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Objective: This study aimed to explore the potential of magnetic resonance imaging (MRI)
radiomics-based machine learning to improve assessment and diagnosis of contralateral
Breast Imaging Reporting and Data System (BI-RADS) category 4 lesions in women with
primary breast cancer.

Materials and Methods: A total of 178 contralateral BI-RADS 4 lesions (97 malignant and
81 benign) collected from 178 breast cancer patients were involved in our retrospective
dataset. T1 + C and T2 weighted images were used for radiomics analysis. These lesions
were randomly assigned to the training (n = 124) dataset and an independent testing
dataset (n = 54). A three-dimensional semi-automatic segmentation method was performed
to segment lesions depicted on T2 and T1 + C images, 1,046 radiomic features were
extracted from each segmented region, and a least absolute shrinkage and operator feature
selection method reduced feature dimensionality. Three support vector machine (SVM)
classifiers were trained to build classification models based on the T2, T1 + C, and fusion
image features, respectively. The diagnostic performance of each model was evaluated and
tested using the independent testing dataset. The area under the receiver operating
characteristic curve (AUC) was used as a performance metric.

Results: The T1+C image feature-based model and T2 image feature-based model
yielded AUCs of 0.71 ± 0.07 and 0.69 ± 0.07 respectively, and the difference between
them was not significant (P > 0.05). After fusing T1 + C and T2 imaging features, the
proposed model’s AUC significantly improved to 0.77 ± 0.06 (P < 0.001). The fusion
model yielded an accuracy of 74.1%, which was higher than that of the T1 + C (66.7%)
and T2 (59.3%) image feature-based models.

Conclusion: The MRI radiomics-based machine learning model is a feasible method to
assess contralateral BI-RADS 4 lesions. T2 and T1 + C image features provide
complementary information in discriminating benign and malignant contralateral BI-
RADS 4 lesions.

Keywords: MRI, contralateral breast cancer, radiomics, machine learning, Breast Imaging Reporting and Data
System category 4
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INTRODUCTION

Breast magnetic resonance imagery (MRI) demonstrates a high
sensitivity for contralateral occult malignancies on mammography
or ultrasonography. It is widely used for pre-treatment evaluation,
especially for patients preparing for breast-conserving surgery.
This may be the reason for the higher incidence of contralateral
detection in recent decades. Primary breast cancer patients have
intermediate risk for contralateral malignancies (1, 2). The risk is
2–6 times that of the risk for a woman first developing a breast
cancer (3). Therefore, the likelihood of malignancy for a suspicious
contralateral lesion may be different from that of an ipsilateral
lesion. Moreover, the knowledge of an extra finding changes the
treatment plan and causes more patient anxiety. A precise and
personalized diagnostic strategy should be established for this
unusual situation.

According to the American College of Radiology (ACR)
guidelines, Breast Imaging Reporting and Data System (BI-
RADS) category 5 refers to a malignancy likelihood of 95% or
greater (4) and the positive predictive value of this category is as
high as 97.5% (5); therefore, it is not a major source of
misdiagnosis. However, a lesion classified as BI-RADS category
4 corresponds to a wide likelihood of malignancy, ranging from
2% to 95% (4). Breast MRI is known to be highly sensitive, but
there is significant overlap between the imaging characteristics of
some atypical malignant lesions and other benign lesions (6).
These lesions, whether benign or malignant, could easily be
categorized as BI-RADS 4 and recommended for invasive
biopsy. As the range of positive predictive values for MRI-
guided biopsies (19.5 to 42.7%) shows (6–9), many patients
received unnecessary invasive procedures. By improving
assessment for BI-RADS 4 lesions, benign lesion may be
correctly recognized, and unnecessary biopsy avoided.

Unlike the traditional practice of using medical images solely
for visual interpretation, radiomics transmits digital medical
images into mineable data by extracting abundant quantitative
features from regions of interest. These features contain
comprehensive tumor characterization information, such as
tumor size, shape, intensity, and texture. Radiomics data can
be applied to build descriptive or predictive models that correlate
quantitative image features with phenotypes or gene-protein
markers, potentially assisting in cancer detection/diagnosis,
treatment response prediction, and prognosis assessment.
Previous studies have shown that a radiomics method could
aid in the diagnosis, molecular subtyping, prognosis, and
treatment response prediction for breast cancer patients (10–13).

To improve the assessment of BI-RADS 4 lesions, some
researchers developed prediction models using specific imaging
features or multi-parameter MRI data (14–16). However, these
studies only investigated the traditional imaging features, which
were defined by radiologists subjectively. Whether or how the
radiomics method can be used to predict malignancy for
contralateral BI-RADS 4 lesions has not been explored. The
purpose of this study was to investigate and explore the
possibility of using an MRI radiomics-based machine learning
model to improve the assessment and diagnosis for contralateral
BI-RADS 4 lesions in primary breast cancer patients.
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MATERIAL AND METHODS

Patient Selection
Institutional review board approval was obtained for this study
and the need for informed patient consent was waived due to the
study’s retrospective nature.

A total of 24,588 consecutive pre-treatment breast dynamic
MRI examinations performed between January 2016 and
December 2018 were retrospectively reviewed by our imaging
data system The inclusion criteria were as follows: (a) primary
breast cancer was detected by self-examination, clinical
palpation, or imaging examination; (b) pre-treatment breast
MRI revealed a contralateral BI-RADS 4 lesion, for which the
histopathological subtype was confirmed by surgery or biopsy;
(c) no history of breast cancer.

MRI Acquisition
All breast MRI examinations were performed using a 3.0T (Skyra,
Siemens, Munich, Germany) scanner using a dedicated breast coil
with the patient in a prone position. For each case, there was a fat-
saturated T2-weighted sequence (TR 3,570 ms, TE 69 ms, slice
thickness 5 mm, FOV 360 mm, matrix 384*384), and fat-saturated
T1-weighted dynamic sequences (TR 4.5 ms, TE 1.6 ms, slice
thickness 2.2 mm, FOV 360 mm, matrix 384*384), including one
pre-contrast and five dynamic post-contrast series obtained
following intravenous administration of gadopentetate
dimeglumine (Magnevist, Bayer Health Care, Berlin, Germany),
which was power injected (Spectris Solaris EP, Medrad, Pittsburgh,
PA, USA) at a dose of 0.1 mmol/Kg at a rate of 2 mL/s. A total
volume of 20 mL saline was used to flush the contrast medium.

Pathology
Pathology diagnosis was retrieved from the electronic records at
our institute. The available reports were divided into malignant
and benign categories. Lesions considered to be high risk in
nature (atypical findings, lobular neoplasia, complex sclerosis, or
papillary lesions) were categorized as benign. In cases with mixed
histological features, the most aggressive pattern was used as the
grouping indicator.

Patients’ Grouping
To train and test the classification model, 178 patients were
randomly assigned to a training dataset (n = 124, 70%) and an
independent testing dataset (n = 54, 30%). The basic information
of patients, including age, menopause status, family history of
breast cancer and breast density was compared between the
training and testing datasets. A chi-square test and an
independent sample t test were used for appropriate data type.
All above statistical analyses were performed with IBM SPSS 21.

Diagnostic Scheme Build-Up
The diagnostic schemes based on the T1+C and T2 images were
developed to respectively predict and assess the malignancy
likelihood of suspicious contralateral lesions. Since T1 and T2
images represent different tumor phenotypes, an imaging feature
fusion method was used to combine the T1+C and T2 radiomic
features (Figure 1).
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Three-dimensional (3D) semi-automatic segmentation was
performed on the T1+C and T2 images (17). All center positions
of lesions were first delineated by a radiologist on T1+C and T2
scans. Using the marked lesion center point as the initial seed
point, a 6-connected neighborhood 3D region growing method
was used to roughly segment the lesion boundary. In the region
growing algorithm, a threshold value of 90 was used to compare
voxel value with seed point. Then, a level set algorithm used
geodesic active contouring to refine the lesion boundary. In this
process, a gradient magnitude recursive Gaussian image filter
configured with d of 0.5 was first used to filter the initial ROI
image. The propagation scaling value of 1.0, curvature scaling
value of 0.5, advection scaling value of 1.0, maximum RMS error
value of 0.005, and iteration number of 1,000 were configured to
build the geodesic active contour level set image filter. Finally, a
3D morphological closing operator and a flood-fill algorithm
were applied to fill the small holes in the lesion masks (18).
Figure 2 shows an example of the segmentation result.

Due to the ununified spacing of T1 + C and T2 images
collected from different MRI scanners, a cubic B-spline
interpolation was applied to resample the images. After image
resampling, all the T1 + C and T2 images were standardized to a
spacing of (1 mm, 1 mm, 1 mm). To decode the breast tumor
imaging phenotypes, a radiomic feature analysis method was
applied to characterize the lesion’s imaging features. A total of
Frontiers in Oncology | www.frontiersin.org 3
1,046 radiomic features were extracted from segmented lesions.
Among these features, 258 LoG features were computed using the
Laplacian of Gaussian filter with sigma values of 1, 2, and 3; 688
wavelet features were obtained by filtering the original image with
a wavelet filter; and 14 shape features, 18 histogram features, and
68 texture features were involved. These texture features consisted
of 22 gray-level co-occurrence matrix texture features, 14 gray-
level dependence matrix texture features, 16 gray-level run length
matrix texture features, 16 gray-level size zone matrix texture
features, and 5 neighboring gray-tone difference matrix
texture features.

Before scheme building, each radiomic feature was normalized
by scaling to [0, 1]. A relief feature selection method was used to
remove the low-performance features and reduce the
dimensionality of feature space. To avoid the overfitting
problem in the classifier training/testing process, 10% of the
sample size was empirically selected as the maximum value of
the selected feature number. Then, a least absolute shrinkage and
selection operator (Lasso) feature selection method was used to
choose the optimal imaging features by evaluating the
classification accuracies of our scheme. The penalty term value
of the Lasso feature selector a was set as 0.001. With Lasso, the
higher the alpha parameter, the fewer features selected. For a good
choice of alpha, the Lasso can fully recover the exact set of non-
zero variables using only few observations, provided certain
FIGURE 1 | Flowchart of the proposed radiomics analysis method.
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specific conditions are met. To obtain an optimal alpha, we used a
series of values range from 0.0001 to 1.0 with a step of 0.1 to build
feature selectors. By evaluating the model performance with
different feature selectors, we selected alpha = 0.001 with the
highest model performance as the optimal one. To build a
classification model, a support vector machine (SVM) classifier
configured with a radial basis function (RBF) kernel was trained
and tested using the selected features. To build a fusionmodel, the
T1 + C and T2 image features were merged to build a whole
imaging feature pool. In this process, the initial T1 + C and T2
image features (involving original image feature, LoG image
feature, and wavelet image feature) were squeezed into a feature
sequence to build a fusion feature pool. Figure 3 shows the
workflow of the image feature fusion process. Next, the same
feature selection method and machine-learning classifier were
applied to build a classification model.
Frontiers in Oncology | www.frontiersin.org 4
Performance Evaluation
The AUC values of T1 + C, T2, and fusion schemes were
computed by applying a maximum likelihood-based receiver
operating characteristic (ROC) fitting program (ROCKIT, http://
metz-roc.uchicago.edu/MetzROC/software/, University of
Chicago). The comparison of AUC values was performed
between T1 + C, T2, and the fusion scheme, and p-value was
corrected with the Bonferroni method. All above computation
processes and data analyses were processed in Python 3.6 using a
computer with Intel Core i7-8700 CPU 3.2GHz × 2, 16 GB RAM.
Several open source libraries, including pyradiomics, SimpleITK,
scikit-image, matplotlib, and scikit-learn, were applied in this
study. In the model development and validation process, the
functions in python libraries were configured with the default
parameters. Thus, our proposed model was straightforward and
could be easily applied and/or validated in future studies.
A B C D

FIGURE 2 | An example of the segmentation result. (A) Shows the original T1 + C/T2 image, (B) shows the masks generated by our semi-automatic segmentation
method, (C) shows the final segmentation result, and (D) shows the 3D tumor volume.
FIGURE 3 | The workflow of the image feature fusion process.
TABLE 1 | Basic information for the patient cohort.

Characteristic Training dataset
(N = 124)

Testing dataset
(N = 54)

Total P
valuea

Age (y)
Mean ± SD 49.6 ± 11.44 53.2 ± 11.48 50.7 ± 11.54 0.057b

Range 25–78 28–78 25–78
Menopausal status
Premenopausal 89 32 121 0.117
Postmenopausal 35 22 57
Family history of
breast cancer
Yes 21 8 29 0.827
No 103 46 149
MRI breast density
1 3 2 5 0.150
2 21 16 37
3 86 28 114
4 14 8 22
Oct
ober 2020 | Volum
e 10 | Article 5
aP values were calculated by chi-square test.
bP value was calculated by independent sample t test.
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RESULTS

Patients’ Basic Information
A total of 178 women were recruited for this study. The mean age
was 51 years (range, 25–78 years). Table 1 provides demographic
details for the patient cohort.

Patients underwent breast MRI examination for pretreatment
evaluation (n = 92), problem solving for an equivocal mammogram
or ultrasound finding (n = 73), high-risk screening (n = 5), clinical
symptoms with negative conventional imaging (n = 5), and axillary
metastasis looking for a primary breast cancer (n=3).

Of 97 contralateral malignant lesions, simple mastectomy was
performed on 59 lesions, breast conserving surgery on 16 lesions,
and modified radical mastectomy on eight lesions. The
remaining nine lesions were confirmed by mammography,
ultrasound, or MRI-guided core biopsy because these patients
were undergoing neoadjuvant chemotherapy (NAC). A total of
19 patients received secondary surgery due to underestimation of
biopsy or pathological results during operation.

Of 81 contralateral benign lesions, quadrant resection was
performed on 69 lesions, while simple mastectomy was
performed on five lesions. The remaining seven lesions were
confirmed by biopsy.

Pathological Findings
The pathological distribution of primary lesions was invasive
ductal carcinoma (IDC) in 130 patients, ductal carcinoma in situ
Frontiers in Oncology | www.frontiersin.org 5
(DCIS) in 35 patients, introductal papillary carcinoma in four
patients, mucinous carcinoma in three patients, invasive
micropapillary carcinoma in two patients, encapsulated
papillary carcinoma in two patients, neuroendocrine carcinoma
in one patient, and invasive apocrine carcinoma in one patient.
The average size of primary cancers was 3.4 cm (ranging from
0.3 cm to 9.5 cm). Among the 178 contralateral lesions, 97 were
shown to be malignant, including 40 IDCs, 34 DCISs, nine invasive
lobular carcinomas, six introductal papillary carcinomas, two
mucinous carcinoma, two lobular carcinomas in situ, two
encapsulated papillary carcinomas, one neuroendocrine
carcinoma, and one invasive apocrine carcinoma, for a
malignancy rate of 54.5%. The average size was 3.7 cm (ranging
from 0.6–10 cm). The remaining 81 were classified as
benign, including 45 pure adenoses, 19 intraductal papillomas, 10
sclerosing adenoses, five fibroadenomas, one lobular neoplasia,
and one phyllodes tumor. The average size was 2.05 cm (range,
0.7–7.8 cm).

Radiomics Analysis and Diagnostic
Performance
A total of seven radiomics features, including three wavelet features,
one texture feature, and three LoG features, were selected from the
initial T1 + C imaging feature pool. Five features, including three
wavelet features, and two shape features, were frequently selected
from the initial T2 imaging feature pool. Figure 4 shows the heat
map of the 12 selected imaging features.
FIGURE 4 | Heat map of the selected radiomic features for T1 + C and T2 schemes. Each row of the heat map represents a radiomic feature and each column
represents a patient. Different shades of blue represent different values of radiomic features. The difference in T1 + C feature values between benign and malignant
lesions was slightly more distinct than that of T2 features.
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Table 2 compares the performances of the three machine
learning models. The accuracy and sensitivity scores under two
specificity values, 71.4% and 78.6%, were listed and compared.
The fusion image feature model yielded an accuracy of 74.1%,
which was higher than that of the T1 + C (66.7%) and T2 (59.3%)
image feature models. Meanwhile, the fusion model obtained
sensitivity scores of 76.9% and 65.4% under the specificity values
of 71.4% and 78.6%, respectively, which were higher than the
sensitivity scores of the T1 + C model (65.4% and 30.8%) and T2
model (69.2% and 57.7%).

Figure 5 illustrates the ROC, AUC, and 95% confidence
interval (CI) values of the T1 + C, T2, and fusion schemes,
respectively. Compared with the T2 scheme, the T1 + C scheme
yielded a slightly higher AUC value when tested on the same
dataset (0.71 ± 0.07 vs. 0.69 ± 0.07, P > 0.05). The fusion scheme
generated the best AUC value, 0.77 ± 0.06, which was
significantly higher than the AUCs of the T1 + C and T2
schemes (P < 0.001, <0.05/3).
DISCUSSION

It is important to determine the contralateral situation for a
patient with primary breast cancer. For simultaneous bilateral
Frontiers in Oncology | www.frontiersin.org 6
breast cancer (SBBC) patients, the actuarial survival rates at five
years were lower, and the distant metastasis and unfavorable
disease-specific survival were higher than those of patients with
unilateral cancer (18, 19). In essence, contralateral cancer
detection is a form of high-risk screening. At present, breast
MRI has become the main tool for pre-treatment contralateral
evaluation for recently diagnosed breast cancer patients (20).
Breast MRI depicts occult contralateral disease in 5.5–9.3% of
women with known unilateral breast cancer; 37–48% of these
findings (2–4%) are malignant (20, 21).

Because there are two lesions present in one patient, the
clinical considerations for SBBC are more complicated than
those for unilateral breast cancer. However, detection of
suspicious contralateral lesions is more complicated than
detecting their unilateral counterparts. Previous studies reported
that, compared with primary tumors, contralateral malignant
tumors consist of more DCISs and uncommon pathological
subtypes (22, 23). In this study, we observed a large proportion of
DCIS and many uncommon malignant lesions, such as
encapsulated papillary carcinoma, neuroendocrine carcinoma, and
invasive apocrine carcinoma. These malignant conditions usually
demonstrate atypical MRI features, which partially overlap with
those of some benign lesions (24–27). However, over 55% (45/81) of
benign lesions in this study were proven to be adenoses, which are
benign lesions sometimes demonstrating suspicious features on
breast MRI, but requiring no specific treatment because they pose
a small risk for future cancer development (28). These unusual
conditions, benign or malignant, are easily assigned into the BI-
RADS 4 category and recommended for biopsy in accordance with
ACR BI-RADS guidelines. However, for a patient who has a highly
suspicious lesion in one breast, biopsy for a less-suspicious lesion in
the contralateral breast may be considered time-consuming and
expensive. In this study, 91% (162/178) of our collected patients
skipped biopsy and chose resection directly, and 19 patients received
secondary surgery due to biopsy underestimation or pathological
results during the operation. To help patients and clinicians
choose the most precise treatment plan for an initially detected
suspicious contralateral lesion, a more accurate assessment method
is needed.

Radiomics has proven to be a promising tool for many clinical
purposes. In this study, we first used radiomics to improve the
assessment of contralateral BI-RADS 4 lesions. A total of 1,064
radiomics features were initially extracted from T2 and T1 + C
images. After removing redundant features, only seven features
were ultimately used to build the T1 + C scheme, and five were
used to build the T2 scheme. The selected features of the two
schemes were different, and indicated that T1 + C and T2 images
may represent different phenotypes of breast lesions. T2 images
reflect not only the presence of the tumor tissue, but also peri-
tumor edema (29). A previous study proved that features
extracted from T2 images were associated with the Ki-67 status
(30) and the pathological response to neoadjuvant chemotherapy
in breast cancer (31). The signal hyperintensity of T1 + C images
contains anatomic and vascular information that is crucial for
discriminating benign and malignant lesions. As that the
resolution and slice thickness of T1 + C images are generally
TABLE 2 | Comparisons of classification accuracy and sensitivity scores under
two specificity values generated by three classification models.

Classification
model

Accuracy
(%)

Sensitivity (%)
(Specificity=71.4%)

Sensitivity (%)
(Specificity=78.6%)

T1 + C features 66.7 65.4 30.8
T2 features 59.3 69.2 57.7
Fusion features 74.1 76.9 65.4
T1 + C: T1 weighted image with contrast medium.
FIGURE 5 | Comparison of ROC, AUC, and 95% confidence interval (CI)
values generated using T1 + C, T2, and fusion diagnostic scheme, respectively.
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superior to routine T2 images, features extracted from T1 + C
images were commonly used in most previous studies (10, 12,
13). In the current study, T2 and T1 + C features were used to
build diagnostic schemes, and ROC analysis revealed that the
two schemes generated similar AUC values. After fusing these
two types of imaging features, the prediction performance
significantly improved. These results indicated that T2 and
T1 + C features provide complementary information useful in
discriminating benign and malignant contralateral BI-RADS 4
lesions. In the further studies, both T2 and T1 + C images should
be used for model building.

Radiomics classifiers predict the likelihood of malignancy for
BI-RADS 4 lesions. Ideally, a competent classifier provides a low
probability for a benign lesion, enabling suspension of invasive
procedures in favor of a cautious follow-up, and provides a high
probability for a malignant lesion, ensuring that it will be
recommended for biopsy or surgery and avoiding the need for
a second surgery. In the current study, the fusion scheme
combining T1 + C and T2 features attained a strong AUC
value of 0.77 and an accuracy of 74.1%. Although the fusion
model still requires improvement before it can be used to support
clinical decision-making, the model has demonstrated its
promise. Moreover, this method is objective because it is not
affected by the existence of a primary lesion.

This study had several limitations. First, the number of
patients was relatively small for radiomics analysis. Whether
these samples can sufficiently represent the diverse contralateral
BI-RADS 4 lesion population is unknown. The reproducibility
and robustness of the reported results need to be further
validated with large datasets. This was the main limitation of
this study. The incidence of bilateral breast cancers was relatively
low. However, for the sake of data consistency, we restricted our
collection to patients who were examined using the same
scanner. Second, only T2 and one phase of T1 + C images
were used for radiomic feature extraction. Considering more
inconsistency may be introduced by varying acquisition
parameters and times of DWI and dynamic sequences, ADC
maps and multi-phase contrasted images were not included in
this study. Since the combined radiomics features from DCE-
MRI and ADC data may serve as potential predictor markers
(32), the discriminating efficiency will hopefully be further
improved by adding other types of images for radiomic feature
Frontiers in Oncology | www.frontiersin.org 7
extraction. Third, the boundaries of breast lesions may be
imprecise when only using a 3D semi-automatic segmentation
method. Thus, developing a more accurate and robust
segmentation method is one of our goals for future studies.

In conclusion, the MRI radiomics-based machine learning
model is a feasible tool for contralateral BI-RADS 4 lesion
assessment. T2 and T1 + C features provide complementary
information useful in discriminating benign and malignant
contralateral BI-RADS 4 lesions.
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