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Abstract
The chemistry of nitrogen-containing heterocyclic compound pyrrole and pyrrolidine has been a versatile field of study for a 
long time for its diverse biological and medicinal importance. Biomolecules such as chlorophyll, hemoglobin, myoglobin, and 
cytochrome are naturally occurring metal complexes of pyrrole. These metal complexes play a vital role in a living system 
like photosynthesis, oxygen carrier, as well storage, and redox cycling reactions. Apart from this, many medicinal drugs are 
derived from either pyrrole, pyrrolidine, or by its fused analogs. This review mainly focuses on the therapeutic potential of 
pyrrole, pyrrolidine, and its fused analogs, more specifically anticancer, anti-inflammatory, antiviral, and antituberculosis. 
Further, this review summarizes more recent reports on the pyrrole, pyrrolidine analogs, and their biological potential.
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Introduction

Heterocycles are cyclic compounds that have at least one 
different element than carbon, such as sulfur, oxygen, nitro-
gen [1]. These heterocycles have received considerable 
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attention because of their biological and pharmacologi-
cal significance [2–5]. One of the heterocycles, pyrrole, is 
not naturally derived, but its analogs present in co-factors 

and natural products such as vitamin B12, bile pigments: 
bilirubin and biliverdin [6, 7], and the porphyrins of heme, 
chlorophyll, chlorins, bacteriochlorins, and porphyrinogens 

Fig. 1   Naturally derived pyrrole 
analogs
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[8–11]. Pyrrole-containing secondary metabolites such as 
makaluvamine M, ryanodine, rhazinilam, lamellarin, pro-
digiosin, myrmicarin, and sceptrinare also exhibit poten-
tial biological activity [12–19]. Apart from this, pyrrole 
and pyrrolidine analogs have diverse therapeutic applica-
tions like fungicides, antibiotics, anti-inflammatory drugs, 
cholesterol-reducing drugs, anti-tubercular, and antitumor 
agents [20–25]. These are also known to inhibit reverse tran-
scriptase in case of human immune deficiency virus type 
1 (HIV-1) and cellular DNA polymerases protein kinases 
[26, 27]. The combination of different pharmacophore in a 
pyrrole and pyrrolidine ring system has led to more active 
compounds [28–32].

Naturally occurring pyrrole and pyrrolidine 
analogs

In naturally occurring metal complexes heme (1) and chlo-
rophyll (2), four pyrrole rings are linked together to form 
porphyrin and then coordinate with iron and magnesium 
to form respective metal complexes (Fig. 1) [33]. These 
heme groups, surrounding a globin group, produce a tetra-
hedral structure known as hemoglobin, an oxygen carrier 
in animals [34]. Unlike hemoglobin, biomolecule myoglo-
bin traps oxygen within muscle cells for energy production 
required for muscles to contract [35]. An essential biomol-
ecule, vitamin B12, porphyrin, and cobalt metal complex, 
forms through the stable metal–carbon bond and plays a 
vital for proper growth (3 a–d) [36]. Further, the bile pig-
ments (4) are obtained by the decomposition of the por-
phyrins ring. Formation of this yellowish pigment takes 
place in spleen, reticulo endothelial cells of the liver, and 
bone marrow [37]. Another pyrrole analog is ageliferin (5a), 
produced by sponges. First isolated from the caribbean and 
then okinawan marine sponges have potential antibacterial 
properties [38]. Similarly, nargenicin (5b) is isolated from 

Nocardia argeninensis found to be more effective against 
gram-positive bacteria [39] (Fig. 2).

Similarly, pyrrolidine analogs including nicotine (6a), 
scalusamide (6b), bgugaine (6c), D-ribitol (6d), and aegylep-
tolidine (6e) showing diverse biological activities have been 
derived from natural sources and microorganisms [40, 41] 
(Fig. 3).

Pyrrole and pyrrolidine drug candidates

Nitrogen-containing heterocycles have been known for their 
therapeutic potential. Among medicinal drugs, many are 
containing pyrrole and pyrrolidine moiety [42, 43]. Some 
of the drugs have pyrrole, pyrrolidine moieties are already 
available in market, and some are under clinical trials. The 
following are the pyrrole, pyrrolidine (saturated pyrrole) 
drug candidates.

Telaprevir (7)

Pyrrolidine (saturated pyrrole) analog; telaprevir is an anti-
viral drug, peptidomimetic used in combination therapy to 
treat chronic Hepatitis C Virus (HCV) infection. This drug 
inhibits NS3/4A, a serine protease encoded by HCV geno-
type 1 and SARS-CoV-2 3CL proteases. Also, this drug is 
used with pegylated interferon and ribavirin for clinical trials 
[44–46] (Fig. 4).

Ramipril (8)

Ramipril is a competitive inhibitor of ACE, angiotensin-
converting enzyme (ACE), responsible for the conversion 
of angiotensin I (ATI) to angiotensin II (ATII) and regulates 
blood pressure. Ramipril is used to treat hypertension, con-
gestive heart failure, and to control the death rate [47, 48] 
as shown in Fig. 5.

Fig. 3   Naturally derived Pyr-
rolidine analogs (6a-e)
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Tolmetin (9)

Tolmetin is also known as 1-methyl-5-p-toluoylpyrrole-2-
acetic acid or tolectin and belongs to class of non-steroidal 

anti-inflammatory drug used for osteoarthritis, rheumatoid 
arthritis, and juvenile arthritis [49, 50].

Fig. 4   Pyrrole, pyrrolidine ana-
logs as drug candidates-I
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Sunitinib (10)

FDA-approved anticancer drug sunitinib is a tyrosine kinase 
(RTK) inhibitor used for treating renal cell carcinoma (RCC) 
and imatinib-resistant gastrointestinal stromal tumor (GIST). 
Because of this, sunitinib is an orally administered formu-
lation that inhibits cellular signaling by targeting multiple 
RTKs such as rearranged during transfection (RET), colony-
stimulating factor 1 receptor (CSF-1R), and fms-like tyros-
ine kinase 3 (flt3) [51, 52].

Glimepiride (11)

Organic compounds such as sulfonylureas are used as insulin 
secretagogues to control type 2 diabetes, thereby reducing 
blood glucose levels. Glimepiride, a pyrrole analog, second-
generation sulfonylureas is used for type 2 diabetes mellitus 
(T2DM) [53, 54].

Atorvastatin (12)

Literature evidenced an enzyme hydroxymethylglutaryl-
coenzyme A (HMG-CoA) reductase, known to catalyze the 
conversion of HMG-CoA to mevalonic acid. This conver-
sion involves compounds that play different roles in lipid 
metabolism and transport, cholesterol, low-density lipo-
protein (LDL), and very-low-density lipoprotein (VLDL) 
production. Like other statin medications, atorvastatin, a 
lipid-lowering drug, is also known to inhibit the HMG-CoA 
reductase, thereby control the endogenous production of 
cholesterol in the liver, and reduce the risk of cardiovascular 
disease. Further, combination of atorvastatin and aspirin is 
used for SARS-CoV-2 infection [55–57].

Ombitasvir (13)

Due to significant advances in antiviral drugs, many pyr-
rolidines ring containing analogs are also reported for 
their potential inhibitory activity toward different viruses. 
Like telaprevir, ombitasvir, another antiviral medication, 
is used as a combination therapy to treat chronic Hepatitis 
C. This molecule inhibits, more specifically, NS5A, a pro-
tein essential for viral replication and virion manifestation. 
This analog also acts as a potent inhibitor of SARS-CoV-2 
[58–60].

Phensuximide (14)

Phensuximide (Fig.  6), a succinimide analog, pos-
sesses antiepileptic and anticonvulsant properties. These 
orally active drugs produce depolarization-induced accu-
mulation of cyclic adenosine monophosphate and cyclic 
guanosine monophosphate (cGMP) [61, 62].

Pibrentasvir (15)

Like ombitasvir, pibrentasvir is an anti-hepatitis C virus 
(HCV) drug and specifically inhibits NS5A that targets the 
viral RNA replication and virion assembly. Also, in combi-
nation with glecaprevir, an NS3/4A protease inhibitor was 
used for patients with therapeutic failure from other NS5A 
inhibitors [63, 64].

Fig. 6   Pyrrole, pyrrolidine ana-
logs as drug candidates-III
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Fused pyrrole as drug candidate

As such pyrrole and pyrrolidine scaffold itself shows diverse 
pharmacological properties. However, to attain increased 
biological activities toward various diseases, many fused 
pyrrole and pyrrolidine analogs have been reported [65, 66]. 
Further, these medicinally potent fused analogs have been 
derived from synthetic routes and isolation [67–70]. Because 
of this, present review also focuses very potent fused pyrrole 
and pyrrolidine analogs.

Tropisetron (serotonin receptor antagonist) (16)

A serotonin receptor antagonist inhibits serotonin (5-HT) 
receptors that regulate many neurotransmitters such as 
gamma-aminobutyric acid (GABA), glutamate, dopamine, 
acetylcholine, and epinephrine or norepinephrine. These 
receptors modulate many hormones like oxytocin, prolac-
tin, vasopressin, cortisol, and corticotropin. Serotonin recep-
tors were also responsible for aggression, anxiety, memory, 
learning, nausea, mood, and sleep [71, 72]. Among such 
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antagonists, tropisetron, a fused pyrrole, an indole analog 
blocks the action of serotonin at 5HT3 receptors, resulting 
in control of nausea and vomiting induced by chemotherapy 
and radiotherapy [73, 74].

Ketorolac (17)

Ketorolac (Fig. 7) is one more non-steroidal anti-inflam-
matory drug (NSAID) that belongs to this class. This drug 
is available as an oral tablet, injection, nasal spray, and eye 
solution. Due to its analgesic properties, this drug is used, 
for the treatment of rheumatoid arthritis, postoperative pain, 
osteoarthritis, menstrual disorders, and as well for spondy-
litis [75, 76].

Ruxolitinib (18)

FDA-approved kinase inhibitors like ruxolitinib are used for 
adult patients with bone marrow disorders. Reports suggest 
that ruxolitinib may use for patients suffering from an infec-
tion caused by covid-19. However, this drug is clinically 
not approved for the treatment of covid-19 disease [77, 78].

Vemurafenib (19)

Like ruxolitinib, vemurafenib also belongs to the class of 
competitive kinase inhibitor. Specifically, it is active against 
serine-threonine kinase (BRAF kinase) with mutant V600E. 
It binds to the ATP-binding domain of the mutant BRAF and 
thereby exerts its function. Further, this compound is more 
effective against severe acute respiratory syndrome corona 
virus 2 (SARS-CoV-2) [79–81].

Remdesivir (20)

Remdesivir (GS-5734) is chemically named as N-[(S)-
{[(2R,3S,4R,5R)-5-(4-aminopyrrolo[2,1-f][1,2,4]triazin-
7-yl)-5-cyano-3,4-dihydroxytetrahydrofuran-2-yl]methoxy}
(phenoxy)phosphoryl]-L-alanine (Fig. 8). This adenosine 
triphosphate analog exhibits broad antiviral activity against 
viral families such as Flaviviridae, Arenaviridae, Coronaviri-
dae, Paramyxoviridae, Pneumoviridae, and Filoviridae. Apart 
from this, remdesivir is in conditional use for COVID-19 
infection as recommended by the World Health Organization 
[82–86].

Physostigmine (21)

Physostigmine, also known as  eserine, a  cholinesterase 
inhibitor, applied topically to the conjunctiva, can cross the 
blood–brain barrier and acts against anticholinergic toxicity 
[87].

Carprofen (22)

Carprofen is one more pyrrole analog, non-steroidal anti-
inflammatory drug (NSAID) used for arthritic symptoms. 
Previously, carprofen was used for the treatment of gastroin-
testinal pain and nausea. Later, it is banned due to its toxicity 
[88, 89].

Baricitinib (23)

Literature evidences that Janus kinases belong to the tyrosine 
protein kinase family. These kinases play a role in the pro-
inflammatory pathway signaling related to autoimmune dis-
orders such as rheumatoid arthritis. Baricitinib, also known 
as olumiant, is used for rheumatoid arthritis. This analog is a 
selective and reversible Janus kinase 1 (JAK1) and 2 (JAK2) 
inhibitors, which disrupt the activation of downstream signal-
ing molecules and proinflammatory mediators [90, 91].

Asenapine (24)

Asenapine is a sublingual tablet used as an antipsychotic to 
treat patients with bipolar I disorder and schizophrenia [92].

Pemetrexed (25)

Pemetrexed is a chemotherapy drug sold under the brand name 
alimta used in combination with cisplatin for patients with 
malignant pleural mesothelioma and non-squamous non-small 
cell lung cancer [93, 94].
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Ribociclib (26)

Ribociclib is a selective anticancer drug and acts as a cyclin-
dependent kinase inhibitor (Fig. 9). This drug inhibits specifi-
cally cyclin-dependent kinase 4 and 6 (CDK4/6), a protein that 
enables cancer cells to grow and divide vigorously [95, 96].

Tofacitinib (27)

Tofacitinib is a small molecule used for rheumatoid arthritis, 
psoriatic arthritis, and ulcerative colitis [97]. Also, it acts as 
a Janus kinase (JAK) inhibitor [98].

Ondasetron (28)

Ondansetron, one more serotonin 5-HT3 receptor antago-
nist, is used for cancer patients to avoid nausea and vom-
iting due to chemotherapy, radiation therapy, or surgery 
[99]. Further, it prevents inflammation of the gastrointes-
tinal tract [100].

Indomethacin (29)

Indomethacin,  a benzopyrrole analog, is a nonsteroidal 
anti-inflammatory drug. The mechanism of action for this 
drug involves the inhibition of cyclooxygenase, an enzyme 
responsible for the production of prostaglandins [101].

Biologically potential of pyrrole 
and pyrrolidine analogs

Pyrrole and pyrrolidine, being an important ring structure, 
have been found to possess a number of biological activities; 
this ring has a broad range of biologically active compounds, 

incorporated either as a substituent or with various substi-
tutions on the ring itself. This review mainly covers recent 
reports on potential activities of pyrrole and pyrrolidine ana-
logs such as anticancer, antituberculosis, antiviral, and anti-
inflammatory activity in comparison with earlier reviews 
that focus on the importance of pyrrole and its analogs until 
the year 2015–2019 [102–104].

Anticancer agents

Epigenetic modification refers to changes that alter the 
physical  structure of DNA. Epigenetic modification 
involves both DNA methylation and histone modifica-
tion [105, 106]. These two phenomena play vital role in 
the regulation of pluripotency genes. Based on the evi-
dence, it has been suggested that most epigenetic thera-
pies for cancer focus modulation of chromatin structure 
[107, 108]. One such therapy is based on the development 
of HDAC inhibitors. In view of this, Chen et al. [109] 
recently reported HDAC/BRD4 dual inhibitors as epige-
netic probes. On the basis of structural activity relation-
ship studies, they synthesized three potent pyrrolo-pyri-
dine analogs (30 a–c) as dual inhibitors of HDAC1/BRD4 
(Fig. 10).

Based on three-dimensional quantitative struc-
ture–activity relationship (3D-QSAR), molecular dock-
ing, and molecular dynamics (MD) simulations, Zhang 
et al. [110] reported target-specific anticancer agents. This 
investigation suggests that set of thieno[3,2-b]pyrrole (31), 
as competitive inhibitors of lysine-specific demethylase 
1 (LSD1), a histone-modifying enzyme, is overexpressed 
in various cancers. Further, pyrrole/fused pyrrole analogs 
have to be explored for target specific anticancer activ-
ity [111, 112]. Rasal et al. [113] reported synthesis and 
antiproliferative activity of series of pyrrole bearing 
benzimidazole analogs. Among these compounds, only 

Fig. 10   Fused pyrrole analogs as potential anticancer agents I
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compound (32) showed significant antiproliferative activ-
ity in MDA-MB human cancer cell lines. Many natural 
products are known to possess potential anticancer activ-
ity [114, 115]. One such natural product, pyrrolomycin, a 
polyhalogenated antibiotic (33 a), has potent anticancer 
activity. However, this molecule is associated with high 
cytotoxicity. To overcome this problem, Raimondi et al. 
[116] designed and synthesized new pyrrolomycins (34 
a–c). Their report suggested that newly synthesized com-
pounds with nitro substituent strongly inhibit the prolifera-
tion of colon (HCT116) and breast (MCF 7) cancer cell 
lines in comparison with (33 a). Also, these molecules 
exhibit good antibacterial activity. Ji et al. [117] reported 
ruthenium-catalyzed synthesis and antiproliferation activi-
ties of poly substituted pyrrolidines. Among these analogs, 
only compounds (35 a, b) have shown strong antiprolifera-
tion activity with IC50—2.9 to 16 μM (Fig. 11).

Investigation reveals that epidermal growth factor recep-
tor (EGFR) and vascular endothelial growth factor recep-
tor (VEGFR) downstream signaling pathways contribute to 
the tumor growth and progression. So, VEGF and EGFR 
inhibitors constitute therapies that inhibit different signal-
ing pathways to overcome tumor resistance caused by the 
inhibition of a single. Because of this, Kuznietsova et al. 
[118] reported the synthesis of novel pyrrole analogs as 
protein kinases inhibitors. Their investigation suggested 
that two compounds, namely chloro-1-(4-chlorobenzyl)-
4-((3-(trifluoromethyl)phenyl)amino)-1H-pyrrole-2,5-di-
one (36 a) and 5-amino-4-(1,3-benzothyazol-2-yn)-1-(3-
methoxyphenyl)-1,2-dihydro-3H-pyrrole-3-one (36 b), are 
the competitive inhibitors of EGFR and VEGFR (Fig. 12).

Liu et al. [119] mentioned in their work synthesis and 
antiproliferative activity of 1-(4-(7H-pyrrolo[2,3-d]pyrimi-
din-4-yl)piperazin-1-yl)-2-phenylethan-1-one as Akt 
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inhibitors. Further, only compounds 37a and 37b showed 
high potency against all Akt isoforms. Dagar et al. [120] 
reported the one-pot synthesis of 3,4-diacylpyrrolo[1,2-
a]pyrazine by the reaction of an α-haloketone, azide, and 
N-substituted pyrrole-2-carboxaldehyde. This investigation 
reveals that only compound (38) showed potential in vitro 

anticancer activity against oral adenosquamous carcinoma 
and triple-negative human breast cancer cells in comparison 
with standard capecitabine.

Olszewska et al. [121] reported the synthesis and anti-
cancer activity of trifluoromethyl 2-phosphonopyrrole 
against denocarcinomic human alveolar basal epithelial 
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cells (A549) and breast cancer cell line (MCF-7 cells). 
This study explains pyrrole analog (39) with trifluoro, 
phosphonyl, and phenyl group significantly inhibits cell 
cycle arrest at G1 and induces apoptosis in these cell line 
with IC50 36.5 μM ± 1.80 and 27.9 μM ± 1.68. Recently, 

Rathinaraj et al. [122] reported synthesis of nanoconjugates 
derived from folate gold bilirubin. Further, these nanoconju-
gates induce apoptosis in multidrug-resistant oral carcinoma 
cells. More recently, Xiang et al. [123] investigated the syn-
thesis of bioavailable, potent pyrrolo[2,1-f][1,2,4]triazines 
as anticancer agent. The compound (40) showed PI3K alpha 
inhibition in human cancer cells with IC50 of 5.9 nM. Zhang 
et al. [124] reported one pot synthesis of pyrrole-imidazole 
analogs. Their work demonstrated that compound (41) has 
very potential inhibition for the two human pancreatic cancer 
cell lines such as PANC and ASPC-1. Furthermore, Ger-
etto et al. [125] research on anticancer cancer activity of 
meso-(p-acetamidophenyl)-calix[4]pyrrole analog suggests 
that this compound (42) can cross the blood–brain barrier, 
forms DNA adduct and exhibits significant anticancer activ-
ity (Fig. 13).

Anti‑inflammatory agents

Anti-inflammatory agents are the substances that reduce 
inflammation in the body caused due to the response of vas-
cular tissues to damaged cells, pathogens, or irritants. These 
compounds prevent this response from the body that causes 
inflammation.
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Further, anti-inflammatory agents are used for the pre-
vention and treatment of cancer [126, 127]. Based on this 
importance, Said Fatahala et al. reported synthesis of pyr-
rolopyridine and pyrrolopyridopyrimidine analogs as anti-
inflammatory agents. Their findings reveals that only the 
fused pyrroles, pyrrolopyridines (43, 44) (Fig. 14) showed 
good anti-inflammatory activity. Also, molecular docking 
study shows binding of these analogs with COX-2 [128]. 
Redzicka et al. [129] research work is based on design, syn-
thesis, molecular docking simulations, and anti-inflamma-
tory activity of series of pyrrolo[3,4-c]pyrrole. According 
to the results, compounds (45–47) have shown strong activ-
ity toward COX-1 and COX-2. Furthermore, single-crystal 
X-ray diffraction was recorded for (48). Xue et al. [130] 
reported the isolation of two nucleosides (49, 50) and two 
pyrrole analogs (51, 52) (Fig. 15) from Cordyceps militaris 

shown no significant activity against LPS-induced NO pro-
duction in macrophage-like, Abelson leukemia virus-trans-
formed cell line derived from BALB/c mice (RAW 264.7 
cells).

Guan reported the isolation of pyrrol-2-aldehyde analogs 
such as jiangrine G (53), jiangrine A (54), and pyrrolezan-
thine (55) from the fermentation broth of Jiangella alba and 
Maytenus austroyunnanensis. Their results based on western 
blot analysis reveals that all three compounds modulate pro-
inflammatory cytokines via MAPK p38 and NF-κB signaling 
pathways. Also, compounds (53) and (54) inhibit the expres-
sion of iNOS in LPS-induced RAW 264.7 cells [131]. Reale 
et al. [132] reported synthesis and anti-inflammatory activity 
of novel series of 1,5-diarylpyrrol-3-sulfur analogs. Further, 
molecular modeling studies suggest compound (56) (Fig. 16) 
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has potential binding with COX-2 enzyme and showed a 
significant in vivo anti-inflammatory activity.

With the continuation of their work on pyrrolo[3,4-d]pyri-
dazinone, Szczukowski et al. [133] recently reported synthe-
sis and anti-inflammatory activity of novel pyrrolo[3,4-d]
pyridazinone analogs bearing 4-aryl-1-(1-oxoethyl)pipera-
zine. Among synthesized compounds, 57 (a, b) and 58 (a, 
b) inhibit cyclooxygenase, have better affinity to COX-2 iso-
enzyme, and thereby exert promising anti-inflammatory and 
anti-oxidant activity (Fig. 17).

Maharjan et al. [134] reported isolation of nine com-
pounds including quinones, fusarubin, ( +)-solaniol, javan-
icin, 9-desmethylherbarine, and pyrrole analogs; isomers 
of lucilactaene (59, 60, 61), (62), and (63) from roots 
of Scutellariae baicalensis. These isolated compounds 
showed potential anti-inflammatory activity by inhibiting 
NO production and pro-inflammatory cytokines in LPS-
induced RAW 264.7 macrophage cells.

Mohd Faudzi et al. [135] reported synthesis of twenty-
four chalcones of pyrroles as anti-inflammatory agents 
against nitric oxide (NO) and prostaglandin E2  (PGE2) 
controls IFN-γ/LPS-induced RAW 264.7 macrophage 
cells. Further, these results are supported by the crystal 
structure and molecular studies (64) (Fig. 18).

More recently, Redzicka et al. [136] reported design, 
synthesis, and anti-inflammatory activity of N-substituted 
3,4-pyrroledicarboximides (65 a–k), (66) and (67 a–d) 
(Fig. 19). All the synthesized compounds have shown 
inhibitory activity against COX-1 and COX-2 cyclooxy-
genase isoform and thereby exhibit potential activity. Also, 
this work is supported by QSAR study and X-ray diffrac-
tion studies.

Fig. 20   Pyrrole (fused) analogs 
as potential antiviral agents-I
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Antiviral agents

Antiviral agents are known for their use in viral infections 
caused by HIV, herpes viruses, hepatitis B and C viruses, 
influenza A, B viruses, and SARS-CoV-2. A lot of research 
has been carried out for the development of antivirals and 
to study their mechanism toward pathogens. However, many 
antiviral agents have been restricted for their use. The main 
drawback of the antiviral drug is viruses use the host's cells 
to replicate. Today, the main difficulty associated with vac-
cines and antiviral drugs is viral variation and resistance. 
There will be a real challenge for the medicinal chemist to 
synthesize safe, specific, and effective antiviral drugs with-
out harming the host [137–140]. In view of these findings, 
to find more potent antiviral agents, Tao et al. [141] recently 
studied effect of GS-441524 (68) (Fig. 20) and hydrolyzed 
product of remdesivir in Vero E6, Vero CCL-81, Calu-3, 
Caco-2 cells for anti-SARS-CoV-2 activity and anti-HCoV-
OC43 activity in Huh-7 cells. Their investigation reveals that 
both remdesivir and GS-441524 have similar anti-SARS-
CoV-2 potency in Vero cells, but higher in Calu-3 and Caco-
2 ​cells, whereas in case of Huh-7 ​cells, remdesivir exhibits 
higher anti-HCoV-OC43 activity than GS-441524.

Li et  al. [142] more recently reported synthesis 
and antiviral activity of novel nucleoside analogues 
of pyrrolo-triazines. Their investigation reveals that 

7-chloro-4-amino-pyrrolo[2,1-f][1,2,4]triazine (69 b) specif-
ically inhibits human norovirus RNA-dependent RNA poly-
merase (RdRp), whereas compound 4-amino-pyrrolo[2,1-f]
[1,2,4]triazine (69 a) inhibits both murine and human noro-
virus RNA-dependent RNA polymerase (RdRp) in different 
cell lines. With the continuation of their work on pyrrole 
analog (70), a potent HIV inhibitor, Curreli reported a new 
and novel analog, NBD-14189 (71), with optimized antiviral 
activity against HIV-1, with IC50 of 89 nM. In addition, the 
in vitro ADME data suggest improvements in aqueous solu-
bility and other properties of this compound compared to 
(70) [143]. Hawerkamp et al. [144] reported antiviral activity 
of tofacitinib, a kind of novel Janus kinase (JAK) inhibitor in 
keratinocytes. This study reveals that tofacitinib reduces T 
cell activation and down regulates gene regulation.

Based on the importance of porphyrin and its metal com-
plexes, Sengupta et al. [145] synthesized novel Zn (II) com-
plexes of nitro porphyrin derivatives (72, 73) (Fig. 21) and 
carried out anticancer and antivira l activities. This metal 
complexes showed very good anticancer activity against 
human lung cancer cell-line A549 and improved antiviral 
activity against a HIV-1 and SIVmac.

In the year 2020, Liu et al. [146] reported the synthesis of 
dihydopyrrolidines. These analogs were screened for anti-
influenza activity. Among these analogs, (74 a–d) (Fig. 22) 
has shown potetinal activity against IAVs with IC50 ranges 
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from 3.11 to 9.23 μM. This investigation further illustrates 
that these compounds suppress NDAPH oxidase, NOX1 in 
MDCK cells.

Like human alphaherpesvirus 2 (HHV-2), Caprine alpha 
herpesvirus 1 (CpHV-1) causes the genital disorder. Because 
of this, Lanave et al. [147] studied the antiviral efficacy of 
compound PHA767491, fused pyrrole (75) toward HSV-1 
and HSV-2 in vitro and as well in the mouse model. Yao 
et al. [148] reported isolation and anti-hepatitis B virus 
activity of natural products delicatulines A (76) and B (77), 
an adenine analogs and pyrrole analog (78). Their study is 
based on n-BuOH extract of Selaginella delicatula. Further, 
none of these compounds and few known compounds have 
exhibited better anti-HBV activity. Based on colorimetric 
viral infection and qRT-PCR assays, Liu et al. [149] studied 
sodium copper chlorophyllin (79) as potential antiviral agent 
against infection caused by divergent EV-A71 and coxsacki-
evirus-A16 (CV-A16). In addition, viral gastroenteritis has 
become serious concern for children caused by rotavirus, 
coxsackievirus, and adenovirus which are the most common 
viruses that cause gastroenteritis. Taking this into considera-
tion, Mohamed et al. reported synthesis and antiviral activ-
ity of pyrrolo[2,3-d] pyrimidine and pyrrolo[3,2-e][1,2,4]
triazolo[4,3-c]pyrimidine analogs against gastroenteric viral 
infections. Screening of the new compounds for anti-viral 
activities against Rotavirus Wa strain and coxsackievirus B4 
suggests that compounds (80 a–e), (81 a–c) and (82 a–c) 
(Fig. 23) exhibited significant antiviral activity [150].

Another virus, the novel SARS-CoV-2 that causes coro-
navirus disease 2019 (COVID-19) results in an inevitable 
pandemic. Development of antiviral drug against SARS-
CoV-2 is considered to be real challenge. Comprehensive 
literature of this virus reveals that the main protease (Mpro), 
a SARS-CoV-2 enzyme, is an attractive drug target that pre-
vents viral replication and transcription. Because of this, 
Ianevski et al. reported screening of 136 antivirals against 
the SARS-CoV-2 infection in Vero-E6 cells. Their investiga-
tion suggests that among these antivirals, only compounds 

nelfinavir, salinomycin, amodiaquine, obatoclax (83) (pyr-
role analog), a small molecule and a pan-inhibitor of Bcl-2 
family proteins, emetine, and homoharringtonine (fused 
pyrrole) (84) exhibited anti-SARS-CoV-2 activity [151] as 
shown in Fig. 23.

To find a probe that targets the main protease, Rao et al. 
work based on molecular docking, dynamics simulation, 
and screening of small molecules investigated pyranoni-
grin A (85), a secondary fungal metabolite as potential 
inhibitor against the main protease (Mpro) expressed in 
SARS-CoV-2 virus [152].Lu et al. [153] more recently 
reported synthesis of protoporphyrins (86 a–e) as antiviral 
agent against series of viruses such as Lassa virus (LASV), 
Machupo virus (MACV), and SARS-CoV-2 and subtypes 
of influenza A viral strains. Their results show that these 
compounds are very significant antiviral with IC50 values 
ranged from 0.91 to 1.88 μM.

Fakhar et al. [154] report based on the structure-based 
pharmacophore modeling, virtual screening workflow, 
ADMET, and molecular dynamics simulations revealed 
that compound ABBV-744 (87) has a strong affinity 
(ΔGbind − 45.43 kcal/mol) to the main protease. Further, 
this study also considered the other two compounds (88, 
89) as potential inhibitors of SARS-CoV-2. In the year 
2021, by the experimental evidence, Varghese et al. [155] 
have proposed a combination of obatoclax and berberine 
as possible antiviral drugs for SARS-CoV-2 infection 
(Fig. 24).

Antimycobacterial agents

Today, treatment for multidrug-resistant (MDR) tuberculosis 
(TB) has become a real challenge [156]. Tuberculosis is an 
infection caused by gram-positive bacteria mycobacterium 
tuberculosis. This disease is treated with first-line drugs like 
isoniazid, rifampin, pyrazinamide, ethambutol, and strepto-
mycin [157]. Second-line drugs that have been reported are 
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capreomycin, kanamycin, and amikacin [158]. Due to the 
multidrug-resistant developed by the mycobacterium, there 
is a need for a potent drug candidate that can suppress the 
growth of this pathogen [159, 160]. To develop antitubercu-
lar agent, Volynets et al. reported synthesis and antitubercu-
lar activity of novel isoniazid bearing pyrrole analogs. Com-
pound 1-methyl-1H-pyrrol-2-ylmethylene)-hydrazide (90) 

(Fig. 25) has shown inhibitory activity toward isoniazid-
resistant strain with IC50 of 0.14 μM [161]. Shiva Raju et al. 
[162] also reported 1H-pyrrolo[2,3-d]pyrimidine-1,2,3-tria-
zole analogs as novel anti-tubercular agents. In the series of 
compounds, (91 a, b) has shown very good anti-tubercular 
activity against mycobacterium tuberculosis H37Rv strain 
with minimum inhibitory concentration of 0.78 µg/mL.
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Liu et al. [163] used virtual high-throughput screening, 
in vitro assay, and synthesized 1-(2-chloro-6-fluorobenzyl)-
2,5-dimethyl-4-((phenethylamino)methyl)-1H-pyrrole-3-car-
boxylate (92) as anti-tubercular agents that inhibit ClpP1P2 
peptidase in M. tuberculosis. Many nitrogen-containing 
heterocyclic compounds were designed, synthesized, and 
screened for their biological activities [164, 165]. However, 
pyrrole and pyrrolidine analogs have been attracted more for 
their diverse pharmacological activities [166].

By finding these significances in the literature, Joshi et al. 
[167] reported the synthesis and antimycobacterial activity 
of novel pyrrolyl benzamide derivatives against M. tubercu-
losis H37Rv and enoyl-ACP reductase enzyme. Compounds 
(93a–e) have shown significant InhA inhibitory activity. Fur-
thermore, Poce et al. [168] reported pyrrole analog (94) as 
potential inhibitor of mycobacteria. Their study is based on 
synthesis of pyrrole analog by the variations in hit com-
pound (95).

More recently, Arumugam et  al. [169] synthesized 
new spirooxindolopyrrolidine-embedded indandione for 
in vitro anti-tubercular activity against Mycobacterium 
tuberculosis H37Rv. Their results suggest that chlorine-
substituted indandione (96 a, b) displayed potential activ-
ity with MIC 0.78 μg/mL compared to ethambutol having 
MIC of 1.56 μg/mL as shown in Fig. 26.

Eng et  al. [170] reported as synthesis of [3R,4R]-
4-Hypoxanthin-9-yl-3-((S)-2-hydroxy-2-phosphonoethyl)
oxy-1-N-(phosphonopropionyl)pyrrolidine and [3R,4R]-
4-guanin-9-yl-3-((S)-2-hydroxy-2-phosphonoethyl)oxy-
1-N-(phosphonopropionyl)pyrrolidine as potent inhibi-
tors of hypoxanthine–guanine phosphoribosyltransferase 
(HGPRT) with Ki values of 60 nM. Krause et al. [171] 
reported synthesis and antimycobacterial activity of series 
of new 4-substituted picolinohydrazonamides. Among 
these compounds, (98) acts as antimycobacterial agent 
with MIC 0.4 μg/mL.

Based on the literature survey, it has been suggested 
that compared to pyrrole analogs, pyrrolidine scaffold will 
be having more preference to the drug design because of 
unrestricted conformation of the ring [172]. Further, pyr-
rolidine analog has privileged N − 1 position for substi-
tutions which were present in US FDA-approved drugs 

[173]. We restricted this review on pyrrole, pyrrolidine, 
and its therapeutic potential for the aspects such as anti-
cancer, anti-inflammatory, antiviral, and antimycobacterial 
activity. Other biological activities of this scaffold deserve 
special attention.

Conclusion

The literature evidenced five-membered nitrogen-containing 
pyrrole and pyrrolidine have been known for their extensive 
biological and pharmacological activities. Many biomole-
cules have possessed either pyrrole, pyrrolidine, or fused 
pyrrole. Using structure–activity relationship and molecular 
docking studies, pyrrole and pyrrolidine analogs have been 
designed, synthesized, and screened for diverse therapeu-
tic activities. Based on the comprehensive literature on the 
importance of these molecules, this review mainly highlights 
recent reports on these versatile molecules for anti-cancer, 
anti-inflammatory, antiviral, and antitubercular activity. 
Also, this review focuses on the pyrrole, pyrrolidine, and 
fused pyrrole-containing drug candidates. This review will 
be a useful platform for innovative researchers to work on 
pyrrole analogs to overcome drug resistance and toxicity.
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