
“fnmol-06-00032” — 2013/9/30 — 13:32 — page 1 — #1

REVIEW ARTICLE
published: 02 October 2013

doi: 10.3389/fnmol.2013.00032

Insights on the functional interactions between miRNAs
and copy number variations in the aging brain
Stephan Persengiev, Ivanela Kondova and Ronald Bontrop*

Biomedical Primate Research Center, Rijswijk, Netherlands

Edited by:

Hermona Soreq, The Hebrew
University of Jerusalem, Israel

Reviewed by:

Claudia Bagni, Catholic University of
Leuven, Belgium
Michele Papa, Seconda Università di
Napoli, Italy

*Correspondence:

Ronald Bontrop, Biomedical Primate
Research Center, Lange Kleiweg 139,
2288 GH Rijswijk, Netherlands
e-mail: bontrop@bprc.nl

MicroRNAs (miRNAs) are regulatory genetic elements that coordinate the expression of
thousands of genes and play important roles in brain aging and neurodegeneration. DNA
polymorphisms affecting miRNA biogenesis, dosage, and gene targeting may represent
potentially functional variants. The consequences of single nucleotide polymorphisms
affecting miRNA function were previously demonstrated by both experimental and
computational methods. However, little is known about how copy number variations
(CNVs) influence miRNA metabolism and regulatory networks. We discuss potential
mechanisms of CNVs-mediated effects on miRNA function and regulation that might have
consequences for brain aging. We argue that CNVs, which potentially can alter miRNA
expression, regulation or target gene recognition, are possible functional variants and
should be considered high priority candidates in genotype–phenotype mapping studies
of brain-related disorders.
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INTRODUCTION
The establishment of human cognitive abilities is a gradual
process that takes place mostly in the period between birth
and adulthood, although some developmental processes extend
beyond this period (Sowell et al., 2004; Thompson et al., 2004;
Zhan et al., 2013). During this time window, the brain under-
goes dramatic molecular transformations, which are manifested
both structurally and functionally (de Graaf-Peters and Hadders-
Algra, 2006). Notably, shortly after the brain development is
accomplished, the process of brain aging commences at early
adulthood, which is revealed by the gradual decline of the brain
ability to absorb and process the flow of information (Sow-
ell et al., 2004; Peters et al., 2008; Salthouse, 2009; May, 2011;
Zhan et al., 2013). However, more recent research has revealed
that changes in brain circuits are not exclusively restricted to the
early stages of brain development, and has supported the con-
cept of continuous neuroplasticity throughout live (May, 2011;
Taubert et al., 2012). Novel experience as a result environmen-
tal changes and new learning experience have been recognized
as stimulating factors of brain function and underlying neu-
roanatomic networks. Experiments with animals have showed that
mice living in active environment exhibited a reduced neuronal
age-dependent degeneration and achieved a greater threshold
for age-dependent deficits (Kempermann et al., 2002; Fryer et al.,
2011).

The aging process is confronted by various neuroprotective
mechanisms that are genetically programed and underlie the
dynamics of the brain adaptive responses. The sole purpose of
the multiple cellular and functional events that take place during
brain aging is to maintain neural cells functionality and struc-
tural integrity. In cases where the neuroprotective mechanisms
are overwhelmed by the accumulation of toxic products, the
result is progressive neurodegeneration, as observed in Alzheimer’s

disease (AD), cerebellar ataxias, and Parkinson’s disease (PD). The
neuroprotective mechanisms can be augmented by dietary and
behavioral modifications, but the genetic predisposition to accel-
erated aging is likely to be the main driving factor that triggers and
maintains the advance of neurodegeneration.

miRNA MACHINERY REACTION TO THE BRAIN AGING
Non-coding RNAs and microRNAs (miRNAs) in particular, play
an essential role in the regulation of a number of cell pro-
cesses, including cell proliferation, development, differentiation,
stress responses, blast transformation, and apoptosis. The rapid
accumulation of knowledge in the field of miRNA research has
revealed its role in regulating gene expression at transcriptional
and post-transcriptional levels. Meanwhile, the role of miRNAs
in senescence remains poorly understood. miRNAs regulate sev-
eral pathways associated with the aging mechanisms, and recent
genome-wide analysis of miRNA expression revealed age-related
changes in their expression level (Kosik, 2006; Krichevsky et al.,
2006; Cogswell et al., 2008; Hebert and De Strooper, 2009). These
data have underscored the significance of miRNA in brain aging
and neurodegeneration.

MicroRNA can affect pathways involved in aging, and miRNA
profiling has shown significant alterations in their expression level.
Importantly, recent data have shown the significance of miRNA
in brain aging and neurodegeneration (Kosik, 2006; Krichevsky
et al., 2006; Cogswell et al., 2008; Hebert and De Strooper, 2009).
The genome-wide expression analysis of miRNAs in aging indi-
viduals revealed a general decline in miRNA levels that was linked
to potential loss of control of genes that regulate the cell cycle pro-
gression and cell differentiation programing (Noren Hooten et al.,
2010). Nine miRNAs (miR-103, miR-107, miR-128, miR-130a,
miR-155, miR-24, miR-221, miR-496, and miR-1538) were identi-
fied to be significantly lower in the peripheral blood mononuclear
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cells of old individuals as compared to the young subjects were
identified in this study.

The ability of miRNAs to regulate oxidative stress and cell death
is displayed in relationship to the growth harmone/insulin-like
growth factor (GH/IGF) pathway and several AD-related oxida-
tive damaging proteins (Nakasa et al., 2008; Stanczyk et al., 2008;
Wang et al., 2008). Oxidative DNA damage may occur due to free
reactive oxygen species (ROS) binding to nucleic acids and thus
preventing transcription and causing DNA damage (Cooke et al.,
2003). miR-210 and miR-373 inhibit the expression of key DNA
repair proteins following hypoxic stress (Crosby et al., 2009). p53,
a critical factor for maintaining the genome integrity, is activated
by DNA oxidative damage, which is partially due to the miR-29-
induced repression of negative regulators of p53, p85a, and CDC42
(Park et al., 2009).

Apoptosis is an extremely important signaling events influ-
enced by miRNAs, particularly in the context of aging and
age-related diseases. Several members of the miR-34 family partici-
pate in the p53 network, which induces apoptosis, cell cycle arrest,
and senescence (Chang et al., 2007; He et al., 2007). It appears
that activation of apoptosis – through internal or external stim-
uli, leads to repression of miRNAs that would otherwise silence
genes involved in activating the apoptosis cascade. The reciprocal
action, once an apoptotic cascade is activated, is the upregulation
of miRNAs targeting proliferative or cell-survival genes (Wang,
2007). These results illustrate the complexity of miRNA interac-
tions and their contribution to the regulation of programed cell
death mechanisms.

MicroRNAs play a role in the control of brain metabolism and
subsequently the dynamic of miRNA expression levels reflects the
cellular responses to aging progression and deterioration of neu-
ronal functionality. Several miRNAs are selectively expressed in
brain tissues (Landgraf et al., 2007) and the inactivation of miRNA
processing enzyme Dicer was found to lead to rapid degenera-
tion of Purkinje cells (Schaefer et al., 2007). The global signature
of miRNA expression in the adult brain appears to be species-
specific, as shown by several comparative studies carried out on
different species (Lee et al., 2000; Fraser et al., 2005; Berezikov
et al., 2006). Selected miRNAs have been shown to be involved
in AD, spinocerebellar ataxias, PD, and other neurodegenerative
pathologies (Lukiw, 2007, 2012; Cogswell et al., 2008; Nelson et al.,
2008; Persengiev et al., 2012b; Dimmeler and Nicotera, 2013).
Genome-wide screens of miRNAs and ncRNAs in the aging brain
found that miRNA expression is differentially regulated in the
cortex and cerebellum of humans and non-human primates.
This observation is likely to reflect the temporal functional sta-
tus of neuronal activity in the cortex and cerebellum. Despite
the observation for the lack of unifying specific miRNA pattern
associated with the brain aging, the ontological analysis of tar-
geted genes revealed that they represent a relatively conserved
group (Persengiev et al., 2011). Importantly, miR-144 was iden-
tified to be the sole miRNA that was consistently upregulated
in the aging chimp and human cerebellum and cortex (Persen-
giev et al., 2011, 2012a). The mechanism underlying the selective
increase of miR-144 transcripts is unknown at this point, but
indicates that miR-144 might play a coordinating role in the
post-transcriptional suppression of specific genes in the aging

brain. The mechanisms that govern miRNA expression during
brain development and aging are highly structured and largely
unknown. Complex gene expression patterns are regulated at
several levels, including regulation by cis-acting trans-regulatory
factors or regulation on the basis of epigenetic modifications such
as gene methylation and histone modifications that depend on
the genomic landscape. Thus, the adaptive responses of the brain
cells during the aging process, which is reflected by brain phe-
notypic changes and the associated pathologies, will depend on
either the physical presence or accessibility of multiple regulatory
elements.

COPY NUMBER VARIATIONS ASSOCIATED WITH miRNA
GENES AND BRAIN ANOMALIES
Copy number variations (CNVs) in non-coding regions can have
profound effects on human phenotype (Klopocki and Mundlos,
2011). CNVs most common outcome is altering the copy number
of an entire gene that is predisposed to a dosage effect. In a different
scenario, CNVs can result in position effects and cause long-
distance effects as far as 1 Mb from the translocation breakpoints.
CNVs have been associated with several neuropsychiatric disor-
ders, such as autism, schizophrenia, and bipolar disorder (Cook
and Scherer, 2008; Lee and Scherer, 2010). Furthermore, CNVs
have been associated with PD and early onset AD, which support
the possibility of the existence of CNVs-driven mechanism(s) in
PD and AD pathogenesis (Toft and Ross, 2010; McNaughton et al.,
2012).

Copy number variations have an impact on the miRNA-
mediated post-transcription regulatory network as well. miRNAs
preferentially regulate the centers of protein interaction and
metabolic networks (Liang and Li, 2007; Baek et al., 2008) and
CNVs of miRNA genes may fluctuate the dosage balance of sig-
nal transduction pathways, metabolic flux, or protein complexes
(Veitia, 2004; Veitia et al., 2008), leading eventually to individuals
of the same population or different populations having different
susceptibility to diseases. Although a comprehensive investigation
to evaluate the CNV-miRNAs health risks among human popula-
tions is still lacking, recent experimental studies have confirmed
the role of CNV-causing dysregulation of miRNAs in disease
occurrence (Volinia et al., 2010). High-frequency copy number
abnormalities occur in miRNA-containing regions throughout
the genome in a range of human diseases (Zhang et al., 2006;
Guo et al., 2008; Rossi et al., 2008; Wong et al., 2008), which is
associated with altered expression of multiple genes and path-
ways (Reddy et al., 2009; Whitman et al., 2010). Genome-wide
association studies have confirmed such associations for dozens
of protein-coding genes and showed that CNVs capture at least
18% of the total detected genetic variation in gene expression
(Stranger et al., 2007). The expression of miRNA genes is modi-
fied by CNVs and there is a correlation between somatic CNV and
the miRNA levels. Thus, the CNV of functionally relevant miRNAs
can modulate or predispose to certain complex genetic diseases.

Copy number variations are segments of genomic DNA that
are roughly 1 kb to 1 Mb in length that show variable numbers
of copies in the genome due to deletions or duplications and may
cause the impairment of neuronal structures. The co-localization
of all miRNA loci with known CNV regions was analyzed by using
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bioinformatics tools (Marcinkowska et al., 2011). In total, 209 copy
number variable miRNA genes (CNV-miRNAs) in CNV regions
deposited in the Database of Genomic Variations (DGV) have
been identified and validated. Eleven CNV-miRNAs in two sets
of CNVs have been classified as highly polymorphic. The over-
all conclusions from this in silico study were that miRNA loci are
underrepresented in highly polymorphic and well-validated CNV
regions consistent with their essential biological functions. The
potential importance and consequences of the miRNAs presence
in detected CNV regions, however, has been recognized in several
other studies, suggesting that rare CNV-miRNA variants might
have significant functional impact (Morley and Montgomery,
2001; Sebat et al., 2004; McCarroll et al., 2008).

At this stage, little is known about CNV of miRNA genes that
can cause reduced cognitive ability in normal individuals during
aging. miRNA copy number change can cause aberrant miRNA
expression and/or deregulation of their target genes in subjects
with neurodegenerative disorders, intellectual disability, and con-
genital abnormalities. For instance, the potential role of CNVs in
AD has been investigated and identified a number of genes over-
lapped by CNV calls (Heinzen et al., 2010; Swaminathan et al.,
2012a,b). Case-control association revealed several loci containing
CHRFAM7A, RELN, DOPEY2, CSMD1, HNRNPCL1, IMMP2L,
SLC35F2, NRXN1, ERBB4, and HLA-DRA genes that are asso-
ciated with AD. The NRX1 gene has been linked to AD, autism,
and schizophrenia (Szatmari et al., 2007; Latella et al., 2009) and
ERBB4 is likely to play a role in AD progression (Woo et al., 2010).
Overall, there appears that gene duplications and deletions across
AD cohorts might account for the differences in the individual
susceptibility to the neurodegeneration progression.

Copy number variations were established to be a major con-
tributor of the pathology of brain disorders, but almost all studies
have focused on the protein-coding genes present in the CNV
loci, while the impact of miRNAs present in these regions has
been overlooked. In a more recent study the biological and func-
tional significance of miRNAs present in CNV loci and their target
genes has been addressed by using an array of computational tools
(Vaishnavi et al., 2013). The study found that nearly 11% of the
autism-associated CNV loci harbor miRNAs, most of which were
not previously reported to be associated with autism. A systematic
analysis of the CNV-miRNAs based on their interactions with the
target genes enabled the authors to pinpoint 10 miRNAs, miR-590-
3p, miR-944, miR-570, miR-34a, miR-124, miR-548f, miR-429,
miR-200b, miR-195, and miR-497 as core factors. The newly
identified autism-associated miRNAs were predicted to form a
regulatory loop with transcription factors and their downstream
target genes. In addition, miRNAs present in deleted and dupli-
cated CNV loci may explain the difference in dosage of the crucial
autism genes and can also affect core components of miRNA pro-
cessing machinery through negative feedback loops. Interestingly,
the most common genomic disorder in humans, the hemizygous
deletion of a 1.5–3 Mb region of chromosome 22q11.2, which
increases the risk of developing schizophrenia by approximately
25-fold includes DGCR8 miRNA processing gene (Brzustowicz
and Bassett, 2012). The exact mechanism by which this deletion
increases risk is unknown, but the observation strongly sug-
gests that altered miRNAs metabolism may be a factor in the

pathogenesis of schizophrenia. Overall, the findings support a
possible role of copy number change in miRNA expression and
processing with consequences affecting cognition, brain disorders,
and/or CNV-mediated developmental delay.

EFFECTS OF COPY NUMBER VARIATIONS ON miRNA
FUNCTION
Heritable information is transformed into cellular and organismal
functions by the orderly expression of the entire set of genes in
the genome. The complex process of gene expression regulation
functions at several levels can be affected by structural alteration
in the genomic architecture. Variations in the human genome
occur on several levels. Originally, they were described as single-
nucleotide changes within or outside of the coding sequence, or
as microscopically visible alterations (CNVs) that affect parts of
or even entire chromosomes. The effects include regulation in cis
by promoters, enhancers, and repressors; regulation in trans by,
e.g., transcription factors or miRNAs; or regulation on the basis of
epigenetic modification such as DNA methylation. These genomic
segmental differences reflect the dynamic nature of the genome
and are believed to account for a large part of human phenotypic
variability, including the predisposition to disease.

FIGURE 1 | Effect of genomic variations on long-range DNA

interactions between remote regulatory elements and miRNA genes.

(A) DNA looping allows factors associated with distant regulatory
element(s) to bind miRNA consensus sequences and control gene
expression. (B,C) Scenarios that depict the effect of DNA insertions and
deletions on the repositioning of the remote regulatory element(s) and
eventual loss of physiological control mechanism.
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Selected genomic loci have been associated with non-coding
pathogenic CNVs and their associated human disease phenotypes.
CNVs were found to be distributed genome-wide that encom-
pass non-coding sequences, thereby affecting the regulation of
gene expression (Klopocki and Mundlos, 2011). More recently, a
genome-wide scan identified 125 regions in which the same hap-
lotypes are segregating in humans and chimpanzees, all with the
exception of two encompassed non-coding regions (Leffler et al.,
2013). In another study, a systematic search for DNA sequences
missing in humans and present in chimpanzees, revealed that the
identified sequences were almost exclusively from the non-coding
regions of the genome (McLean et al., 2011). In addition, the study
discovered that the absence of the penile bone in humans, which is
present in chimpanzees, macaques, and mice, is due to the loss of a
regulatory element that influences the expression of the androgen
receptor gene. It is likely that these approaches will identify many
more species-specific changes that relate to changes in phenotype.

Polymorphisms in miRNA genes can affect the expression of
many downstream-regulated genes (Georges et al., 2007; Borel and
Antonarakis, 2008). Single nucleotide mutations (SNPs) are most
common form of polymorphism that affects the function of miR-
NAs, e.g., the structure of miRNA precursors, the efficiency of
miRNA biogenesis and miRNA-target recognition. A series of in
silico and experimental studies have revealed many SNPs located
in different parts of miRNA genes (Duan et al., 2007; de Jong et al.,
2013). The occurrence of SNPs in predominantly in the regions
surrounding miRNA-coding elements, while sequences of mature
miRNAs featured as the most conserved (Saunders et al., 2007).
Functional analysis demonstrated that rare mutations naturally
occurring within pre-miRNA sequences affect miRNA biogenesis
and impair miRNA-mediated gene silencing (Duan et al., 2007;
Sun et al., 2009). Recently, large genome-wide association study
has demonstrated that SNPs located outside (>14 kb) of pre-
miRNA sequences can modulate miRNA expression both as cis-
and trans-regulators, as well (Borel et al., 2011). miRNA target
sites are also conserved genetic elements and SNPs with potential

to either disrupt or create new miRNA target sites are underrep-
resented in both experimentally validated and computationally
predicted miRNA target sites (Chen and Rajewsky, 2006; Saunders
et al., 2007; de Jong et al., 2013). Analysis of CNVs in the human
and chimpanzee genomes demonstrates the potentially greater role
of CNVs in evolutionary change than single base-pair sequence
variation (Cheng et al., 2005). Comparisons of the human and
chimpanzee genomes revealed that there are more than twice as
many nucleotides involved in CNVs as there are in changes to
individual nucleotides, 2.7% compared to 1.2%. Furthermore, the
data revealed that while the majority of CNVs were shared between
the human and chimpanzee genomes, approximately one-third of
the CNVs observed in the human genome were unique and there-
fore acquired later in evolution. Additional studies have further
revealed that CNVs are often linked to genetic diseases apparent in
humans (Stankiewicz and Lupski, 2002). However, little is known
about CNVs interactions with miRNAs.

Copy number variations have the propensity to alter the
general organization of the chromatin in the affected chro-
mosome regions that may have significant functional impact.
Recent findings emphasized that nuclear architecture and chro-
matin organization play important role in the regulation of
gene expression (Stankiewicz and Lupski, 2002), and that these
components are essential epigenetic mechanisms for both the
normal physiology as well as in the pathogenesis of a num-
ber of human maladies (Parada et al., 2004a). Portions of DNA,
known as DNA loops, protrude from euchromatic portions of
chromosomes, and the genes on these segments may local-
ize to transcriptionally active chromatin centers that contain
intergenic or intragenic miRNA genes (Osborne et al., 2004).
Chromosome looping that enables remote segments of DNA
from the same chromosome or from different chromosomes
to interact and to modify the expression of distant genes
presents a plausible mechanism that links the global misreg-
ulation of miRNA expression in AD and other neurodegen-
erative diseases to CNVs (Figure 1). As a consequence of

FIGURE 2 | Schematic of chromosome 17 showing the location of miR-144 gene (A); and distribution map of genetic variants identified in

chromosome 17 (B). The location of miR-144 gene is shown and CNVs in its respective genomic region are marked.
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CNV-induced chromatin reorganization, accessibility of miRNA
binding elements within 3′ untranslated region (UTR) of target
genes, miRNA promoters availability, as well as the expression
of long ncRNAs that serve as sponges for miRNAs might be
dramatically altered (Sanyal et al., 2012; Memczak et al., 2013).
CNVs that are in close proximity of these loops may also

trigger recombination and chromatin rearrangements (Parada
et al., 2004b).

Interestingly, the aging-specific miR-144 is located on chro-
mosome 17 in a region reported to be polymorphic, including
several inversions and duplications, according to CNV database
(Figure 2; Table 1). The significance of CNVs in the vicinity

Table 1 | Genomic variations in the vicinity of miR-144 genomic location on chromosome 17 according to the Database for Genomic Variants.

Locus Landmark Variation type Cytoband Position (Mb) Known genes in the locus

chr17:27013684-27014304 chr17:27,013,684..27,014,304 InDel 17q11.2 27.0

chr17:27107800-27123735 chr17:27,107,800..27,123,735 Copy number 17q11.2 27.1

chr17:27,120,270..27,121,891 Copy number 17q11.2 27.1

chr17:27122880-27122983 chr17:27,122,880..27,122,983 InDel 17q11.2 27.1

chr17:27130078-27131878 chr17:27,130,078..27,131,878 Copy number 17q11.2 27.1

chr17:27,130,682..27,131,776 Copy number 17q11.2 27.1

chr17:27130696-27131659 chr17:27,130,930..27,131,420 InDel 17q11.2 27.1

chr17:27,130,738..27,131,656 InDel 17q11.2 27.1

chr17:27,130,736..27,131,659 InDel 17q11.2 27.1

chr17:27,130,696..27,131,638 InDel 17q11.2 27.1

chr17:27245834-27562095 chr17:27,459,989..27,461,612 Copy number 17q11.2 27.5 UTP6

chr17:27,412,804..27,436,507 Copy number 17q11.2 27.4 SUZ12

chr17:27,465,972..27,469,974 Copy number 17q11.2 27.5 LRRC37B

chr17:27,245,834..27,562,095 Copy number 17q11.2 27.2 SH3GL1P1

chr17:27,466,732..27,471,357 Copy number 17q11.2 27.5 ARGFXP2

chr17:27,333,922..27,335,931 Copy number 17q11.2 27.3 RHOT1

chr17:27384860-27385274 chr17:27,384,860..27,385,274 InDel 17q11.2 27.4 LRRC37B

chr17:27460863-27461165 chr17:27,460,863..27,461,165 InDel 17q11.2 27.5

chr17:27614844-27619890 chr17:27,614,844..27,619,890 Copy number 17q11.2 27.6 RHBDL3

chr17:27621887-27622597 chr17:27,621,887..27,622,597 InDel 17q11.2 27.6 RHBDL3

chr17:27627845-27628095 chr17:27,627,845..27,628,095 InDel 17q11.2 27.6 RHBDL3

chr17:27633422-27634030 chr17:27,633,422..27,634,030 InDel 17q11.2 27.6 RHBDL3

chr17:27668824-27669757 chr17:27,668,824..27,669,757 InDel 17q11.2 27.7 RHBDL3

chr17:27,669,594..27,669,594 InDel 17q11.2 27.7

chr17:27788363-27788659 chr17:27,788,363..27,788,659 InDel 17q11.2 27.8

chr17:27837365-27838765 chr17:27,837,365..27,838,765 Copy number 17q11.2 27.8 CDK5R1

chr17:27917975-27917975 chr17:27,917,975..27,917,975 InDel 17q11.2 27.9 MYO1D

chr17:28279105-28280814 chr17:28,279,105..28,280,814 Copy number 17q11.2 28.3 TMEM98

chr17:28341799-28342792 chr17:28,341,799..28,342,792 InDel 17q11.2 28.3

chr17:28501812-28502008 chr17:28,501,828..28,502,008 InDel 17q11.2 28.5 ACCN1

chr17:28,501,812..28,502,002 InDel 17q11.2 28.5

chr17:28620758-28620884 chr17:28,620,758..28,620,884 InDel 17q11.2 28.6 ACCN1

chr17:28630652-28631318 chr17:28,630,652..28,631,318 InDel 17q11.2 28.6 ACCN1

chr17:28643047-28645208 chr17:28,643,047..28,645,208 Copy number 17q11.2 28.6 ACCN1

chr17:28670843-28673962 chr17:28,670,843..28,673,962 Copy number 17q11.2 28.7 ACCN1

chr17:28708062-28708198 chr17:28,708,062..28,708,198 InDel 17q11.2 28.7 ACCN1

chr17:28779244-28781640 chr17:28,779,244..28,781,640 Copy number 17q11.2 28.8 ACCN1

miR-144 gene is encoded on the minus strand and contains two exons on Chr:17q11.2; 23,396,926-27,188,636 locus.

Frontiers in Molecular Neuroscience www.frontiersin.org October 2013 | Volume 6 | Article 32 | 5

http://www.frontiersin.org/Molecular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Molecular_Neuroscience/archive


“fnmol-06-00032” — 2013/9/30 — 13:32 — page 6 — #6

Persengiev et al. mRNAs and CNVs in the aging brain

of miR-144 gene is unclear at this point, but long-range reg-
ulatory chromatin interactions play an important role in gene
regulation. Both intrachromosomal and interchromosomal long-
range associations have been demonstrated, and DNA binding
factors have been implicated in the maintenance of these inter-
actions (Cremer et al., 2000; Branco and Pombo, 2006). Several
distant DNA segments may interact with a single gene and influ-
ence its expression pattern. Monoallelically expressed genes, most
notably imprinted genes, are frequently found to be regulated
by these long-range interactions. In support of this concept,
FLT3-internal tandem duplications (ITDs) on chromosome 13,
an adverse prognostic marker in specific aging individuals, were
found to affect negatively the expression of GATA-3 transcrip-
tion factor and miR-144 (Whitman et al., 2010). Members of
GATA transcription factor family are believed to play a role in the
control miR-144 transcription. GATA-4 transcription factor been
reported to be critical regulator of miR-144 expression and is sup-
posed to be the responsible gene for the congenital heart defects
(CHDs) in the chromosomal 8p23 deletion syndrome, a com-
plex malformation syndrome with clinical symptoms manifested
by facial anomalies, microcephaly, mental retardation, and CHDs
(Guida et al., 2010; Zhang et al., 2010). These findings empha-
size the importance of studying the geography and architecture
of the nucleus as an important factor in the regulation of miRNA
expression.

CONCLUSIONS AND OUTLOOK
The existing CNVs in the human genome cover approximately
360 Mb, or 12% of the human genome, as reported by the
CNV Project database (http://www.sanger.ac.uk/research/areas/
humangenetics/cnv/). CNVs encompass more nucleotide content

per genome than SNPs, underscoring CNVs’significance to genetic
diversity. A genome-wide map of CNVs shows that no region of
the genome is exempt, and that between 6% and 19% of each
individual’s chromosomes exhibit CNVs (Redon et al., 2006).

The mechanisms that operate during the progress of brain aging
and associated neurodegenerative diseases are complex and their
malfunction is rarely due to the failure of a few cell death or neu-
ronal differentiation genes. Because susceptibility to premature
aging and cognitive decline is a result of the malfunction of numer-
ous genes, miRNAs dysregulation that inevitably would alter the
expression of multiple genes might provide the basis for neuronal
cell deterioration.

Multiple factors participate in the control of miRNA expres-
sion. Here, we discuss the emerging role of CNVs in miRNA
regulation and the potential impacts on brain aging and neurode-
generation. Our simple notion is that the long-range interactions
between DNA segments affected by CNVs might directly modify
miRNA expression pattern, and as consequence miRNA-mediated
inhibition of genes that are important for maintaining neu-
ron homeostasis. We argue that CNVs-miRNA interactions are
an important part of increased brain susceptibility to external
and internal stress during the aging process. A more complete
understanding of CNVs effect on the global nuclear geogra-
phy and chromatin organization in the vicinity of miRNA-
encoding regions will allow defining the chromosome regions
that represent risk factors for the brain anomalies. Therefore,
the challenge now is to annotate CNVs, which potentially can
alter miRNA expression and determine whether they are func-
tional variants and should be considered high-priority candi-
dates in genotype–phenotype mapping studies of brain-related
disorders.
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