatial sampling of stereo EEG is intrinsically lim-
ited, an increase in the number of nodes implies an increase
in asynchrony.

We also found that many of the non-responders had a
lower mean local efficiency in the non-SOZ nodes, but a
greater number of high strength non-SOZ nodes relative to
SOZ nodes. These results suggest in the non-SOZ of non-
responders, FR-generating sites were more numerous, more
interconnected, and FRs were more asynchronous than in
the responders.

FRs are thought to be generated by action potentials from
clusters of pathologically interconnected neurons (PIN).18

The PIN cluster hypothesis proposes PIN clusters can act
as internal kindling generators that potentiates synaptic con-
nections in target areas and recruits additional structures.17

Our FR rate–distance andMI networks results are consistent
with this hypothesis and indicate in non-responders, PIN
clusters are widespread. In patients with advanced disease,
one or more PIN clusters may form hubs connected with
modules, which results in greater autonomy and asynchrony
in the FR network, especially outside the SOZ. Alternatively,
if FR networks are a mechanism for inhibitory surround,90–92

then one would expect the strength and extent of the FR net-
work correlates with fewer seizures after surgery, rather than
the current results of no change in seizure frequency.
Moreover, while individual seizures may begin in an ictal
core region smaller than the SOZ,90–94 resecting the core
alone may not consistently reduce seizures if different nodes
of a FR network can generate seizures.

Fast ripple networkmeasures and the
selection and prediction of surgical
treatment and outcome
Few studies have found criteria that identify potential surgi-
cal non-responders based on the pre-surgical iEEG evalu-
ation.14,95–97 RNS is not recommended if more than two
independent SOZs are identified.41 Surgical non-responders
experience substantial morbidity and mortality and re-
present at least 15–20% of epilepsy surgery patients.95,96,98
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If these patients were identified accurately, they could be po-
tentially treated with deep brain stimulation or vagal nerve
stimulation instead of resection, which would reduce mor-
bidity and improve seizure outcome after surgery. We found
that the FR rate–distance networks discriminated non-
responders and patients not offered resection or RNS
withmoderate accuracy. The rate–distance network that in-
cluded only nodes in the non-SOZ performed slightly bet-
ter, perhaps because the SOZ nodes were often at least
partially resected or targeted with RNS. Prior studies have
demonstrated that surgical non-responders, who also failed
a repeat epilepsy surgery, exhibit widespread multifocal
inter-ictal discharges. Also, in these patients, the SOZ iden-
tified in the repeat iEEG evaluation was discontiguous with
the SOZ identified in the initial iEEG evaluation.14,95–97

Like the reported widespread inter-ictal discharges in non-
responders of these previous studies, we found widespread
high-rate FR in non-responders. Also, our interpretation of
a decentralized FR network is consistent with potential
multiple, discontinuous SOZs.

When the SVM was trained using all the responders and
non-responders in the exploratory dataset it accurately clas-
sified the patients in the training set, but its sensitivity for pre-
dicting non-responders in the test set was low. The sensitivity
improved after excluding the RNS patients from the training
set. One potential reason is that the radii of the distance and
rate–distance networks were relatively large for the RNS pa-
tients, who mostly had bilateral SOZs, and all but one was
classified as a responder. Thus, the trained SVM emphasized
radius less in the overall score. In contrast, when the RNS pa-
tients were excluded, the radius was emphasized more in the
score, which was important for identifying the surgical non-
responders in the test set. Based on our data, it is unknown
whether our graph theoretical measures of FR networks
can distinguish RNS non-responders. Future work may
seek to characterize the location of the RNS stimulation con-
tacts relative to the FR network nodes to better understand
and predict the efficacy of neuromodulation.

While we did not explicitly compare the graph-theoretical
measures of RNS patients to those patients not offered resec-
tion/RNS, we found that the radii of the distance and rate–
distance FR networks were typically larger in the patients
not offered resection/RNS. This result indicates that the clin-
ical selection criteria of RNS candidates in our study were re-
flected by differences in the patient’s FR networks.

Our study did not quantify the resected volume because
not every patient had a resection, and we assumed that in
the patients who had resections, at least a portion of the iden-
tified SOZ was resected. A follow-up study could measure
the resected volume and determine how our SVM approach,
in combination with computer-simulated resection,38,39,99

compares with the actual surgery. The SOZ nodes used in
the calculation of the current graph-theoretical metrics could
be substituted with resected nodes in the modified SVM. The
SVM would then be retrained and retested, but if the accur-
acy is sufficient, it could be used prospectively to identify and
possibly reduce the number of surgical non-responders.

Study limitations
An important consideration in this study is the seizure outcome
determined at the time of the last follow-up. Up to 40–50% of
patients who were initially surgical non-responders can show
some improvement at 5 years post-initial operation, but in
many cases, this is after the second epilepsy surgery.95 Also,
we included patients not offered surgery/RNS together in the
non-responder group. Although our analysis demonstrated
similar neurophysiological features between these groups, the
latter could have potentially exhibited a surgical response.
Like all iEEG studies during pre-surgical evaluation, informa-
tion about the SOZ and HFOs is limited to the number and
placement of electrodes, which might not fully characterize
the area that generates seizures and HFOs.

Conclusion
The EZ hypothesis has served as the theoretical foundation
for resective and ablative epilepsy surgery for decades. FRs
have shown promise as a biomarker of the EZ that could be
used as a guide to improve the likelihoodof a seizure-free out-
come.Here,we show that, particularly in patients that do not
benefit from surgery, FR can arrange in a decentralized net-
workwhere individual sites are highly active though relative-
ly desynchronized. Moreover, based on the spatial geometry
of FR activity and graph-theoretical properties of the FR net-
works we could accurately distinguish the patients that
would either not respond to surgery or not be offered resec-
tion/ablation or RNS. Thus, we conclude the EZ hypothesis
is useful for understanding seizure-free outcomes, and the
epileptic network hypothesis can explain patients who do
not respond to surgery. The two hypotheses are not mutually
exclusive, however, as a circumscribed EZ in a responder
could correspond with a small FR network consisting of
hubs in SOZ contacts, and in non-responders, the ‘EZ’ may
be discontiguous with the SOZ. In the future, characterizing
both the rate of FR for defining the EZ and graph theoretical
measures of FR networks could improve the clinical out-
comes of medically refractory epilepsy patients undergoing
pre-surgical evaluation.
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