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Abstract: This paper presents a precise and fast method of ambiguity resolution (PREFMAR) for
frequencies L1/E1 and L5/E5a of GPS/GALILEO data. The developed method is designed for
precise and fast determination of ambiguities in GNSS phase observations. Ambiguities are chosen
based on mathematical search functions. The fact that no variance–covariance matrix (VC matrix)
with a so-called float solution is needed proves the innovativeness of the developed method. The
developed method enables determination of the ambiguities for short baseline double-difference
(DD) observations. The presented algorithms for the developed method enable unique and reliable
calculation of the ambiguity if the actual errors of code measurements of DD observations are less
than 0.38 m and the relative errors of phase observations are in the range of ±3 cm. The paper presents
both mathematical derivations of the functions used in the PREFMAR and numerical calculations
based on real double-difference GPS observations (L1-L5). The elaborated algorithms can be easily
implemented into GNSS receivers or mobile phones. Therefore, they can be widely used in many
geoscience applications, as well as in precise GPS/GALILEO navigation.
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1. Introduction

GNSS positioning, with centimeter precision, using precise phase observations requires the
inclusion of some unknown integer values, the so-called ambiguities, in satellite observations.
Double-difference observations using two observation points and two satellites are used in relative
positioning. For such an observation system, certain unknown N-values must be determined. These are
constant over time if the observations are continuous and have no data gaps. In addition, if two
frequencies are used, e.g., L1-L5, ambiguity needs to be determined for each frequency, i.e., NL1 and
NL5. The problem of determining integer ambiguities of phase measurements in GPS observations
dates back to 1978 [1,2]. Ambiguities are different for each pair of satellites and for each frequency,
which poses an extremely complex mathematical and physical problem. Many scientists have worked
to find the best and the most effective solution to this problem since the development of GPS systems [3].
In general, when using one or two frequencies, existing calculation methods can be divided into three
groups:

I. The first group of methods is based on linear combinations;
II. The second group of methods uses the original search functions in 3D coordinate area;
III. The third group is the most popular and employs the least-squares method.

The greatest step in ambiguity resolution was taken by Hatch–Melbourne–Wubbena [4–6] linear
combinations, especially by using the so-called wide lane and narrow lane combinations. However,
the first approach of ambiguity resolution was based on the use of mathematical functions [7]. Initially,
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the use of mathematical functions made it possible to achieve centimeter accuracy for vectors with a
length of up to 10 km during static sessions lasting 2–3 h [8]. Later studies on mathematical functions
improved efficiency of this approach [9–11]. The second method only uses the fractional part of
the carrier phase measurements to minimize the objective function with the use of the least-squares
estimation [12]. The third group is based on the integer least-squares estimation [13–15]. Methods of
the first and the third group can effectively complement each other, especially in iterative computational
strategies based on triple frequencies [16–18], in short baseline single-epoch solutions [19,20], and in
longer baseline solutions [21].

Most ambiguity solutions start with the determination of estimated coordinates in the global XYZ
system in order to determine the approximate ambiguity values, followed by a second and a third stage:
estimation and validation. The second stage (estimation) is specific to various methods, as it indicates
the most probable sets of ambiguities and is different in each of the ambiguity determination methods.
The developed precise and fast method of ambiguity resolution (PREFMAR) uses mathematical
functions to choose sets of ambiguities for GNSS observations transmitted on at least two frequencies.
Therefore, each frequency combination has its own special properties and different efficiency in the
reliable determination of unknown N-values. This research presents a method for determining the
most probable ambiguities for GNSS signals transmitted on two frequencies: L1/E1 = 1575.42 MHz
and L5/E5a = 1176.45 MHz. Signals of such frequencies are transmitted by GPS satellites, designated
as L1 and L5, and GALILEO satellites, designated as E1 and E5a. Therefore, the L1/E1-L5/E5a
frequency combination allows the integration of GPS and GALILEO for precise and reliable GNSS
positioning [22–24].The first part of this contribution presents the mathematical background of the
new method of ambiguity estimation based on new functions: Ψ(NL1)NL1NL5

and Ψ(NL5)NL5NL1
. The

second part of the work provides a detailed numerical example of ambiguity estimation (NL1, NL5)
based on real double-difference L1-L5 GPS data.

2. Observation of Double-Difference Equations for GPS Observations on L1 and L5 Frequencies
and Their Intercorrelation

For GPS observations transmitted on two frequencies (L1 and L5), we can write the following
observation equations for double-difference phase observations (φL1,φL5) and code observations
(PL1, PL5) for a given measurement epoch (t):

λL1φL1(t) = %(t) + λL1NL1 + λL1εφL1(t) (1)

PL1(t) = %(t) + εPL1(t) (2)

λL5φL5(t) = %(t) + λL5NL5 + λL5εφL5(t) (3)

PL5(t) = %(t) + εPL5(t) (4)

where φL1,φL5 are observations of double-difference (DD) phase measurements for L1 and L5
frequencies (in cycles), PL1, PL5 are observations of DD in code measurements (m), εφL1 ,εφL5 are errors
of phase DD observations, λL1 = 0.190293672798365 (m), and λL5 = 0.254828048790854 (m).

There are three unknowns in the above equations: the value of %(t) and the sought integral values
NL1 and NL5. By separately examining the frequencies L1 and L5 (1-2) and (3-4), we can calculate the
ambiguities NL1 and NL5 for a single measurement epoch, which are known in the literature as the
so-called geometry-free (GF) integer solutions [25]:

NL1 =

[
φL1(t) −

PL1(t)
λL1

]
roundoff

(5)

NL5 =

[
φL5(t) −

PL5(t)
λL5

]
roundoff

(6)
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Due to the transmission of signals at two frequencies at the same time, code and phase observations
are strongly correlated. Similarly, as in Equation (6), Equation (5) may only be dependent on code
measurements at frequency L5, as follows:

NL1 =

[
φL1(t) −

PL5(t)
λL1

]
roundoff

(7)

Instead of value PL5(t), PL1(t) could be used, but practice shows that code observations PL5 are
much more accurate than PL1 observations (see Figure 1). Code observations PL5 are also much more
accurate than PL1 in smartphones [26]. The values of GF ambiguity for NL1 using code PL1 (based
on Equation (5)) and PL5 (based on Equation (7)) have been presented in Figure 1. The time series of
single-epoch DD geometry-free float solutions presented in Figure 1 have been calculated using real
GPS observations, made with Javad GNSS receivers, for a 10-min session with a measurement interval
of 1 s.
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Figure 1. Time series of single-epoch double-difference (DD) geometry-free float solutions NL1 with
the use of PL1 and PL5.

.
GPS observations, expressed in formulas (6) and (7), are strongly correlated as they depend

on the same code observation [27], e.g., observation PL5. According to Teunissen’s research, strong
correlation can also be obtained when the code PL5 is replaced by a code PL1 or by 2−1(PL1 + PL5).
An example of correlated ambiguities for a pair of satellites (G01-G06) and observation φL1,φL5, PL5 is
shown in Figure 2, both for sessions with a length of five measurement epochs and for sessions of 600
observation epochs.
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Figure 2 shows correlated ambiguities NL1 and NL5, using only the PL5 code. Please note that the
float ambiguities are arranged precisely along a straight line, both for 5-s and 10-min sessions.



Sensors 2020, 20, 4318 4 of 14

3. Ambiguity Regression Line Equations

If the correlated float ambiguities are arranged along a straight line, the regression equation for
the ambiguity NL5 in relation to ambiguity NL1 in the ambiguity system NL1NL5 may be written as

NL5 = aL1,L5NL1 + bL1,L5 (8)

or
ÑL5 = aL1,L5ÑL1 + bL1,L5 (9)

where
aL1,L5 =

fL5

fL1
=
λL1

λL5
=

115
154

(10)

As ambiguities in the form of real numbers (ÑL1, ÑL5) are located along a straight line expressed
by (9), the value of bL1,L5 can be calculated based on approximate float values (ÑL1,0, ÑL5,0):

bL1,L5 = ÑL5,0 −
115
154

ÑL1,0 (11)

Thus, taking (11) into account, Equation (8) can be written as follows:

NL5 =
115
154

(NL1 − ÑL1,0) + ÑL5,0 (12)

If both integer (NL5) and float (ÑL5) ambiguities lie on the same straight line, the ÑL5 can also be
written as

ÑL5 =
115
154

(NL1 − ÑL1,0) + ÑL5,0 (13)

Thus, Equations (12) and (13) represent regression line equations for both real ambiguities (13)
and the integer ambiguities (12) and are dependent on approximate values of ÑL1,0 and ÑL5,0.

4. Ambiguity Functions for L1-L5 GPS Data

Let us, therefore, define a certain function, Ψ(NL1)NL1NL5
, as follows:

Ψ(NL1)NL1NL5
= λL5

(
ÑL5 −

[
ÑL5

]
roundoff

)
(14)

Equation (14), with Equation (13) taken into account, for the system NL1NL5 can be written
as follows:

Ψ(NL1)NL1NL5
= λL5

(
ÑL5 −

[
ÑL5

]
roundoff

)
= λL5

(
115
154 (NL1 − ÑL1,0) + ÑL5,0 −

[
115
154 (NL1 − ÑL1,0) + ÑL5,0

]
roundoff

) (15)

where ÑL1,0 and ÑL5,0 represent a float solution or are calculated as follows:

ÑL1,0 = φL1(t) −
PL5(t)
λL1

(16)

ÑL5,0 = φL5(t) −
PL5(t)
λL5

(17)

Similarly, for system NL5NL1 and function Ψ(NL5)NL5NL1
we obtain

Ψ(NL5)NL5NL1
= λL1

(
ÑL1 −

[
ÑL1

]
roundoff

)
= λL1

(
154
115 (NL5 − ÑL5,0) + ÑL1,0 −

[
154
115 (NL5 − ÑL5,0) + ÑL1,0

]
roundoff

) (18)
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Behaviors of the functions
∣∣∣Ψ(NL1)NL1NL5

∣∣∣ and
∣∣∣Ψ(NL5)NL5NL1

∣∣∣ have been presented in Figures 3
and 4, where their minima, and thus their periodic character (repeatability), can be clearly seen.
The horizontal axes represent integer candidates, but the vertical ones represent values of the
ambiguity functions.Sensors 2020, 20, x FOR PEER REVIEW 5 of 14 
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Based on an analysis of values of the function Ψ(NL1)NL1NL5
, in the (−0.127; +0.126 m), interval,

it can be observed that the values of the function Ψ(NL1)NL1NL5
for fL1 and fL5 frequencies of

GPS observations repeat precisely every 154 NL1 cycles. Values of the function Ψ(NL5)NL5NL1
are

in the interval (−0.094; +0.094 m) and repeat precisely every 115 NL5 cycles. The functions
Ψ(NL1)NL1NL5

and Ψ(NL5)NL5NL1
have the same wavelength (λΨ = 29.3052256109482 m) and frequency

( fΨ = 10.23 MHz) and are equivalent in the process of determining ambiguities NL1 and NL5, for values∣∣∣εL1,L5
∣∣∣ ≤ 0.5λL1 ≤ 0.0951468363991824 m (19)

where εL1,L5 represents both relative errors in phase observations, i.e.,

εL1,L5(t) = λL5εφL5(t) − λL1εφL1(t) (20)

and the value εL1,L5 meets the relation expressed by Equation (14), i.e.,

εL1,L5 = Ψ(NL1)NL1NL5
= λL5

(
ÑL5 −

[
ÑL5

]
roundoff

)
(21)
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Selection of the most likely sets of ambiguities (Ni
L1, Ni

L5) in the PREFMAR depends on approximate
values of the float solution (ÑL1,0, ÑL5,0) and relative error values in L1 and L2 carrier phase observations.

5. Ambiguity Search Space in the PREFMAR

Generally, we can assume that the sought integer ambiguities NL1 and NL5 lie exactly on the
regression line, which additionally needs to pass through an unknown and sought point with
coordinates N̂L1 and N̂L5. Unfortunately, this is only when (I) εφL1 = 0 and εφL5 = 0, and
therefore when the errors in phase observations are equal to zero, or (II) when the relative errors in
phase observations are equal to zero, i.e., εL1,L5 = 0. The first situation corresponds to ideal phase
observations, whereas the second one is in the situation when λL1εφL1 = λL5εφL5 . Detailed analysis of
the functions

∣∣∣Ψ(NL1)NL1NL5

∣∣∣ and
∣∣∣Ψ(NL5)NL5NL1

∣∣∣ shows that the minima of the functions
∣∣∣Ψ(NL1)NL1NL5

∣∣∣
and

∣∣∣Ψ(NL5)NL5NL1

∣∣∣ indicate the sought ambiguity values (N̂L1 and N̂L5), but only if the errors in phase
observations are equal to or close to zero. However, the question that remains is how big the errors in
DD phase observations can be for the ambiguities to be determined by the minima of these functions. In
the case of phase measurements L1-L5, this depends on the smallest value of the function Ψ(NL1)NL1NL5

or Ψ(NL5)NL5NL1
, and these are the values ∆Ψ(NL1)NL1NL5

and ∆Ψ(NL5)NL5NL1
, which we calculate as

∆Ψ(NL1)NL1NL5
= ∆Ψ(NL5)NL5NL1

=
1

154
λL5 =

1
115

λL1 = 0.0016 m (22)

The formula (22), therefore, defines the smallest unit of function Ψ(NL1)NL1NL5
in the NL1NL5

system and the smallest unit of function Ψ(NL5)NL5NL1
in the NL5NL1 system. Thus, if the relative

errors in DD phase observations are less than half of this unit (22), i.e., less than 0.0008 m, then the
minima of the functions

∣∣∣Ψ(NL1)NL1NL5

∣∣∣ and
∣∣∣Ψ(NL5)NL5NL1

∣∣∣ determine, on the horizontal axis, the sought
ambiguities, with NL1 using the minimum of the

∣∣∣Ψ(NL1)NL1NL5

∣∣∣ function and NL5 using the minimum

of the
∣∣∣Ψ(NL5)NL5NL1

∣∣∣ function. In both cases, approximate values ÑL1,0 and ÑL5,0 must be at a distance
of less than 14.653 m from the true values sought (N̂L1 and N̂L5).

If, however, the absolute values ∆Ψ(NL1)NL1NL5
or ∆Ψ(NL5)NL5NL1

are different from zero and larger
than 0.0008 m, then ambiguity values will be located at different points than the minima of the∣∣∣Ψ(NL1)NL1NL5

∣∣∣ and
∣∣∣Ψ(NL5)NL5NL1

∣∣∣ functions, and their selection will strongly depend on the real values

εL1,L5 and on the approximate ÑL1,0 and ÑL5,0 values.
When analyzing the graph of the function Ψ(NL1)NL1NL5

in the system NL1NL5 and the graph
of the function Ψ(NL5)NL5NL1

in the system NL5NL1, we should start the search for the first pair of

ambiguities [NI
L1, NI

L5] in the area of errors of code measurements below 2λL1 float [ÑL1,0, ÑL5,0], i.e.,∣∣∣(NI
L1 − ÑL1,0)

∣∣∣ < 2λL1, and for relative errors of phase observations εL1,L5 ⊂ < −32 mm;+32 mm >; we
perform the search for the second pair [NII

L1, NII
L5] in the area 4λL1, i.e.,

∣∣∣(NII
L1 − ÑL1,0)

∣∣∣ < 4λL1; while the
third pair [NIII

L1 , NIII
L5] of ambiguities must be at a distance of 6λL1 from the value ÑL1,0 and ÑL5,0.

Let us, therefore, assume that the values of the function Ψ(NL1)NL1NL5
lie within the range ±32 mm,

then the function Ψ(NL1)NL1NL5
behaves as shown in Figure 5. Similarly, for the function Ψ(NL5)NL5NL1

,
we assume a range of values of ±32 mm (Figure 6). Please note that for relative errors in DD phase
observations with values up to ±3 cm, the ambiguity NL1 changes exactly by four cycles, whereas
ambiguity NL5 changes by three cycles. For comparison, the search areas for Ψ(NL1)NL1NL5

and
Ψ(NL5)NL5NL1

which lie within ±62 mm have been presented in Figures 7 and 8.
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For relative errors of carrier phases (20) in the range < −32;+32 mm >, these will be the following
proposals for NL1 (Figure 5) and for NL5 (Figure 6):

NL1 ∈


0; 4; 8; 12; 16; 20; 24; 28; 32; 36; 39; 43; 47;

51; 55; 59; 63; 67; 71; 75; 79; 83; 87; 91; 95; 99;
103; 107; 111; 115; 118; 122; 126; 130; 134; 138;

142; 146; 150; 154

,

NL5 ∈


0; 3; 6; 9; 12; 15; 18; 21; 24; 27; 29; 32; 35;

38; 41; 44; 47; 50; 53; 56; 59; 62; 65; 68; 71; 74;
77; 80; 83; 86; 88; 91; 94; 97; 100; 103;

106; 109; 112; 115


Figures 7 and 8 show a template of possible ambiguities for relative errors in DD phase observations

up to ±62 mm, which seems to be sufficient from a practical point of view even for baselines of several
kilometers or much more and for noisy GPS/GALILEO data in mobile phones.

6. Calculation Scheme for N Measurement Epochs Using the PREFMAR

For continuous GNSS observations, and using more than one measurement epoch, general
formulas for the PREFMAR are used, which can be summarized in the following main points:

I. Calculation of correlated approximate values of ÑL1,0 and ÑL5,0. Determination of float value
based on the global solution ÑL1,0 and ÑL5,0, or using only DD observations for any pair of
satellites (for n epochs), i.e.,

ÑL1,0 = n−1
n∑

i = 1

(
φL1,i −

PL5

λL1

)
(23)

ÑL5,0 = n−1
n∑

i = 1

(
φL5,i −

PL5

λL5

)
(24)

II. Regression line estimation.

ÑL5 =
115
154

(NL1 − ÑL1,0) + ÑL5,0 (25)

ÑL1 =
154
115

(NL5 − ÑL5,0) + ÑL1,0 (26)
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III. Determination of search functions Ψ(NL1)NL1NL5
(m) or Ψ(NL5)NL5NL1

(m).

Ψ(NL1)NL1NL2
= = λL5

(115
154

(NL1 − ÑL1,0) + ÑL5,0 −

[115
154

(NL1 − ÑL1,0) + ÑL5,0

]
roundoff

)
(27)

Ψ(NL5)NL5NL1
= = λL1

(154
115

(NL5 − ÑL5,0) + ÑL1,0 −

[154
115

(NL5 − ÑL5,0) + ÑL1,0

]
roundoff

)
(28)

IV. Selection of the most likely sets of ambiguities, depending on approximate values (ÑL1,0,ÑL5,0)
and using function Ψ(NL1)NL1NL5

or function Ψ(NL5)NL5NL1
.

For short baselines, and assuming that εL1,L5 ⊂ < −32;+32 mm >, the four most likely sets of
ambiguities (Ni

L1, Ni
L5) will be at a distance of up to 1.55 m from the float value and will be selected

as follows:

Solution no I : =
{

NI
L1

NI
L5

, where
∣∣∣(NI

L1 − ÑL1,0)
∣∣∣ < 2λL1, (< 0.381 m) (29)

Solution no II : =
{

NII
L1

NII
L5

, where
∣∣∣(NII

L1 − ÑL1,0)
∣∣∣ < 4λL1, (< 0.761 m) (30)

Solution no III : =
{

NIII
L1

NIII
L5

, where
∣∣∣(NIII

L1 − ÑL1,0)
∣∣∣ < 6λL1, (< 1.142 m) (31)

Solution no IV : =
{

NIV
L1

NIV
L5

, where
∣∣∣(NIV

L1 − ÑL1,0)
∣∣∣ < 8λL1, (< 1.552 m) (32)

However, if we assume that the relative errors εL1,L5 ⊂ < −62;+62 mm >, then solutions I and
II remain the same as for εL1,L5 ⊂ < −32;+32 mm >, whereas solutions III and IV are at a distance of
3λL1 and 4λL1 from the float value, respectively. Limiting the search range to 4λL1 requires an accuracy
of the float position of about 0.76 m if the search range is set for εL1,L5 ⊂ < −62;+62 mm >. However,
given the number of satellites currently available, obtaining an accuracy of the float solution better
than 0.76 m should not be a problem, which allows a quick indication of the most likely ambiguities
for validation, even for GNSS measurements under difficult observational conditions or for mobile
phones. However, based on preliminary tests, for high-quality GNSS receivers, the search area of
ambiguity resolution NL1 and NL5 for relative errors εL1,L5 ⊂ < −32;+32 mm > should be sufficient for
short baseline RTK positioning.

7. Numerical Example Using the PREFMAR and Float Solution

The formulas presented for the developed method were applied to real GPS data, for a very short
baseline, based on DD observations for the G01–G06 satellite pair, using five observation epochs. The
DD observations for these satellites are shown in Table 1.

Table 1. DD observations for the G01–G06 satellite pair.

Epoch C1 (m) L1 (c) P5 (m) L5 (c) NL1 (c) NL5 (c)

1 7.437 42.686 6.967 36.390 6.074 9.050
2 7.093 42.725 7.073 36.407 5.556 8.651
3 5.402 42.654 7.132 36.365 5.175 8.378
4 7.393 42.699 7.333 36.394 4.164 7.618
5 3.771 42.681 7.221 36.384 4.734 8.047

Average 6.219 42.689 7.145 36.388 5.141 8.349

Sets of the most probable ambiguities (NL1,NL5) can be determined both with the use of function
Ψ(NL1)NL1NL5

and function Ψ(NL5)NL5NL1
. Let us thus present the necessary calculations in the form

of Table 2 for the function Ψ(NL1)NL1NL5
and using 5 DD observations for which the float values are
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respectively equal to ÑL1,0 = 5.141 and ÑL5,0 = 8.349. Then, for subsequent integer values NL1,
located around the float solution ÑL1,0, within the range of, e.g., ±8 NL1 cycles (i.e., at a distance of
1.5 m) from approximate values of ÑL1,0 = 5.141, we calculate elements of the column ÑL5,i using
the formula

ÑL5,i =
115
154
∗NL1,i+8.349−

115
156
∗ 5.141 (33)

and the values of the Ψ(NL1)NL1NL5
function are calculated with the formula

Ψ(NL1)NL1NL5
= λL5

(
115
154 NL1,i + 8.349− 115

154 ∗ 5.141

−

[
115
154 NL1,i + 8.349− 115

154 ∗ 5.141
]
roundoff

) (34)

Table 2. The set of integer candidates based on the function Ψ(NL1)NL1NL2
, for ÑL1,0 = 5.141 and

ÑL5,0 = 8.349, where NL1,i ∈ < −3; 13 >.

NL1 ÑL5 Ψ(NL1)NL1NL5
(m) Solution No. NL5 = [ÑL5]roundoff

−3 2.270 0.069 2
−2 3.016 0.004 IV 3
−1 3.763 −0.060 4
0 4.510 −0.125 5
1 5.257 0.065 5
2 6.003 0.001 II 6
3 6.750 −0.064 7
4 7.497 0.127 7
5 8.244 0.062 8
6 8.990 −0.002 I 9
7 9.737 −0.067 10
8 10.484 0.123 10
9 11.231 0.059 11
10 11.977 −0.006 III 12
11 12.724 −0.070 13
12 13.471 0.120 13
13 14.218 0.055 14

Similarly, for the function Ψ(NL5)NL5NL1
, the calculations are shown in Table 3. The values of the

function Ψ(NL5)NL5NL1
are calculated from the following formula:

Ψ(NL5)NL5NL1
= λL1

(
154
115 NL5 + 5.141− 154

115 ∗ 8.349

−

[
154
115 NL5 + 5.141− 154

115 ∗ 8.349
]
roundoff

) (35)

Identical sets of the most probable ambiguities have been obtained based on Tables 2 and 3,
which proves the reliability of the mathematical functions Ψ(NL1)NL1NL5

and Ψ(NL5)NL5NL1
used in the

PREFMAR. The lowest values of the search functions were obtained for [NL1 = 2; NL5 = 6]; the
second proposal was [NL1 = 6; NL5 = 9], and the third proposal was [NL1 = 10; NL5 = 12]. Similar
results are obtained using the data from Table 1, for any of the individual DD epochs. The information
contained in Tables 2 and 3 can also be presented in graphical form, as shown in Figures 9 and 10.

However, as already mentioned before, taking into account the accuracy of the code measurements,
the most probable pair of ambiguities must be selected in a distance from a float solution below 2λL1

(i.e., NI
L1 = 6; NI

L5 = 9); the search for the second pair is performed in the area 4λL1 from float
solution (i.e., NII

L1 = 2; NII
L5 = 6), while the third pair of ambiguities must be at a distance 6λL1 (i.e.,

NIII
L1 = 10; NIII

L5 = 12). However, for the relative errors up to ±62 mm, the first four most probable pair
of ambiguities will be as follows: [NI

L1 = 6; NI
L5 = 9], [NII

L1 = 2; NII
L5 = 6], [NIII

L1 = 5; NIII
L5 = 8],

and [NIV
L1 = 9; NIV

L5 = 11].
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Table 3. Set of integer candidates based on the function Ψ(NL5)NL5NL1
, for ÑL5,0 = 8.349 and

ÑL1,0 = 5.141, where NL5 ∈ < 2; 14 >.

NL5 ÑL1 Ψ(NL5)NL5NL1
(m) Solution No. NL1=[ÑL1]roundoff

2 −3.361 −0.069 −3
3 −2.022 −0.004 IV −2
4 −0.683 0.060 −1
5 0.656 −0.065 1
6 1.995 −0.001 II 2
7 3.335 0.064 3
8 4.674 −0.062 5
9 6.013 0.002 I 6
10 7.352 0.067 7
11 8.691 −0.059 9
12 10.030 0.006 III 10
13 11.369 0.070 11
14 12.708 −0.055 13
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8. Discussion

Generally, the search area in the PREFMAR is represented by a parallelogram. The orientation of
this parallelogram in a given system of ambiguities is only dependent on the frequency of the GNSS
signals transmitted. For system NL1NL5, the short sides of this parallelogram are parallel to the vertical
lines of the system NL1NL5, i.e., to the NL5 axis (Figure 9). The longer side of this parallelogram is
slanted with respect to the NL5 axis under an angle of αL1,L5 = tan−1(115/154) = 36.750655o, and the
geometrical center of the search area is located at point (ÑL1,0, ÑL5,0). Similarly, for the system NL5NL1

(Figure 10), αL5,L1 = tan−1(154/115) = 53.249344o.
Please note that the presented functions fulfil the relation Ψ(NL1)NL1NL5

= −Ψ(NL5)NL5NL1
because

the values of the functions represent relative errors of phase observations between L1-L5, which can be
additionally written in a simplified manner:

Ψ(NL1)NL1NL5
= [λL5φL5(t) − λL5NL5] − [λL1φL1(t) − λL1NL1] (36)

Ψ(NL5)NL5NL1
= [λL1φL1(t) − λL1NL1] − [λL5φL5(t) − λL5NL5] (37)

The formulas presented above also allow indicating integer ambiguities by substituting appropriate
sets of ambiguities NL1 and NL5, near the float ambiguity, e.g., for the case presented above using 5
DD epochs, we have φL1(t) = 42.689 and φL5(t) = 36.388 thus for [NL1 = 6; NL5 = 9]; based on
formulas (36) and (37) we obtain:

Ψ(NL1)NL1NL5
= [λL5 ∗ 36.388− λL5 ∗ 9] − [λL1 ∗ 42.689− λL1 ∗ 6] = −0.002 m (38)

Ψ(NL5)NL5NL1
= [λL1 ∗ 42.689− λL1 ∗ 6] − [λL5 ∗ 36.388− λL5 ∗ 9] = 0.002 m (39)

which is equivalent to the values of the functions Ψ(NL1)NL1NL5
and Ψ(NL5)NL5NL1

obtained based on
formulas (16) and (19) and presented in Tables 2 and 3, respectively.

Presented equations of ambiguity functions can be used for different double or triple frequencies;
however, they have specific properties in every case. Therefore, we are going to present the most
popular combinations of GNSS frequencies in the near future to show the power of the PREFMAR.

It should be emphasized that the PREFMAR gives results based on GNSS measurements from
only two available GNSS satellites (see Section 7); therefore, we can use this method effectively in
challenging observational satellite conditions.

Furthermore, to obtain the most accurate float solutions, we can effectively use the Kalman filter
in differential [28] or relative code GNSS positioning.

9. Summary and Conclusions

This research presents a precise and fast method of ambiguity resolution (PREFMAR) for
indicating the most probable ambiguities for GNSS observations transmitted on two frequencies, i.e.,
L1/E1 = 1575.42 MHz and L5/E5a = 1176.45 MHz. Signals with such frequencies are transmitted
by satellites of the American GPS system and the European GALILEO system. Therefore, the
combination of these frequencies allows the precise integration of the various GNSS positioning
systems. The described method is used to determine ambiguities using only one observation epoch
immediately. This PREFMAR is intended for both short and long baselines. Its efficiency mostly
depends on the values of relative errors in DD phase observations and on the precision of code
measurements. Ambiguity is chosen based on mathematical functions Ψ(NL1)NL1NL5

or Ψ(NL5)NL5NL1
,

using a correlation between the value of a precisely defined ambiguity and dependent only on the
frequency of satellite signals. The PREFMAR allows the ambiguities for single measurement epochs
to be determined without using the VC matrix from the float solution and also allows the most
probable ambiguities to be indicated even for individual DD observations. The presented mathematical
functions can also be used for precise and immediate re-initialization of the ambiguities. Additionally,
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the contribution presents interpretations of the derived functions Ψ(NL1)NL1NL5
and Ψ(NL5)NL5NL1

in
relation to the relative errors in phase observations. As a result, a simplified calculation method
is included for values of the functions Ψ(NL1)NL1NL5

and Ψ(NL5)NL5NL1
, which are equivalent to the

mathematically detailed versions, but only in the range 0.5λL5 for function Ψ(NL1)NL1NL5
and in the

range 0.5λL1 for function Ψ(NL5)NL5NL1
.
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