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Abstract

Motivation: Gene regulation is inherently stochastic. In many applications concerning Systems

and Synthetic Biology such as the reverse engineering and the de novo design of genetic circuits,

stochastic effects (yet potentially crucial) are often neglected due to the high computational cost of

stochastic simulations. With advances in these fields there is an increasing need of tools providing

accurate approximations of the stochastic dynamics of gene regulatory networks (GRNs) with

reduced computational effort.

Results: This work presents SELANSI (SEmi-LAgrangian SImulation of GRNs), a software toolbox

for the simulation of stochastic multidimensional gene regulatory networks. SELANSI exploits

intrinsic structural properties of gene regulatory networks to accurately approximate the corres-

ponding Chemical Master Equation with a partial integral differential equation that is solved by a

semi-lagrangian method with high efficiency. Networks under consideration might involve multiple

genes with self and cross regulations, in which genes can be regulated by different transcription

factors. Moreover, the validity of the method is not restricted to a particular type of kinetics. The

tool offers total flexibility regarding network topology, kinetics and parameterization, as well as

simulation options.

Availability and implementation: SELANSI runs under the MATLAB environment, and is available

under GPLv3 license at https://sites.google.com/view/selansi.

Contact: antonio@iim.csic.es

1 Introduction

Understanding the dynamics of Gene Regulatory Networks (GRNs)

requires appropriate modeling and simulation tools to efficiently

represent their underlying stochastic nature. At this level, the states

of the system are random variables whose evolution can only be pre-

dicted probability-wise via the Chemical Master Equation (CME).

Unfortunately, such description, which consists of a large dimen-

sional set of coupled ODEs, does not admit a closed form solution

in most cases of practical interest (Kryven et al., 2015). Apart from

the now classical Stochastic Simulation Algorithm (SSA) (Gillespie,

2007), numerical solutions of the CME range from discrete to con-

tinuous approximations. SSA methods including their software

implementations (e.g. Hoops et al., 2006; Maarleveld et al., 2013;

Ramsey et al., 2005; Sanft et al., 2011) make use of Monte Carlo

type simulations to reconstruct the probability function from a large

number of realizations of the stochastic GRN (Gillespie, 2007).

Although such methods are generally applicable, they may become

prohibitive due to the computational burden.

Discrete approximations such as the finite state projection (FSP)

or moment based (MB) methods, reduce the number of state vari-

ables by either restricting the states to those most probable, or by

computing the most relevant moments of the underlying distribu-

tion. Related software tools include StochDynTools by Hespanha

et al. (2008), CmePy by Hegland et al. (2010) (available at https://
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github.com/hegland/cmepy), MOCA by Schnoerr et al. (2015) and

SHAVE by Lapin et al. (2011). Despite truncation, accuracy typic-

ally demands the number of remaining variables in FSP methods

to be substantially large, what makes problems computationally

involved.

MB methods would be preferable in those situations where one

is interested in computing some particularly relevant moments of

the distribution rather than its precise form (see Engblom, 2006).

However, reconstructing the probability density function (pdf)

from the moments is in general, not straight-forward, since this

requires assumptions on the form of the pdf (and relates to the ac-

curacy of the moment closure). This might be simple in some cases

(e.g. if near Gaussian, two parameters/moments are enough) but not

in others, as for instance under nonlinear kinetics or in characteriz-

ing multi-modal distributions (Hasenauer et al., 2014; Pajaro et al.,

2017).

Finally, Fokker-Plank (FP) based methods are a class of con-

tinuous approximations developed on systems size expansions

(Hespanha et al., 2008; Thomas et al., 2013), which inherit similar

limitations as the MB methods when the resulting distribution di-

verges from a Gaussian. A collection of software tools that includes

FSP and MB methods can be found in the recently developed tool-

box CERENA by Kazeroonian et al. (2016).

In between discrete and FP approximations, first Friedman

et al. (2006) for uni-dimensional GRN and most recently Pajaro

et al. (2017) for multi-dimensional GRN, proposed a partial inte-

gral differential equation (PIDE) approximation based on a time-

scale separation property, denoted in what follows as protein

bursting, which is shared by most GRNs in prokaryotic and eu-

karyotic organisms (e.g. Dar et al., 2012). The software tool

SELANSI (SEmi-LAgrangian SImulation of gene regulatory net-

works) approximates the CME by the PIDE model in Pajaro et al.

(2017) and computes its numerical solution by an efficient and

scalable semilagrangian method, providing the temporal evolution

of the protein probability density function (together with its sta-

tionary state).

2 Multidimensional PIDE model

SELANSI uses a generalized description of GRNs in which each

protein can interact with its corresponding gene to regulate

its own expression (self-regulation) and/or with any other gene(s)

in the network (cross-regulation). For n genes, which are ex-

pressed into n different protein types, the number of molecules of

each protein is encoded in a vector x ¼ x1; . . . ; xnð Þ. The PIDE

model implemented in SELANSI exploits the protein bursting

assumption (i.e. proteins being produced in episodic bursts),

which is valid whenever messenger RNA degrades much faster

than proteins. As it has been discussed in Pajaro et al. (2017)

the PIDE model provides good approximations already for deg-

radation rate ratios in the order of 3–5. Under this assumption,

the governing equation of the GRN dynamics (Pajaro et al., 2017)

reads:
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where pðt;xÞ denotes the probability distribution function

associated to the n proteins expressed in the network. Functions

xi xi � yið Þ describe the conditional probability for proteins

jumping from a state yi to xi. Under the bursting condition, these

functions follow an exponential-type distribution of the form
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x
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m

denotes translation frequency and relates to burst size.

Network regulation topology as well as the activation/inactiva-

tion gene state dynamics are encoded through functions ci xð Þ. When

the promoter switching rates between on and off states are much

faster than transcription-translation, the corresponding expressions

ci are defined in terms of Hill-type functions. SELANSI incorporates

pre-defined Hill functions but can accommodate other kinetics (for

different ratios of switching rates versus transcription-translation)

through appropriate ci expressions.

Equation (1) is defined in a domain X ¼
Qn

i¼1 0;Lið Þ � Rn
þ, with

Li > 0, and a time interval 0 T½ �. SELANSI approximates the do-

main X by a uniform (protein) mesh and computes the solution on a

uniform time grid by a semilagrangian method (Pajaro et al., 2017).

The computational burden depends directly on the size of the mesh

and indirectly on the number of genes involved (since higher order

networks will require more mesh points for equal accuracy).

Guidelines about levels of discretization, computational efficiency

and accuracy are provided in the user’s manual. By way of indica-

tion, SELANSI provides affordable computation times for reason-

ably smooth solutions up to 5 coupled genes.

3 Main features of SELANSI

SELANSI is a toolbox for simulation of stochastic multidimensional

gene regulatory networks implemented in Matlab, working on

Windows, Linux and MacOS. The SELANSI toolbox offers:

• High Flexibility: Gene networks under consideration might in-

volve multiple genes with self and cross regulations, in which

genes can be regulated by different transcription factors. The

user can specify the size and topology of the network, as well as

the kinetics, parameter values, time horizon and discretization

levels for simulation.
• Generality: The validity of the method is not restricted to a par-

ticular type of kinetics (mass action, Hill, etc.). Although input

functions of the Hill type are predefined in SELANSI, the user

can easily define his/her own input functions by modifying the

available templates.
• High computational efficiency: The semilagrangian method im-

plemented in SELANSI is proven efficient and scalable. For net-

works involving 4 to 5 coupled genes, speed-up factors in

computation times are typically of two orders of magnitude with

respect to SSAs (Pajaro et al., 2017).

The available tasks in the SELANSI toolbox are listed and briefly

summarized below.

i. Definition of the problem: The routine SELANSI_Datadef

allows the user to easily define a new model (i.e. number of

genes, interactions, type of kinetics and parameters), the simula-

tion specifications (i.e. initial condition, time horizon for simu-

lation and discretization including time and protein meshes), as

well as the time steps for which the solution is saved.

ii. Modification of an existing problem: SELANSI_Gnetmod

and SELANSI_Meshmod allow the user to modify, respect-

ively, the parameters and simulation specifications of an exist-

ing problem. Specifically, SELANSI_Gnetmod modifies the
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default network parameters and feedback mechanism, while

SELANSI_Meshmod modifies the default mesh for the semila-

grangian method and the initial condition.

iii. Stochastic simulation: SELANSI_Solve computes the

(approximated) numerical solution of the CME obtaining the

temporal evolution of the species’ probability density function.

It saves also the solution according to the user’s specifications.

iv. Results and Visualization: SELANSI_Plot depicts marginal

and joint probability densities (in multidimensional case) for

the time steps selected by the user.

As an illustrative example (this and other examples with different

number of genes, connectivities and kinetics are provided with the

toolbox) we consider a two dimensional gene regulatory network in

which the two genes mutually repress each other. Figure 1 shows a

scheme of the inputs provided by the user and the results of the

simulation computed by SELANSI (for space reasons, we include

only a few snapshots). For the selected values of the parameters the

network behaves as a transcriptional switch with a bimodal station-

ary distribution.
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Fig. 1. Simulation with SELANSI of a two dimensional stochastic gene net-

work with mutual repression and Hill kinetics. User inputs include (A) number

of genes and kinetics, (B) kinetic constants, Hill coefficients and (C) protein

and time meshes. (D) Samples of joint probability snapshots provided by

SELANSI
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