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ESCRT-III-driven piecemeal micro-ER-phagy
remodels the ER during recovery from ER stress
Marisa Loi1,2, Andrea Raimondi3, Diego Morone1 & Maurizio Molinari 1,4*

The endoplasmic reticulum (ER) produces about 40% of the nucleated cell’s proteome. ER

size and content in molecular chaperones increase upon physiologic and pathologic stresses

on activation of unfolded protein responses (UPR). On stress resolution, the mammalian ER is

remodeled to pre-stress, physiologic size and function on activation of the LC3-binding

activity of the translocon component SEC62. This elicits recov-ER-phagy, i.e., the delivery of

the excess ER generated during the phase of stress to endolysosomes (EL) for clearance.

Here, ultrastructural and genetic analyses reveal that recov-ER-phagy entails the LC3 lipi-

dation machinery and proceeds via piecemeal micro-ER-phagy, where RAB7/LAMP1-positive

EL directly engulf excess ER in processes that rely on the Endosomal Sorting Complex

Required for Transport (ESCRT)-III component CHMP4B and the accessory AAA+ ATPase

VPS4A. Thus, ESCRT-III-driven micro-ER-phagy emerges as a key catabolic pathway acti-

vated to remodel the mammalian ER on recovery from ER stress.
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The endoplasmic reticulum (ER) is the site of protein, lipid,
and oligosaccharide synthesis, calcium storage, and drugs
detoxification. Its size (and functions) is maintained at

steady state and is adapted to environmental and developmental
conditions by a homeostatic equation that comprises the ana-
bolic transcriptional and translational programs of the unfolded
protein response (UPR) and the catabolic programs relying on
receptor-mediated, lysosomal clearance of select ER sub-
domains. The UPR increases the size of the ER and its content in
resident proteins1,2. In contrast, the lysosomal-regulated ER
turnover maintains ER size at steady state, prevents excessive ER
expansion during ER stress, and, as we recently discovered,
regulates ER return at physiologic size during recovery from ER
stresses3,4. Selective clearance of the ER by endolysosomes (ELs)
has originally been observed, in the mid-1960s, during butterfly
pupation5 and remained confined to morphological analyses for
over 50 years. It is only with the discovery that lysosomal
turnover of the ER is controlled by dedicated ER-resident pro-
teins (FAM134B6, SEC627, RTN38, ATL39, CCPG110,
TEX26411,12 in mammalian cells, Atg39 and Atg40 in yeast13)
that the studies entered a phase of mechanistic dissection
(reviewed in refs. 4,14–18). All these proteins engage components
of the autophagic machinery via their cytosolic domains, which
display FIP200-10 and/or LC3-6–8,10–12 and/or GABARAP-
interacting9 regions in mammals, and Atg11- and/or Atg8-
interacting motifs in yeast13. Nutrient deprivation indis-
criminately enhances several autophagic pathways to rapidly
mobilize amino acids and other cellular building blocks and it
has extensively been used to activate and investigate the
mechanisms of receptor-mediated ER clearance by mammalian
and yeast macro-ER-phagy pathways6,8–13. Starvation-induced
mammalian macro-ER-phagy relies on engulfment of ER sub-
domains decorated with FAM134B6, RTN38, ATL39, CCPG110,
and TEX26411,12 by double-membrane autophagosomes. These
eventually fuse with EL for cargo clearance. However, ER-
centric signals do exist that trigger clearance of select ER sub-
domains on activation of individual receptors as reported for
CCPG1-mediated control of ER expansion during ER stress10,
for SEC62-controlled reduction of the ER volume to physiologic
state after conclusions of acute ER stresses7, and for ER-to-
lysosome-associated degradation (ERLAD) pathways activated
to deliver proteasome-resistant misfolded proteins from the ER
to EL for destruction19–21 (and reviewed in refs. 15,17).
Mechanistic dissection of all these pathways is in its infancy and
characterization of signal-specific (ER-centric) activation of
individual LC3 receptors at the ER membrane awaits further
studies and is assessed here in the case of SEC62-regulated
recov-ER-phagy. SEC62 is an essential component of the SEC61
protein translocation machinery, where it acts in a functional
complex with SEC63 to promote the post-translational entrance
of newly synthesized polypeptides in the ER22,23. Notably, the
function of SEC62 in selective delivery of ER subdomains to EL
for clearance is not activated by nutrient deprivation12, nor at
steady state or during ER stress7. Our studies revealed that
SEC62 controls delivery of excess ER to RAB7/LAMP1-positive
EL for clearance during the recovery phase that follows the
conclusion of acute ER stresses. In our experiments, acute ER
stresses were triggered on transient perturbation of calcium or
redox homeostasis to mimic original observation in liver cells
showing lysosomal removal of excess ER after cessation of
treatments with antiepileptic drugs such as phenobarbital24,25

(please refer to the detailed description of the protocols for
reversible and non-toxic induction of ER stress in ref. 7 and in
the Methods section). SEC62-controlled ER turnover during
recovery from ER stress, recov-ER-phagy, can also be induced
on SEC62 overexpression or on silencing of SEC63, which

participates in SEC62-containing heterodimers7,26. Here we
report that in contrast to starvation-induced, receptor-mediated
ER-clearance6,8–13, SEC62-driven ER turnover, which is acti-
vated in response to an ER-centric signal, that is, the conclusion
of an acute ER stress, does not rely on engagement of the macro-
autophagy pathway. Rather, resolution of ER stress activates
catabolic processes where RAB7/LAMP1-positive EL directly
engulf excess ER subdomains via ESCRT-III-mediated piece-
meal micro-ER-phagy.

Results
ER subdomains delivery within EL on ER stress resolution. To
characterize the mechanisms of mammalian ER remodeling that
re-establish physiologic (pre-stress) condition on resolution of ER
stresses, we made use of a previously established protocol for
acute induction of ER stress on transient exposure of mouse
embryonic fibroblasts (MEFs) to cyclopiazonic acid (CPA)7, a
reversible inhibitor of the sarco/ER calcium ATPase27. Western
blot analyses show that the level of ER stress marker proteins
increases in wild-type (WT) MEFs exposed to CPA (Fig. 1a, lane
1 vs. 2, upper and middle panels for BiP and HERP, respectively)
and decreases after interruption of the pharmacologic treatment
(lane 3)7. For ERAD factors like HERP, return at the pre-stress
level relies on the activity of cytosolic proteasomes and other
ERAD tuning mechanisms7,28–30. For conventional ER-resident
chaperones and members of the protein disulfide isomerase
superfamily, it relies on SEC62-controlled delivery of excess ER
within EL for clearance in catabolic processes collectively defined
as recov-ER-phagy7. Inactivation of lysosomal hydrolases with
bafilomycin A1 (BafA1) delays return of these ER-resident cha-
perones to the pre-stress level7 and causes their accumulation
within EL displaying RAB7 and LAMP1 at the limiting mem-
brane7 (Fig. 1b, o, Supplementary Fig. 1a). Recov-ER-phagy is
faithfully recapitulated on SEC62 overexpression (Supplementary
Fig. 1b) and on release of orphan endogenous SEC62 upon
silencing of SEC63 expression7.

LC3 lipidation in resolution of ER stress. LC3 lipidation is
required for FAM134B-, RTN3-, CCPG1-, ATL3-, and TEX264-
dependent macro-ER-phagy3,6,8–12,14,18. Not surprisingly, indi-
vidual ablation of Atg4B, Atg7, or Atg16L1, three components of
the LC3 lipidation machinery (Supplementary Fig. 2)31, inhibits
return of ER stress-induced marker proteins to the pre-stress level
(BiP in Fig. 1c, e, g, upper panels, lanes 2 vs. 3). Return of HERP
at the pre-stress level, which relies on cytosolic proteasomes7,28,
remains unaffected (Fig. 1c, e, g, middle panels). Consistently,
ablation of LC3 lipidation abolishes delivery of ER subdomains
within EL during recovery from ER stress (Fig. 1d, f, h, o) and
when recov-ER-phagy is recapitulated by overexpression of HA-
tagged SEC62 (Supplementary Fig. 1d).

Autophagosome dispensability to resolve ER stress. To corro-
borate the notion that SEC62-driven clearance of excess ER on
UPR resolution occurs via macro-ER-phagy, we verified the
involvement of the autophagosome biogenesis machinery in
recov-ER-phagy. Surprisingly, individual ablation of Ulk1, Ulk2,
Atg13, and Atg14, which are dispensable for LC3 lipidation
(Supplementary Fig. 2) but are required for biogenesis of
double-membrane autophagosomes31–34, does not prevent
return of BiP to pre-stress level on ER stress resolution (Fig. 1i,
k, m, upper panels, lanes 1 vs. 3). Consistently, inactivation of
autophagosome biogenesis does not affect delivery of excess ER
within EL during recovery from stress (Fig. 1j, l, n, o) and when
recov-ER-phagy is recapitulated by SEC62 overexpression
(Supplementary Fig. 1e–g).
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SNAREs dispensability to resolve ER stress. To investigate
lysosomal delivery of ER subdomains with ultrastructural resolu-
tion, we turned to immuno electron microscopy (IEM) and
invariably found that ER-derived vesicles (EVs) displaying SEC62
at their limiting membrane (red arrows, Fig. 2a, b) are sequestered
by a SEC62-negative membrane (blue arrows, Fig. 2a, b), within
the EL (green arrows, Fig. 2a, b). This topology is consistent with
macro-ER-phagy, where ER subdomains are captured by double-
membrane autophagosomes that eventually fuse with EL to clear
their cargo (Fig. 2c), or with micro-ER-phagy, where ER sub-
domains are directly engulfed by EL (Fig. 2d). A major difference
between macro- and micro-autophagy is the requirement for the
former of an heterotypic membrane fusion event (arrow 2, Fig. 2c,

fusion vs. Fig. 2d, engulfment), which is substantially impaired on
ablation of the SNARE proteins STX17 and VAMP835,36. Ablation
of STX17 (Fig. 3a, d, f) or of VAMP8 (Fig. 3b, e, f) does not affect
delivery of excess ER within EL and does not delay return of
chaperones at their pre-stress level during recovery from ER stress
(Fig. 3g, h). In agreement with our genetic analyses showing
dispensability of autophagosomes and macro-ER-phagy
(Figs. 1i–o, 3a–h), IEM analyses do not reveal SEC62-labeled ER
fragments within double-membrane autophagosomes when cells
are recovering from ER stress. Rather, they show EL caught in the
act of capturing SEC62-positive EV by inward invagination of
their membranes (Fig. 4a–d and Supplementary Movie 1). Thus,
recov-ER-phagy is topologically equivalent to micro-autophagy, a
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poorly characterized type of autophagy involved in clearance of
organelles including large ER whorls in yeast37–40.

CHMP4B and VPS4A intervention during ER stress resolu-
tion. Inward membrane invagination (i.e., reverse-topology mem-
brane remodeling and scission) is driven by ESCRT-III41–44.
Consistently, silencing of the charged multivesicular body pro-
tein 4B (CHMP4B), an essential ESCRT-III subunit, prevents
capture of cytosolic proteins by inward endolysosomal mem-
brane budding45. In our experimental setup, silencing of
CHMP4B expression (Fig. 5a) substantially inhibits delivery of
EV within LAMP1-positive EL during recovery from ER stress

(Fig. 5b–d) and when recov-ER-phagy is recapitulated by SEC62
induction (Fig. 5e–g). Consistently, CHMP4B silencing delays
return of ER stress-induced chaperones at their pre-stress level
(Fig. 5h, upper panel), without affecting return of HERP (middle
panel).

ESCRT-III-driven membrane remodeling and scission relies on
the energy delivered on ATP hydrolysis by the auxiliary AAA+

ATPase VPS4A41–44. In our experiments, engulfment of SEC62-
positive EV by EL during recovery from ER stress was normal in
cells expressing fluorescently labeled VPS4AWT (Fig. 6a, merge 1,
inset 1, Fig. 6c), but it was substantially inhibited in cells
expressing VPS4AK173Q, a dominant-negative mutant that cannot
bind and hydrolyze ATP46 (Fig. 6b, merge 1, inset 1, Fig. 6c). The

Fig. 1 Delivery of endogenous SEC62-labeled EV within EL during recovery from ER stress. a Upper panel, WB analysis showing steady-state level of BiP in
WT MEF (Mock), BiP induction on cell exposure to CPA (ER stress, lane 2), and return of BiP to the pre-stress level after CPA wash-out (Recovery, lane 3);
middle panel, same for HERP; lower panel, GAPDH as a loading control. Quantification of BiP levels in WB, n= 3 independent experiments, mean ± SEM,
unpaired, two-tailed t test, *P= 0.0037. b Delivery of SEC62-decorated EV within LAMP1-positive EL in WT MEF during 12 h recovery from an ER stress in
the presence of 50 nM BafA1. c Same as a in Atg4BKO MEF; n= 3 independent experiments, mean ± SEM, unpaired, two-tailed t test, P= 0.4001. d Same
as b in Atg4BKO MEF. e Same as a in Atg7KO MEF, n= 3 independent experiments, mean ± SEM; unpaired, two-tailed t test, P= 0.3159. f Same as b in
Atg7KO MEF. g Same as a in Atg16L1KO MEF; n= 4 independent experiments, mean ± SEM; unpaired, two-tailed t test, P= 0.6909. h Same as b in
Atg16L1KO MEF. i Same as a in Ulk1/2 double-KO MEF; n= 3 independent experiments, mean ± SEM; unpaired, two-tailed t test, **P= 0.0083. j Same as
b in Ulk1/2 double-KO MEF. k Same as a in Atg13KO MEF; n= 3 independent experiments, mean ± SEM; unpaired, two-tailed t test, *P= 0.0232. l Same as
b in Atg13KO MEF. m Same as a in Atg14KO MEF; n= 3 independent experiments, mean ± SEM; unpaired, two-tailed t test, *P= 0.0497. n Same as b in
Atg14KO MEF. See Supplementary Fig. 1 for recov-ER-phagy recapitulated on overexpression of SEC62-HA. o Quantification of SEC62-positive EV delivery
within LAMP1-positive EL (n= 10, 11, 10, 10, 9, 10, 11 cells, respectively). One-way analysis of variance (ANOVA) and Dunnett’s multiple comparisons test,
n.s.P > 0.05, ****P < 0.0001. Molecular weight markers in WB are in kDa. Scale bars for CLSM: 10 μm. WB and IF panels are representative of at least three
independent experiments
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role of VPS4A in EV engulfment by LAMP1-positive EL was
confirmed on overexpression of SEC62-HA to faithfully recapi-
tulate recov-ER-phagy (Fig. 6d–g). Ultrastructural analyses of
cells where the engulfment of excess ER by LAMP1-positive EL is
inhibited on inactivation of the ESCRT-III machinery show that
SEC62-positive EV remain in close proximity of the EL and are
not delivered within the degradative organelles (Fig. 6h–k,
Supplementary Movie 2). Notably, VPS4AWT, which drives EV
engulfment, accumulates within LAMP1-positive EL on inactiva-
tion of proteolytic enzymes with BafA1 (Fig. 6a, merge 2, inset 2,
Fig. 6e, merge 2, white arrows in inset 2 and in inset VPS4A). The
inactive VPS4AK173Q is not found within EL (Fig. 6b, merge 2,
inset 2, Fig. 6f, merge 2, red arrows in inset 2 and in inset
VPS4A). This is consistent with partitioning of VPS4A within the
inward budding structure after the ESCRT-III mediated scission
event44. Finally, we confirm VPS4A-dependent engulfment of
excess ER by LAMP1-positive EL by HaloTag pulse chase (Fig. 7),
a protocol for time-resolved analyses of EV segregation recently
developed in our lab19. Briefly, to monitor by time-resolved
fluorescence microscopy the sequential steps of ER subdomains
delivery within EL for clearance, WT MEF were transfected with
SEC62-HaloTag (Supplementary Fig. 3) and with VPS4AWT

(Fig. 7a, c) or VPS4AK173Q (Fig. 7b, c). The fate of newly
synthesized SEC62-HaloTag is followed by pulsing cells, for
15 min, with the fluorescent HaloTag ligand PBI 5030 (ref. 19

legend of Fig. 7 and Materials and methods). Initially (0–2 h
chase), SEC62-HaloTag is not visible within LAMP1-positive EL.
Only in cells expressing VPS4AWT, it is eventually delivered
within the EL, where it progressively accumulates on EL
inactivation with BafA1 (Fig. 7a, c, 5–12 h chase). In cells
expressing inactive VPS4AK173Q, SEC62-HaloTag remains vir-
tually excluded from the EL throughout the chase (Fig. 7b, c).

Endogenous LC3B decorates EV. In macro-autophagy, LC3 is
lipidated on the phagophore membrane and eventually recruits
cargo within double-membrane autophagosomes31. Since autop-
hagosome biogenesis is dispensable for ER turnover at the end of
acute ER stresses, we assessed LC3 localization during recov-ER-
phagy. Our analyses reveal that endogenous LC3 co-localizes with
SEC62-labeled ER accumulating within LAMP1-positive EL on
inhibition of lysosomal activity with BafA1 (Fig. 8a). The inhi-
bition of EV engulfment by LAMP1-positive EL on expression of
the inactive variant of VPS4A reveals the presence of endogenous
LC3B on SEC62-labeled structures both in WT MEF (Fig. 8b) and
in MEF with defective autophagosome biogenesis (Fig. 8c, d). The
vesicular nature of the SEC62/LC3-positive ER-derived structures
that deliver excess ER within EL during recovery from ER stress is
confirmed by orthogonal sections of deconvoluted images
(Fig. 8f). The formation of EV is abolished in cells expressing a
SEC62LIR variant that cannot bind LC37 (Fig. 8g) and in Atg7KO
MEF with defective LC3 lipidation (Fig. 8e, h). All in all, these
results support the notion that the ER-resident LC3-binding
protein SEC62, LC3 lipidation and the VPS4A-powered ESCRT-
III machinery, but not autophagosome biogenesis, regulate ER
fragmentation and piecemeal micro-ER-phagy characterizing the
ER turnover on ER stress resolution.

Discussion
The ER is a plastic organelle of eukaryotic cells, whose volume
and activities are adapted in response to intra- and extracellular
signals. The anabolic pathways that enlarge the ER and increase
its content in resident proteins and enzymes are collectively
defined as UPR and have been characterized in molecular
details1,2. The catabolic pathways that reduce ER volume and
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content by delivering ER subdomains to acidic compartment for
destruction are much less understood. The identification of sev-
eral ER-resident proteins that may engage, upon appropriate
stimuli, cytosolic factors such as LC3s/Atg8, GABARAPs, and
FIP200/Atg11 to promote delivery of ER fragments within EL/
vacuole for clearance has opened the run to dissect receptor-
mediated, lysosomal-controlled, ER turnover pathways. At the
end of an ER stress, the reduction of the ER volume and of the ER
content in resident proteins to pre-stress, physiologic status is
crucial to re-establish ER homeostasis. In this phase, cells must,
among other things, also re-gain the capacity to produce the
secretOME (i.e., the 40% of the proteOME destined to the
organelles of the secretory and endocytic compartments,
the plasma membrane, and the extracellular space), whose pro-
duction is temporarily halted during the ER stress phase47. The
secretOME enters the ER co-translationally via the SEC61 protein

translocation machinery that is endowed with a SEC62:SEC63
functional complex to facilitate access of those polypeptides that
are synthesized in the cytosol and imported only after completion
of the polypeptide chain via post-translational translocation22,23.
We recently reported that conclusion of ER stresses activates the
LC3-binding function of SEC62 and triggers lysosomal turnover
of ER subdomains containing folding factors, but lacking ERAD
factors via catabolic pathways collectively defined as recov-ER-
phagy7. The finding that selective ER delivery to EL for clearance
is recapitulated by SEC62 overexpression and by SEC63 silencing7

hint at possible mutually exclusive role of SEC62 in ER protein
import vs. receptor-mediated, selective ER turnover. Notably, the
LC3-binding region is dispensable for the former and required for
the latter function of SEC62 (ref. 7 and Supplementary Fig. 3c). It
will be of interest to verify whether the changes in newly syn-
thesized proteins getting access to the ER during steady state
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(presumably more cargo) vs. ER stress (presumably more ER-
resident proteins) vs. recovery from ER stress (back to more cargo
proteins import?) phases results in variations in the SEC61:
SEC62:SEC63 oligomeric composition22,23 and if this in turn
generates orphan SEC62 to promote ER turnover. Alternatively,
the triggering signal for a switch in SEC62 function from protein
translocation to ER turnover could be a change in the luminal
fraction of free BiP (which is regulated in complex manner48–50).
In fact, SEC63 is a BiP-binding protein and BiP association could
set SEC62 free for its role in recov-ER-phagy. All these issues will
be assessed in future work.

Here, we report that lipidation of LC3 is required, but the
autophagosome biogenesis machinery and macro-ER-phagy are
dispensable for clearance of excess ER characterizing the recovery
phase from acute ER stresses. As such, recov-ER-phagy, which is
triggered by an ER-centric signal, is mechanistically different from
starvation-induced turnover of the mammalian ER, which acti-
vates (unselective?) macro-autophagic clearance of ER sub-
domains decorated with FAM134B6, RTN38, ATL39, CCPG110,
TEX26411,12. Rather, SEC62-driven return of ER size and content
at pre-stress, physiologic status, entails the LC3 lipidation
machinery, the ESCRT-III component CHMP4B and the acces-
sory AAA+ ATPase VPS4A. During recovery from ER stress,
CHMP4B and VPS4A, whose involvement in physiologic and
pathogen-induced membrane repair, remodeling and fission
events has been reported43,44,51, ensure the inward budding of the
EL membrane required for the engulfment and clearance of pre-
formed ER vesicles that display SEC62 and LC3 at the limiting
membrane and contain excess ER chaperones and membranes
generated during the phase of ER stress. The function of LC3 in
recov-ER-phagy (and in other types of receptor-mediated ER
turnover by lysosomes/vacuole) as well as the mode of recruitment
of the ESCRT-III machinery that welcomes the incoming ER-
derived vesicle containing material to be cleared from cells
remains a matter for further studies. However, these data highlight
the variety of pathways that cells can activate in response to
pleiotropic and to ER-centric signals to ensure lysosomal turnover
of the ER. For the mechanistic dissection of catabolic regulation of
ER function via lysosomal-controlled ER turnover, it seems crucial
to examine in detail cellular responses to ER-centric signals
that may activate individual ER-resident LC3-binding proteins.
ER-centric signals activate client-specific autophagic and not

autophagic pathways that deliver fragmented ER subdomains
containing defective material (certainly misfolded proteins15,17,
possibly aberrant lipids or ER-resident proteins, whose activity is
determined post-translationally by regulated turnover29) to the
lysosomal/vacuolar compartments. Significant on this line, is the
characterization of ERLAD pathways that ensure disposal of ER or
of ER-exit site subdomains containing misfolded proteins that
cannot be dislocated across the membrane for proteasomal
degradation15,17. Emerging evidence reveal the involvement in
ERLAD of mammalian ER-resident LC3-binding proteins such as
FAM134B19,20 and CCPG110 and the yeast ER-resident Atg8-
binding protein Atg4052. These receptors operate conventionally
to engage autophagosomes in macro-ER-phagy-like processes20,52,
or unconventionally by ensuring direct delivery of the ER sub-
domain to be cleared from cells to EL via vesicular trafficking19 or
via poorly characterized micro-autophagy-like processes21.

Back to recov-ER-phagy, the broader, possible implications of
our findings relate to the fact that amplification of the SEC62 gene
and the consequent enhanced ER turnover confers a stress tol-
erance that correlates with resistance to anti-cancer therapies to a
number of carcinomas, including breast, prostate, thyroid, lung
adenocarcinoma, and head and neck squamous cell
carcinoma53–55. Our characterization of the catabolic pathways
activated by cells recovering from ER stress to remodel the ER
paves the way for identification of therapeutic targets to treat
diseases caused by impaired proteostatic control and to unravel in
more detail the novel function of the ESCRT-III/VPS4A
machinery in membrane remodeling to better define molecular
aspects of organelle and membrane dynamics.

Materials and methods
Antibodies, expression plasmids, and chemicals. Antibodies against CNX
(Western blot (WB) 1:3000, immunofluorescence (IF) 1:100), CHMP4B (1:1000),
SEC62 (WB 1:1000, IF 1:100), and ERj3 (1:250) are kind gifts from A. Helenius, H.
Stenmark, and R. Zimmermann. Plasmid encoding GFP-RAB7 is a kind gift from
T. Johansen. Commercial antibodies used in this study are from Stressgen (BiP,
1:1000), Chondrex (HERP, 1:1500), Developmental Studies Hybridoma Bank
(LAMP1, 1:50), Sigma and Santa Cruz (HA, WB 1:3000, IF 1:100), Merck Millipore
(GAPDH, 1:30,000), Sigma (STX17, 1:1000), Abcam (VAMP8, 1:1000), Santa Cruz
(Actin 1:500), Novus and Sigma (LC3B, WB 1:1000, IF 1:50), Promega (HaloTag,
1:1000), and MBL (p62, 1:1500). The secondary horse radish peroxidase (HRP)-
conjugated antibodies were from Jackson Immunoresearch (rabbit, 1:10,000), Santa
Cruz (goat, 1:20,000), and SouthernBiotech (mouse, 1:20,000). Alexa Fluor-
conjugated secondary antibodies (1:300) from Invitrogen, Jackson
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Immunoresearch, Thermo Fisher, and BioLegend. Plasmids encoding GFP-
VPS4AWT and GFP-VPS4AK173Q were a kind gift from John McCullough. SEC62
was subcloned in a pcDNA3.1 expression plasmid with the addition of a C-
terminal HA-tag or HaloTag7. CPA (Sigma) and BafA1 (Sigma) were used for 12 h,
if not otherwise specified, at final concentrations of 10 μM and 50 nM, respectively.
PS341 (Millennium Pharmaceuticals) was used for 8 h at a final concentration
of 10 μM.

Induction of transient ER stress. To induce a mild and reversible ER stress,
cultured cells were exposed for up to 12 h to CPA, a reversible inhibitor of the
sarco/ER calcium ATPase7,27. An alternative protocol implies cell exposure to
dithiothreitol7 (DTT, a reversible perturbator of redox homeostasis56), whereas
other ER stress-inducing drugs such as tunicamycin and thapsigargin, which are
irreversible inhibitors of GlcNAc phosphotransferase57 and of the sarco/ER cal-
cium ATPase58, respectively, are toxic7. Consistent with UPR induction, CPA
treatment caused splicing of XBP1 transcripts, 25% attenuation of global protein
synthesis, and induction of ER stress marker transcripts and proteins7. The cata-
bolic events characterizing recovery from ER stress (i.e., the delivery of ER sub-
domains within EL for clearance) were investigated after CPA wash-out as specified
in the figure legends and in ref. 7.

Cell culture, transient transfection, and RNA interference. MEF and HEK cells
were grown at 37 °C and 5% CO2 in Dulbecco’s modified Eagle’s medium (DMEM)
medium supplemented with 10% fetal calf serum (FCS). WT and Atg7KO MEF
cells were gifts from M. Komatsu. Atg4BKO, Atg13KO, Atg14 and Atg16L1KO, and
Ulk1/2DKO MEF cells were kindly provided by G. Marino, F. Reggiori, T. Saitoh,
and S. Tooze, respectively, and have been characterized in ref. 19 and in Supple-
mentary Fig. 2. To induce autophagy, cells were washed three times with Earle’s
balanced salt solution (EBSS, Thermo Fisher) and then incubated in EBSS for 2 h in
the presence or absence of 100 nM BafA1.

Transient transfections were performed using JetPrime transfection reagent
(PolyPlus) according to the manufacturer’s instructions. RNA interferences were
performed in MEF cells plated at 50–60% confluence. Cells were transfected with
scrambled small interfering RNA or small interfering RNA (siRNA) against
CHMP4B (5′-AAACAGUCCCUCUACCAAAtt-3′, 50 nM per dish, Silencer Select
Pre-designed, Ambion). Cells were processed for immunofluorescence or for
biochemical analyses 48 h after transfection (see below).

Preparation of KO cells. STX17- and VAMP8-KO MEF and SEC62-KO HEK cells
were generated by CRISPR/Cas9 genome editing. For the generation of the
guideRNA‐Cas9 plasmids, lentiCRISPRv2‐puro system (Addgene52961) was
obtained from Addgene (http://www.addgene.org). Guide sequences were obtained
from the Cas9 target design tools (crispr.mit.edu:8079 and/or www.addgene.org/
pooled-library). All protocols and information can be found at the website https://
www.addgene.org/crispr. The target sequences for guide RNA were synthesized by
Microsynth. Two annealed oligonucleotides (5′-CACCGCTGTGGTTGACTACTG
CAAC-3′, 5′-AAACGTTGCAGTAGTCAACCACAGC-3′ for human SEC62; 5′‐G
CGCTCCAATATCCGAGAAA‐3′, 5′‐TTTCTCGGATATTGGAGCGC‐3′ for
murine STX17; 5′‐CCACCTCCGAAACAAGACAG‐3′, 5′‐CTGTCTTGTTTCGG
AGGTGG‐3′ for murine VAMP8) were inserted into the lentiCRISPRv2‐puro
vector using the BsmBI restriction site. Vectors were transfected in HEK and MEF
cells with JetPrime (Polyplus) according to the manufacturer’s instructions7,19.
Cells were cultured in DMEM supplemented with 10% FBS. Two days after
transfection, the medium was supplemented with 2 μg/ml puromycin. After
10 days, puromycin‐resistant clones were picked and gene KO was verified by WB
(ref. 7 for SEC62; Fig. 3a, b and ref. 19 for STX17 and VAMP8) and with a
translocation assay for SEC62 (ref. 7 and Supplementary Fig. 3c).

Cell lysis, Western blot. Cells were washed in ice cold phosphate-buffered saline
(PBS) containing 20 mM N-ethylmaleimide (NEM) and lysed in 1% sodium
dodecyl sulfate (SDS) in HEPES-buffered saline, pH 6.8, or with RIPA buffer (1%
Triton X-100, 0.1% SDS, 0.5% sodium deoxycholate in HBS, pH 7.4) containing 20
mM NEM and protease inhibitor cocktail (1 mM PMSF, chymostatin, leupeptin,
antipain, and pepstatin, 10 μg/ml each). Post-nuclear supernatants were collected
by centrifugation at 10,000 × g for 10 min at 4 °C. Samples were denatured and
reduced in DTT-containing sample buffer for 5 min at 95 °C and separated by SDS-
PAGE (polyacrylamide gel electrophoresis). Proteins were transferred to poly-
vinylidene fluoride membranes with the Trans-Blot Turbo Transfer System (Bio-
Rad). Membranes were blocked 10 min with 10% (w/v) non-fat dry milk (Bio-Rad)
and stained with the above-mentioned primary antibodies for 90 min and for
45 min with HRP-conjugated secondary antibodies. Membranes were developed
using the Luminata Forte ECL detection system (Millipore) and signals were
acquired with the ImageQuant LAS 4000 system (GE Healthcare Life Sciences) or
with the Amersham Imager 680 system. Image quantifications were performed
with the Multi Gauge Analysis tool (Fujifilm). Membrane stripping was performed
using Re-Blot Plus Strong Solution (Millipore) following the manufacturer’s
instructions. Uncropped blots can be found as Supplementary Fig. 4.

Confocal laser scanning microscopy. MEF cells plated on alcian blue-coated glass
coverslips were treated according to the experimental setup. Cells were washed
twice in PBS and fixed at room temperature for 20 min with 3.7% formaldehyde in
PBS or 5 min in 100% methanol at −20 °C for endogenous LC3B detection. Cells
were then incubated for 15 min with permeabilization solution (PS, 0.05% saponin,
10% goat serum, 10 mM HEPES, 15 mM glycine, pH 7.4) to improve antigen
accessibility. Cells were incubated with the primary antibodies diluted 1:50–1:200
in PS for 90 min, washed for 15 min in PS, and then incubated with Alexa Fluor-
conjugated secondary antibodies diluted 1:300 in PS for 30 min. Cells were rinsed
with PS and water and mounted with Vectashield (Vector Laboratories) supple-
mented with 4′,6-diamidino-2-phenylindole. Confocal pictures were acquired
using a Leica TCS SP5 microscope with a 63.0 × 1.40 Oil UV objective. FIJI was
used for image analysis and processing. Figure 8f–h were acquired with LEICA
HCX PL APO CS 100.0 × 1.44 Oil UV objective with a XY pixel size of 50 nm and
Z step of 125 nm and pinhole 0.8 AU. Images were deconvoluted with Autoquant
3.1.1 (Media Cybernetics) with a spherical aberration correction.

Immunogold electron microscopy. Cells were plated on alcian blue-coated glass
coverslips and fixed 10 min with 0.05% glutaraldehyde in 4% paraformaldehyde
(PFA) EM grade and 0.2 M HEPES buffer and 50 min in 4% PFA EM grade in
0.2 M HEPES buffer. After three washes in PBS, cells were incubated 10 min with
50 mM glycine and blocked 1 h in blocking buffer (0.2% bovine serum albumin, 5%
goat serum, 50 mM NH4Cl, 0.1% saponin, 20 mM PO4 buffer, 150 mM NaCl).
Staining with primary antibodies and nanogold-labeled secondary antibodies
(Nanoprobes) were performed in blocking buffer at room temperature. Cells were
fixed 30 min in 1% glutaraldehyde and nanogold was enlarged with gold
enhancement solution (Nanoprobes) according to the manufacturer’s instructions.
Cells were post fixed with osmium tetroxide, embedded in epon, and processed into
ultrathin slices. After contrasting with uranyl acetate and lead citrate, the sections
were analyzed with Zeiss LEO 512 electron microscope. Images were acquired by
2k × 2k bottom-mounted slow-scan Proscan camera controlled by the EsivisionPro
3.2 software.

HaloTag pulse-chase analyses. MEF cells were plated on alcian blue-coated
glass coverslip and transfected with SEC62-HaloTag and VPS4WT or VPS4K173Q.
Seventeen hours after transfection, cells were incubated with 15 μM 6-
chlorohexanol (Sigma) in DMEM 10% FCS for 30 min. 6-Chlorohexanol is cell-
permeable black ligand that irreversibly binds the SEC62-HaloTag-binding
pocket. After three washes in DMEM 10% FCS, cells are pulsed 15 min with
1 μM of the fluorescent ligand PBI 5030 (Promega), which exclusively enters the
HaloTag ligand binding pocket of newly synthetized SEC62-HaloTag, and
100 nM BafA1 in DMEM 10% FCS. The fluorescent ligand is removed and after
three washes in DMEM 10% FCS, cells are incubated with 15 μM of the black
ligand to block incorporation of the fluorescent ligand in the newly synthetized
SEC62-HaloTag, and 100 nM BafA1 in DMEM 10% FCS. Cells were fixed at
increasing time points (0, 30 min, 2, 5, 6, and 12 h) and processed for confocal
laser scanning microscopy as described above. HaloTag pulse chase has been
described in ref. 19.

Statistical analyses and reproducibility. In panels showing WB or IF, unless
stated otherwise, images are representative of three independent experiments with
similar results. The number of independent experiments or cell numbers is given
in the figure’s legend. Statistical analyses were performed only if sample size was
≥3 using GraphPad Prism 7 software. One-way analysis of variance with Dunnett’s
multiple comparisons test or unpaired, two-tailed t test were used to asses
statistical significance. P values are given in the figure legends; n.sP < 0.05; *P < 0.05;
**P < 0.01; ***P < 0.001; ****P < 0.0001.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the authors on
reasonable request. The source data underlying the figures can be found in the Source
Data file.
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