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Abstract

Insect-resistance of transgenic Bacillus thuringiensis (Bt) cotton varies among plants organs

and with different environmental conditions. The objective of this study was to examine the

influence of soil salinity on Bt protein concentration in cotton squares and to elucidate the

potential mechanism of Bt efficacy reduction. Two cotton cultivars (NuCOTN 33B and CCRI

07, salt-sensitive and salt-tolerant) were subjected to salinity stress under four natural saline

levels in field conditions in 2015 and 2016 and seven regimes of soil salinity ranged from 0.5

to 18.8 dS m-1 in greenhouse conditions in 2017. Results of field studies revealed that Bt

protein content was not significantly changed at 7.13 dS m-1 salinity, but exhibited a signifi-

cant drop at the 10.41 and 14.16 dS m-1 salinity. The greenhouse experiments further

showed similar trends that significant declines of the insecticidal protein contents in squares

were detected when soil salinity exceeded 9.1 dS m-1. Meanwhile, high salinity resulted in

significant reduction in contents of soluble protein and total nitrogen, activities of nitrate

reductase (NR), glutamine synthetase (GS) and glutamic-pyruvic transaminase (GPT), but

increased amino acid content, activities of protease and peptidase in cotton squares. High

salinity also decreased root vigor (RV), root total absorption area (RTA) and root active

absorption area (RAA). The extent of decrease of Bt protein content was more pronounced

in NuCOTN 33B than CCRI 07, and CCRI07 exhibited stronger enzymes activities involved

in square protein synthesis and higher levels of RV, RTA and RAA. Therefore, the results of

our present study indicated that insecticidal protein expression in cotton squares were sig-

nificantly affected by higher salinity (equal to or higher than 9.1 dS m-1), reduced protein syn-

thesis and increased protein degradation in squares and reduced metabolic activities in

roots might lead to the decrease of Bt protein content in squares.

Introduction

Since the first transgenic Cry1Ac Bacillus thuringiensis (Bt) cotton variety was commercialized

in 1997 in China, more than 3.7 million hectares of transgenic Bt cottons are cultivated in
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China, accounting for 96% of the total cotton-growing area [1]. Application of Bt cotton

increased economic income, decreased environmental pollution and enhanced safety protec-

tion for workers by minimizing pesticide use [2,3]. Unfortunately, resistance of Bt cotton to

lepidopteran pests is unstable in field applications [4,5]. Loss of insect-resistance was closely

associated with reduced level of insecticidal proteins [6,7], which was affected by cotton geno-

type [8], plant age [9], plant organ [10], gene type and insertion site [11,12], and environmen-

tal determinants [13,14].

Salinity is one of the most important environmental factors affecting production and stabil-

ity of Cry1Ac protein in transgenic Bt cotton. Some studies have demonstrated that NaCl stress

decreased Bt protein level and affected the efficiency to control bollworms in controlled condi-

tions such as greenhouse and laboratory [15–17]. Other studies also have shown a negative rela-

tionship between Bt protein content and soil salinity in field conditions [18]. However, previous

studies usually focused on the inhibition effects of salt stress on Bt protein expression in cotton

leaves, reports about the variation of Bt protein content in cotton squares under soil salinity was

rare. Compared with leaves, square as the primary target of cotton bollworms, usually showed

lower insecticidal protein content than leaves and should be more vulnerable [7,10]. Therefore,

to accurately assess the effects of salinity on insecticidal efficiency of Bt cottons, investigations

of Bt protein level in cotton squares under salinity stress should be performed.

There were a few reports regarding underlying mechanisms of reduction of insecticidal

ability in Bt cottons under salinity stress. It has been reported that decreased soluble protein

and total nitrogen content under salinity stress impaired expression of Bt protein in cotton

leaves [15,17]. Some studies have found that the content of insecticidal toxin in cotton leaves

was related to the contents of total nitrogen, soluble protein and amino acid, as well as enzyme

activities involved in protein synthesis and degradation, such as nitrate reductase (NR), gluta-

mine synthetase (GS), glutamic-pyruvic transaminase (GPT), protease and peptidase [19–21].

However, little is known how nitrogen physiological metabolism varies in cotton squares

under soil salinity. Moreover, the expression of Cry1Ac gene also affected by nitrogen metabo-

lism in Bt cotton [22]. Therefore, we hypothesized that high salinity might also affected insecti-

cidal toxin contents in cottons squares through regulating N metabolism.

Roots play a major role in plants because they directly contact with the soil, absorb and

transport essential nutrients and water from the soil [23–24]. Capacity of nitrogen acquisition

by roots affects nutrition status and plants growth [25–27]. Thus, Harmful effects of high salin-

ity on roots might subsequently affect N uptake and then reduced protein synthesis including

Bt protein in Bt cotton. However, no research was conducted to examine the relationship

between Bt protein expression and root physiological processes such as roots vigor and root

absorption area. Thus, to better understand the underlying mechanisms of variation of Bt pro-

tein content, changes of root absorption ability in response to soil salinity gradients should be

investigated.

In this study, two transgenic Bt cotton cultivars with different salt sensitivity were subjected

to different regimes of soil salinity under field and greenhouse conditions to determine the

characteristics of insecticidal protein expression in cotton squares in response to different soil

salinity levels and explore potential mechanisms of Bt protein content reduction in squares

under salinity stress.

Materials and methods

Ethics statement

No specific permit is required for the experiments on Bt cottons in P. R. China. Field experi-

ments were conducted at the Cotton Experimental Station of Jinhai Farm (120˚490E, 33˚59´N,
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Dafeng District, Jiangsu Province, China), which is our own experimental field. Experiments

in this area do not need any approval. Field studies did not involve endangered or protected

species.

Field experiments

Two batches of field experiments were conducted in 2015 and 2016. Soil salinity was mea-

sured, and then four areas with similar texture and nutrient level but with different salinities

(1.06, 7.13, 10.41 and 14.16 dS m-1) were selected (Table 1). Each area was divided into blocks

(4.8 m × 15 m) and randomly used for cotton planting.

Two Bt transgenic cotton cultivars with different salt tolerance, were employed in the pres-

ent study [28,29]. One cultivar, NuCOTN 33B (salt-sensitive), was obtained from Jiangsu

Academy of Agricultural Sciences (Nanjing, China), and the other cultivar, CCRI 07 (salt-tol-

erant), was bred by the China Cotton Research Institute (Anyang, China). Seeds of these two

cultivars were sowed in a nursery bed in April 2016 and April 2017. When three true leaves

were developed, healthy and similar-sized seedlings were transplanted to field blocks with

spacing of 0.80 m × 0.28 m. During cotton growth, fertilization, insect and weed control fol-

lowed the local management.

Fifteen days after appearance of the first bud, 15 cotton squares were collected from each

block. Samples were immediately frozen in liquid nitrogen, and then stored at -40˚C for deter-

mination of Bt protein content.

Greenhouse experiments

A semi-open greenhouse was constructed at the Agricultural Experimental Station of Yan-

cheng Academy of Agricultural Sciences (33˚250N, 120˚120E, Yancheng, Jiangsu Province,

China). Walls of the greenhouse can be removed to allow air circulation. The top plastic cover

was transparent, allowing sunlight and avoiding precipitation.

Clay loam soil was collected from top soil (0 to 30 cm) in the experimental station. After

air-dried, soils were sieved through a 100-mesh net. Sodium carbonate (77.7%), magnesium

chloride (7.3%), magnesium sulfate (9.6%), calcium chloride (3.3%), and potassium chloride

(2.1%) were mixed as salty reagent. Six salinity gradients were prepared, in which salty reagent

was mixed in soil as ratio of 0.1%, 0.2%, 0.3%, 0.4%, 0.5% and 0.6%. Pure soil without addition

of salty reagent was used as control. Electrical conductivity of a saturated-paste extract (ECe)

in control and treatments was measured equal to 0.5 (control), 2.6, 5.9, 9.1, 12.3, 15.5 and 18.8

dS m-1, respectively.

Seedlings of NuCOTN 33B and CCRI 07 were bred in a nursery bed till formation of three

true leaves, and then transplanted into pots (45 cm diameter, 37 cm deep) which were filled

with 25 kg of mixed soil. Each pot included one seedling and each treatment was repeated for

20 times. For each pot, 8.7 g of N (using urea; 30% at transplanting stage, 40% at early flower-

ing stage and 30% at peak flowering stage), 4.3 g of P2O5 (using triple super phosphate; 50% at

Table 1. Environmental parameters of soil from four field testing areas. TN: total nitrogen; AN: available nitrogen; AP: available phosphorus; AK: available potassium;

BD: bulk density; ECe: electrical conductivity. Data were measured using surface soil (0 to 20 cm) in early spring before transplanting seedlings in 2015.

Salinity level pH TN AN AP AK BD

ECe (ds�m-1) (H2O) (g kg-1) (mg kg-1) (mg kg-1) (mg kg-1) (g cm-3)

1.06 8.01 0.98 82.4 16.7 232.4 1.23

7.13 8.10 1.01 81.7 15.4 224.8 1.21

10.41 8.05 0.97 83.6 17.1 235.2 1.19

14.46 8.04 0.95 80.5 16.3 233.6 1.20

https://doi.org/10.1371/journal.pone.0207013.t001
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transplanting stage and 50% at early flowering stage) and 5.8 g of K2O (using potassium sul-

fate, 50% at transplanting stage and 50% at early flowering stage) were fertilized.

Thirty squares growing on the first to third fruiting branches were collected per treatment, at

15 days after appearance of bud. Fifteen squares were frozen with liquid nitrogen and then stored

at -40˚C for protein analyses, and the left 15 squares were dried at 80˚C to constant weight and

then stored in a glass dryer at room temperature for determination of total nitrogen content.

At the end of experiments, four individuals were cut at the cotyledonary node for each

treatment. Roots were dug out and washed with water to determine root vigor, total and active

absorption areas of root systems.

Determination of Cry1Ac protein level

Protein level of Cry1Ac was determined using the ELISA method [30]. Approximately 0.3 g of

square tissues were homogenized in 1 ml of extraction buffer (Na2CO3 1.33 g, DTT 0.192 g,

NaCl 1.461 g, Vc 0.5 g, dissolved in 250 ml distilled water) and then completely transferred to

5 ml centrifuge tube by washing homogenizer with 2 ml of buffer. After shaken by hand and

stored at 4˚C for 4 hours, samples were centrifuged at 10 k × g at 4˚C for 20 min, and superna-

tant was filtered through a C18 Sep-Pak Cartridge (Waters, Milford, MA) before ELISA deter-

mination. ELISA analysis of Cry1Ac was performed using a commercial kit (Scientific Service,

Inc., Beijing) following the manufacture’s protocol. Briefly, microtitration plates were coated

with standard Cry1A insecticidal protein or samples by incubation at 37˚C for 4 hours. Cry1A
antibody was developed as described by Weiler et al. [31] and then added into each well. After

incubation at 37˚C for 30 min, solution was discarded and horseradish peroxidase-labeled

goat anti-rabbit secondary antibody was added, incubated at 37˚C for 30 min and then dis-

carded. Finally, the buffered enzyme substrate (orthopenylenediamino) was added and incu-

bated in dark at 37˚C for 15 min. The reaction was terminated using 3 M H2SO4. Absorbance

at 490 nm of each well was determined. The results were calculated following Weiler et al. [31].

Determination of root activity and absorption area

Root activity was measured using the triphenyltetrazolium chloride (TTC) method [32]. Total

and active absorption areas of fresh roots were determined using the methylene blue dye

method [33].

Determination of total nitrogen content

Squares were completely digested using H2SO4 and H2O2 and then content of total nitrogen

content was measured following Kjeldahl’s method [34].

Determination of free amino acid and soluble protein contents

Square tissues (0.3 g) were homogenized in 5 ml of cold phosphate buffer (50 mM KH2PO4,

pH 7). After centrifugation at 12 k × g for 15 min, supernatant was collected. Content of total

free amino acid content was determined using the ninhydrin method [35] and expressed as

mg of amino acid per gram of fresh weight. Glycine solution was used to prepare standard

curve. Content of total soluble protein was determined using brilliant blue G-250 regent [36]

and bovine serum albumin (BSA) was used to prepare standard curve.

Determination of enzyme activities

Nitrate reductase (NR) activity was determined according to Ding et al. [37] with slight modi-

fication. Square tissue (0.3 g) was homogenized in 4 ml of 0.1 M phosphate buffer (pH 7.5)
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and then centrifuged at 12 k × g for 20 min at 4˚C. Reaction solution including 0.4 ml of nico-

tinamide adenine dinucleotide (NADH), 1.2 ml of 0.1 M KNO3 and 0.4 ml of extraction solu-

tion was maintained at 25˚C for 30 min. Afterwards, 1 ml of sulphanilamide was added to stop

reaction. 0.1 M sodium phosphate (pH 7.5) was added instead of NADH as control. Next, 1 ml

of 1% N-1-naphthylethylenediamine dihydrochloride was added to form red color and incu-

bated for 15 min before centrifugation at 12 k × g for 10 min. Absorbance at 540 nm was mea-

sured to calculated NR activity. Sodium nitrite nitrogen was applied for standard curve.

To determine glutamine synthetase (GS) activity, samples were extracted according to Ding

et al. [37] and then assayed according to Oaks et al. [38]. Briefly, sample (0.5 g) was homoge-

nized using a chilled mortar in 3 ml of 5 mM sodium phosphate buffer (pH 7.2) containing 50

mM Na2SO4 and 0.5 mM Na2-EDTA. After centrifugation at 20 k × g for 20 min at 4˚C, 1.2 ml

supernatant was reacted with 0.3 ml of 0.3 M Na-Glu, 0.6 ml of 0.25 M imidazole-HCl (pH

7.0), 0.2 ml of 0.5 M MgSO4, and 0.4 ml of 0.03 M adenosine triphosphate (ATP) at 25˚C for 5

min. Next, 0.2 ml of 1.0 M hydroxylamine was added and further incubated at 25˚C for 20

min. Reaction was terminated by adding 0.8 ml of mixed reagent (10% FeCl3�6H2O, 50% HCl

and 24% trichloroacetic acid. After 20 min, mixtures were centrifuged at 5 k × g for 10 min

and absorbance at 540 nm was measured. GS activity was calculated based on standard curve

using c-glutamyl-hydroxamate.

Activity of glutamic-pyruvic transaminase (GPT) was assayed as described by [39]. Square

sample (0.3 g) was homogenized in 5 ml of 0.05 mM Tris-HCl (pH 7.2) and centrifuged at 26

k × g for 10 min at 4˚C. 0.2 ml of supernatant was mixed with 0.5 ml of 0.8 M alanine (pre-

pared in 0.1 M Tris-HCl, pH 7.5), 0.2 ml of 0.1 M 2-oxoglutarate solution and 0.1 ml of 2 mM

pyriodoxal phosphate solution, and then incubated at 37˚C for 10 min. Next 0.1 ml of trichlo-

roacetic acid solution was added to stop reaction. Absorbance of solution at 520 nm was mea-

sured. GPT activity was calculated based on authentic pyruvate standards [40].

To determine peptidase and protease activities, samples were extracted as described by Car-

rasco and Carbonell [41]. Peptidase activity was analyzed according to Setlow [42] with slight

modification. 0.1 ml of extracted supernatant was mixed with 1 ml of buffer containing 50

mM Tris-HCl (pH 8.0), 1 mM MnCl2 and 5 mM peptide and then incubated at 37˚C for 30

min. Reaction was terminated by adding of 1 ml of 1% ninhydrin solution (1 mg/ml cadmium

acetate, 85% ethanol and 15% acetic acid). Absorbance at 505 nm was measured. Protease

activity was determined using azocasein as substrate. Reaction mixture contained 0.4 ml of 10

mg ml-1 azocasein, 0.4 ml of 0.05 M succinate buffer (pH 5.5) with 10 mM mercaptoethanol,

and 0.2 ml of extracted supernatant. After incubation at 35˚C for 1 h, 1 ml of 1 N perchloric

acid was added to stop reaction. Reaction mixture was centrifuged at 8 k × g for 15 min and

absorbance at 400 nm was recorded [43].

Data analyses

Statistical data analyses were conducted using SPSS 11.0 (SPSS Software Inc., USA). Homoge-

neity of all data was checked using the Levene’s test. Afterwards, one-way analysis of variance

(ANOVA) was performed to test effects of salinity on each parameter, followed by Duncan’s

multiple range tests.

Results

Changes of insecticidal protein level in cotton square

Results of field study revealed that salinity stress affected level of insecticidal protein expression

in squares. Along with increasing salinity, Bt protein content declined in squares of both

Soil salinity affected transgenic Bt cotton
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cultivars (Table 2). Compared with treatment with 1.06 dS m-1, Bt protein content did not

change in treatment with 7.13 dS m-1, but significantly decreased in treatments with higher

salinity.

Greenhouse experiments also showed a similar result that high salinity decreased Bt protein

content in squares when (Fig 1). No significant difference was detected when the salinity level

ranged from 0.5 to 5.9 dS m-1. Significant reductions were detected when the salinity levels

went up to 9.1 dS m-1, compared to the control. Furthermore, the magnitude of decrease was

greater in the cultivar NuCOTN 33B compared to CCRI 07, especially at 15.5 or 18.8 dS m-1

salinity levels.

Nitrogen metabolism in cotton square

Square nitrogen metabolism related parameters were negatively affected by salinity treatments.

Total nitrogen content and soluble protein content decreased with increasing soil salinity.

There was little change when the salinity levels ranged from 0.5 to 5.9 ds m-1 (Table 3). With

increasing salinity levels from 9.1 to 18.8 ds m-1, the content of total nitrogen and soluble pro-

tein in squares was reduced significantly and the degree of inhibition was greater in NuCOTN

Table 2. Impacts of salinity on Bt protein content in cotton square (ng g-1 FW) of two Bt cultivars in field study during 2015 and 2016 (n = 4). Different letters repre-

sent significant differences in the same column (Duncan multiple range tests, P< 0.05).

Salinity level 2015 2016

ECe (ds m-1) NuCOTN 33B CCRI 07 NuCOTN 33B CCRI 07

1.06 567.3±9.3a 541.4±17.5a 573.2±14.4a 553.6±21.0a

7.13 553.2±24.6a 558.3±12.9a 558.1±6.5a 542.9±14.4a

10.41 483.6±13.8b 479.6±6.1b 504.5±11.3b 504.7±10.7b

14.46 407.9±21.2c 441.8±13.8c 451.4±15.7c 471.2±13.8c

https://doi.org/10.1371/journal.pone.0207013.t002

Fig 1. Effects of soil salinity on insecticidal protein content in square of two cotton cultivars (mean ± SE, n = 4).

Different letters represent significant differences (Duncan multiple range test, P< 0.05).

https://doi.org/10.1371/journal.pone.0207013.g001

Soil salinity affected transgenic Bt cotton

PLOS ONE | https://doi.org/10.1371/journal.pone.0207013 November 7, 2018 6 / 13

https://doi.org/10.1371/journal.pone.0207013.t002
https://doi.org/10.1371/journal.pone.0207013.g001
https://doi.org/10.1371/journal.pone.0207013


33B, than in CCRI 07. In contrast, free amino acid concentrations increased with the incre-

ment of soil salinity level from 0.5 ds m-1 to 18.8 ds m-1, and significant difference for both cul-

tivars was investigated when salinity was above 9.1 ds m-1.

Compared with the control, slight reductions have been detected in the enzymes activities

of NR, GS and GPT when the salinity levels increased from 2.6 to 9.1 ds m-1, while their activi-

ties began to decrease significantly at higher salinity levels (Table 4). The decrease of the activi-

ties of GS and GPT were greater than NR. Moreover, enzyme activities of GS and GPT were

significantly lower in NuCOTN 33B compared to CCRI 07 under salinity conditions (Table 4).

Changes of protease and peptidase activities were similar to content of amino acid. No sig-

nificant differences were detected in square protease and peptidase activities among the salin-

ity levels from 0.5 to 5.9 ds m-1. Compared with the control, protease and peptidase activities

in cotton squares significantly increased for both cultivars in treatments with salinity equal to

or higher than 9.1 ds m-1 (Table 5). Although the value of protease and peptidase activities was

lower in NuCOTN 33B than that of CCRI 07 at the same salinity level, the increase percent

was relatively high in NuCOTN 33B at all salinity regimes compared to the control.

Physiological characterization of root

Statistical analyses indicated that soil salinity significantly influenced RV, RTA and RAA.

Compared with the control, treatments with 2.6 and 5.9 dS m-1 did not significantly change

RV, RTA and RAA of both cultivars. However, when salinity level increased to 9.1 dS m-1 or

higher, RV, RTA and RAA in both cultivars was significantly reduced (Table 6). Moreover,

RV, RTA and RAA were relatively lower in NuCOTN 33B than those of CCRI 07.

Table 3. Impacts of salinity on total nitrogen, soluble protein and amino acid contents in squares of two Bt cotton cultivars under greenhouse conditions in 2017

(n = 4). Different letters represent significant differences in the same column (Duncan multiple range tests, P< 0.05).

Salinity level Total nitrogen content (%) Soluble protein content

(mg g-1 FW)

Amino acid content

(μmol g-1 FW)

ECe (ds m-1) NuCOTN 33B CCRI 07 NuCOTN 33B CCRI 07 NuCOTN 33B CCRI 07

0.5 3.46±0.05a 3.63±0.07a 1.62±0.03a 1.78±0.06a 22.9±0.4e 25.0±0.5d

2.6 3.52±0.08a 3.64±0.03a 1.70±0.12a 1.77±0.04a 22.6±0.2e 25.2±0.5d

5.9 3.31±0.14a 3.55±0.11a 1.52±0.08a 1.70±0.02a 22.3±1.2e 24.8±0.6d

9.1 3.05±0.04b 3.29±0.06b 1.24±0.08b 1.55±0.07b 26.5±0.6d 27.3±0.3c

12.3 2.78±0.11c 3.02±0.03b 1.06±0.05c 1.42±0.12bc 28.7±1.3c 32.4±1.1b

15.5 2.35±0.08d 2.61±0.06c 0.82±0.11d 1.23±0.09c 31.1±0.6b 33.1±0.7b

18.8 2.21±0.07d 2.58±0.04c 0.71±0.05d 1.12±0.04c 33.6±1.1a 35.1±0.4a

https://doi.org/10.1371/journal.pone.0207013.t003

Table 4. Impacts of salinity gradient on nitrate reductase (NR), glutamine synthetase (GS) and glutamic-pyruvic transaminase (GPT) activities in squares of two Bt

cotton cultivars under greenhouse conditions in 2017 (n = 4). Different letters represent significant differences in the same column (Duncan multiple range tests,

P< 0.05).

Salinity level NR activity

(μg g-1 FW h-1)

GS activity

(A mg-1 pro h-1)

GPT activity

(μmol g-1 FW h-1)

ECe (ds m-1) NuCOTN 33B CCRI 07 NuCOTN 33B CCRI 07 NuCOTN 33B CCRI 07

0.5 4.20±0.03a 4.27±0.06a 0.728±0.011a 0.843±0.023a 15.03±0.32a 17.08±0.31a

2.6 4.18±0.08a 4.34±0.12a 0.704±0.016ab 0.823±0.017a 15.23±0.48a 17.22±0.55a

5.9 4.16±0.04a 4.17±0.05a 0.688±0.023b 0.742±0.016b 14.49±0.46a 16.38±0.58a

9.1 3.86±0.08b 3.81±0.09b 0.635±0.018c 0.708±0.011b 12.28±0.37b 13.24±0.44b

12.3 3.63±0.06bc 3.72±0.04b 0.583±0.030d 0.643±0.026c 12.07±0.40b 13.02±0.29b

15.5 3.55±0.06c 3.59±0.12bc 0.405±0.022e 0.499±0.019d 9.86±0.13c 11.66±0.54c

18.8 2.85±0.14d 3.25±0.13c 0.356±0.014f 0.481±0.025d 8.19±0.60d 10.10±0.32d

https://doi.org/10.1371/journal.pone.0207013.t004
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Correlation analyses

Correlation analyses showed that Bt protein content in squares was significant positive correla-

tion with RV, RTA, RAA, total nitrogen content, soluble protein content and activities of NR,

GS and GPT, but negative correlation with amino acid content, activities of protease and pepti-

dase (Tables 7 and 8).

Discussion

It has been reported that soil salinity affected plant growth, nutrition and reduce insect resis-

tance and Bt protein content in cotton leaves [19,23,44]. However, the response of Bt protein

content to abiotic stress varied among different cotton organs [45,46]. In our present study, a

preliminary experiment was conducted in field-grown cotton in saline land with four salinity

gradient and indicated that high soil salinity caused a significant Bt toxin decrement in cotton

squares. The results in controlled environment further confirmed the results and suggested

that the salinity level below 9.1 dS m-1 had little effect on the squares Bt protein concentration,

but significant reduction of Bt protein efficacy was noted when soil salinity exceeded 9.1 dS m-

1. Our result was consistent with the findings of Iqbal et al. [16], who reported a negative rela-

tionship between the Bt protein content and NaCl concentration, and salt level above 10 dS m-

1 decrease the Cry1Ac toxin level significantly at different cotton growth stages. Thus, we con-

cluded that the reduced insect-resistance of cotton square was also closely correlated to salinity

levels, and 9.1 dS m-1 might be the soil salinity threshold affecting squares Bt protein concen-

tration. The present research indicated that salt-induced Bt protein content decline could be

Table 5. Impacts of salinity on protease and peptidase activities in squares of two Bt cotton cultivars under greenhouse conditions in 2017 (n = 4). Different letters

represent significant differences in the same column (Duncan multiple range tests, P< 0.05).

Salinity level Protease activity

(μg g-1 FW h-1)

Peptidase activity

(μmol g-1 FW h-1)

ECe (ds m-1) NuCOTN 33B CCRI 07 NuCOTN 33B CCRI 07

0.5 3.42±0.14e 3.57±0.18d 0.67±0.04d 0.83±0.05c

2.6 3.28±0.17e 3.34±0.14d 0.71±0.03d 0.90±0.03c

5.9 3.56±0.17e 3.77±0.08d 0.65±0.02d 0.87±0.05c

9.1 3.93±0.08d 3.95±0.06c 0.76±0.02c 0.97±0.07b

12.3 4.15±0.07c 4.32±0.10b 0.89±0.05b 1.04±0.05b

15.5 4.65±0.11b 4.43±0.17b 0.87±0.04b 1.13±0.06ab

18.8 4.91±0.07a 4.72±0.11a 0.99±0.07a 1.20±0.06a

https://doi.org/10.1371/journal.pone.0207013.t005

Table 6. Impacts of salinity on root vigor (RV), root total absorption area (RTA) and root active absorption area (RAA) of two Bt cultivars under greenhouse condi-

tions in 2017 (n = 4). Different letters represent significant differences in the same column (Duncan multiple range tests, P< 0.05).

Salinity level RV

(ug g-1FW h-1)

RTA

(m2)

RAA

(m2)

ECe (ds m-1) NuCOTN 33B CCRI 07 NuCOTN 33B CCRI 07 NuCOTN 33B CCRI 07

0.5 307.6±6.7a 321.3±14.3a 4.23±0.13ab 4.48±0.17ab 2.01±0.07a 2.34±0.10a

2.6 310.2±15.9a 328.6±12.6a 4.63±0.28a 4.72±0.09a 2.26±0.09a 2.53±0.14a

5.9 278.6±17.5ab 301.4±9.8a 3.99±0.14b 4.24±0.13b 1.83±0.09b 2.25±0.15a

9.1 255.4±20.6b 268.9±5.7b 3.47±0.08c 3.88±0.07c 1.65±0.12b 1.93±0.08b

12.3 223.4±11.7b 237.8±12.5c 3.07±0.11d 3.54±0.16d 1.41±0.04c 1.72±0.13bc

15.5 157.1±8.0c 184.3±13.1d 2.76±0.14e 3.37±0.15de 1.14±0.11d 1.46±0.14c

18.8 105.3±16.3d 159.7±18.5d 2.37±0.03f 2.92±0.23e 0.92±0.14d 1.23±0.06c

https://doi.org/10.1371/journal.pone.0207013.t006
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related with changes in protein content, enzymes activities and root vitality, as discussed

below.

Maintenance of stabilized protein synthesis is very critical for normal functions of cells

under high salinity stress because of their involvement in most metabolic processes [47–49]. Bt

protein as a proportion of soluble proteins, was affected inevitably by the abilities of protein

metabolism in cotton squares [17].NR, GS and GPT are major enzymes participating in pro-

tein synthesis. NR reduces nitrate (NO3
−) to nitrite (NO2

−), which is rate limiting enzyme in

production of protein. GS catalyzes the combination of glutamate and ammonia (NH4
+) to

form glutamine and organic amino acids. GPT catalyzes the transfer of an amino group from

L-alanine to α-ketoglutarate and produces pyruvate and L-glutamate [50]. In this study, we

observed a non-significant reduction in activities of NR, GS and GPT in square of both culti-

vars at lower soil salinity. In contrast, a significant decrease was detected at 9.1 ds m-1 salinity

levels or higher. The reduction of enzymes activities under salinity conditions might be a result

of low enzymes synthesis, or direct activity suppression. The contents of soluble protein and

total N also showed a similar change trend with increasing soil salinity. In greenhouse experi-

ment, Bt protein concentration showed significant positive correlation with NR, GS and GPT

activities. Thus, these results suggested the inhibition of activities of NR, GS and GPT limited

squares protein synthesis in Bt cotton exposed to salinity stress, as shown by lower Bt protein

content in cotton squares. These findings agree with the previous studies of the hypothesis on

the inducement of insect-resistant reduction [20,21,51].

Salt stress always induced accumulation of free amino acid in plant tissues. However, there

are two different views on the interpretation of phenomenon. Several studies have suggested

plants synthesize higher amino acids content in cells under abiotic stress because amino acids

serve as organic solutes and energy, and could improve osmotic adjustment and mitigate salin-

ity stress induced cellular damages [52,53]. By contrast, other reporters have documented that

an increase in amino acid content originates from strengthened proteolysis [22,54]. Our pres-

ent work supported the latter speculation, since protease and peptidase activities also enhanced

sharply when salinity levels exceeded 9.1 ds m-1. In addition, reduced soluble protein content

observed under high salinity conditions further supported this point. Li et al. [19] have also

reported that enhanced protease activity was accompanied with decreased protein content in

cotton boll under water deficit stress. Thus, these results indicated that protein degradation

Table 7. Correlation coefficients between physiological indexes and Bt protein content in cotton squares under soil salinity stress in 2017.

Cultivars Total N Soluble protein content NR activities GS activities GPT activities Free amino acid Protease activities Peptidase activities

NuCOTN 33B 0.970�� 0.969�� 0.923�� 0.953�� 0.930�� -0.948�� -0.944�� -0.877��

CCRI 07 0.969�� 0.955�� 0.916�� 0.939�� 0.941�� -0.939�� -0.870�� -0.852��

n = 21

�� and � represent significance at the 1% and 5% level, respectively.

https://doi.org/10.1371/journal.pone.0207013.t007

Table 8. Correlation coefficients between roots physiological indexes and Bt protein content under soil salinity

stress in 2017.

Cultivars RV RTA RAA

NuCOTN 33B 0.956�� 0.956�� 0.952��

CCRI 07 0.957�� 0.919�� 0.928��

n = 21

�� and � represent significance at the 1% and 5% level, respectively.

https://doi.org/10.1371/journal.pone.0207013.t008
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might be another reason for the decrement of square Bt protein concentration. However,

whether protein degradation is a dominate factor or not should be further investigated.

Many researches have demonstrated that salt stress adversely affected morphology and

function of cotton roots such as root length, root intensity, root absorption and root redox

activity [55,56]. In this study, it was found that RV, RAA and RTA reduced with increased soil

salinity levels, and decreased markedly when salinity level was above 9.1 dS m-1. High salinity

decreased photosynthesis of plants and inhibited carbohydrate metabolism, resulting in

decreased dry matter accumulation rate and reduced biomass allocation to root correspond-

ingly [57,58]. Furthermore, salt stress also induced oxidative damage caused by over produc-

tion of reactive oxygen species (ROS) in plant roots, led to protein degradation and metabolic

disorders in plant tissues [59,60]. Thus, the reduction of RV, RAA and RTA was partly due to

excessive salt in soil which was attributed to poor root development. Chen et al. [56] reported

that high salinity disturbed nutrient balance in cotton plants, more N was accumulated in the

leaves and stem parts rather than reproductive organs. Some studies have suggested that

nitrate reductase and glutamine synthetase belong to induced enzymes, and their activities

were elicited by NO3
- and NH4

+ accumulation in plant cells [50]. Hence, the reduction of NR

and GS activities in our study might also be relevant to inadequate N supply due to diminished

root metabolic activity caused by salinity stress. The correlation analysis further showed that

there was a significant positive correlation between RV, RAA, RTA and Bt protein content for

both cultivars. Therefore, we could conclude that restrictions in absorption and transportation

of nitrogen nutrition from roots led to nitrogen deficiency in squares, ultimately resulting in

lower nitrogen strength and lower Bt protein content.

Plants with different salt sensitivity display diverse levels of adaption against salinity.

These adaptions were partly correlated with the ability of absorption and assimilation of

nitrogen [48,50,61]. Our results were consistent with results of preceding studies [17] that Bt

protein content in salt-sensitive cultivar NuCOTN 33B was more affected by salinity stress

than salt-tolerant cultivar CCRI 07, although marked drop occurred at salinity level of 9.1

ds m-1 for both cultivars. Under salt stress, CCRI 07 maintained a higher soluble protein con-

tent and total N content than NuCOTN 33B compared with the control. This was partly due to

the relatively stronger N absorption ability of CCRI 07as indicated by RV, RTA and RAA.

Although high salinity reduced the activities NR, GS and GPT, and elevated protease and

peptidase significantly for both cultivars, the magnitude of variation was larger for NuCOTN

33B than CCRI 07. In consistency with our results, Li et al. [62] also found higher NR and

GS activities in Bt cultivars with high salt tolerance compared to salt sensitive cultivars

under different salinity levels, suggesting that the significant differences observed in activities

of NR, GS and GPT might contribute to the different Bt protein expression between two

cultivars.

To summarize, Bt protein content of cotton squares significantly reduced when Bt cotton

plants were subjected to high salinity stress. Reduced protein synthesis, elevated protein degra-

dation and declined ability of root absorption caused by salinity stress all resulted in the

reduced Bt protein expression, and thus decreased insecticidal efficiency and final yield. Thus,

optimized management strategies such as planting salt-tolerant cultivars, appropriate nitrogen

fertilizer application and employing more chemical control should be applied to Bt cotton

grown in saline land.
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