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a b s t r a c t 

In this article, the detailed description of a smartphone-based analytical method to turn a smart- 
phone into a colorimeter is described and applied to mural painting replicas. The method consists 
of a camera characterization process, to estimate CIELAB values from RGB camera responses, 
correcting for potential experimental interferences, like the effect of the lighting/capture geome- 
try or software for color modification and enhancement. Next, the estimated CIELAB descriptors 
were used to build a chemometric Support Vector Classifier to objectively distinguish among the 
colors of the different pigments. The method was validated in terms of color reproduction and 
classification performance. 

• A smartphone-based method is described to capture mural painting color. 
• A color gamut-specific camera characterization procedure is developed and the performance 

of the smartphone-based colorimeter is compared with a spectrophotometer. 
• A classification method based on the estimated CIELAB descriptors is validated in terms of 

classification performance. 
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Method details 

Contextualization and aims 

The implementation of image-based techniques using daily technology has been a growing topic during the last years [ 1–3 ],
as they provide significant advantages like the wide availability and affordability. Among other devices, smartphones have gained 
special attention in the field of analytical chemistry, as they represent a key device in today’s technology [ 4 , 5 ]. Their application,
despite yielding fast and accessible results that can be applied in situ, requires to take into consideration some methodological aspects
to ensure the quality of the processed data. As the signal depends on different experimental variables (distance, angle, illumination,
device…) the development of smartphone-based methods must be carefully tuned to suit the necessities of the case study. Nevertheless,
the conversion of smartphones into reliable colorimeters presents the advantages of providing a fast, cheap and non-invasive method 
in the investigation of artworks. 

In this context, this paper describes the analytical method used by Sáez-Hernández and co-workers [ 6 ] to estimate the CIELAB
values of a sample from the RGB values of an image captured with a colorimetrically characterized smartphone in order to distinguish
among different historical inorganic pigments used in mural paintings using a chemometric approach. 

The different stages of the procedure are described in Fig. 1 . Each section of this paper describes the different procedures and
parameters to be considered and tuned for the correct implementation of a particular stage of the method. 
Fig. 1. Description of the overall method: first, the characterization of the camera is carried out using polynomial models; second, the color 
information of the data is extracted and analyzed using these models. On the right, the validation steps to assess the model’s quality. 
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Fig. 2. a) Illumination board: in grey, the white LED strip arranged in a transparent 40 ×40 cm flat surface. b) Relative position of the smartphone, 
the illumination board and the samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image capture – setup and smartphone conditions 

The first step of the method requires to take an image of the sample under investigation. For the case reported in [ 6 ], the built-in
camera application in the “pro ” mode of Samsung Galaxy Edge S7 smartphone (model SM-G93F with a 12.2 MP camera sensor) was
used. ISO was set to 100, aperture to 1/180 and white balance was 4000 K. The images were captured in .jpeg format. However, this
procedure can be carried out using any device that allows to control camera settings, to choose those that provide greater similarity
between the observed image and the real scene. The smartphone was placed on a lab-made 3D-printed support that allows the
smartphone to be held parallel to the sample. 

Samples were illuminated with a white LED strip arranged on a flat surface placed at a distance of 25 cm from the samples and
placing the smartphone parallel to the painted surface in a darkened environment. This source of illumination is recommended to help
controlling lighting environment. In this case, the strip was stuck to a 40 x 40 cm transparent surface creating a mesh, as observed in
Fig. 2 . This illumination board was held perpendicular to the horizontal using a couple supports on each side, ensuring homogenous
illumination on the surface of the sample. The smartphone, placed on the support, was located at the same plane as the illumination
board, as depicted in Fig. 2 . Using the proposed procedure, a surface of 20 x 20 cm of painted area can be analyzed, although this
area will depend upon the properties of each camera. 

The color characterization model is trained from color data of a color chart, captured under the same illumination conditions
as the problem samples. This color chart consists of a set of different color chips covering the region of color space of the problem
samples. In this case, a commercial color chart is used (ColorChecker Classic, XRite 24 colors, 57 × 86 mm) containing a set of 18
colored chips and a grey scale ranging from white to black ( Fig. 3 ). Using a spectrocolorimeter (Konica Minolta Sensing, CM-26d;
D65 reference illuminant, 10º standard observer, in the Specular Component Excluded (SCE) mode), the CIELAB descriptors of each 
point of the chart are measured ( Table 1 ). The chart’s RGB and CIELAB data are used to create the characterization model. 

This color chart must be stuck to the wall, totally parallel to the sample and the camera, and at the same plane that the painted
surface, so that the distance between the camera and the samples equals the distance from the camera to the color chart. 

Camera’s colorimetric characterization model 

The RGB values from a circular region are obtained from each sample in the color chart, using a set of Matlab routines. These are
based on the following steps: 

(i) Manually select the region to analyze 
(ii) Upon clicking, the software selects a 50-pixel radius circle around that point 

(iii) Average the RGB values of the pixels inside that circle. 

The procedure is repeated for each of the 24 color chips, obtaining the mean of the RGB values of these chips. A polynomial model
is created correlating the real CIELAB descriptors (seen in Table 1 ) with the RGB values as obtained for each colored spot. The best
3
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Fig. 3. ColorChart employed for this method. Numbers indicate the ordinal assignation to each color, as corresponds to Table 1 . 

Table 1 
CIELAB descriptors of the color chips of the ColorChecker chart. Sample are labelled as in Fig. 3 . 

Color L∗ a∗ b∗ Color L∗ a∗ b∗ 

1 70,0 − 29,0 4,2 13 52,4 − 27,8 − 20,3 
2 55.8 6,1 − 19,9 14 51,7 39,8 − 13,8 
3 43.7 − 10,0 19,6 15 77,5 5,0 74,0 
4 50.4 − 3,9 − 18,5 16 41,7 41,2 21,3 
5 63.3 13,0 17,3 17 54,9 − 32,9 31,6 
6 39.4 11,0 11,8 18 33,6 9,7 − 39,3 
7 67,7 19,1 59,8 19 25,0 − 0,1 − 0,6 
8 69,5 − 19,2 54,8 20 37,9 − 0,5 0,0 
9 31,8 16,6 − 17,6 21 51,1 0,1 1,1 
10 49,5 41,3 14,0 22 66,2 − 0,5 1,5 
11 42,6 6,9 − 37,7 23 79,6 − 0,7 2,7 
12 59,2 33,0 49,8 24 92,8 − 0,8 4,8 

 

 

 

 

 

 

 

fit is obtained with a 2-degree polynomial using the pseudoinverse procedure in Eq. (1) . 

𝐻 = 𝑃𝑛 ( 𝑅, 𝐺, 𝐵 ) ⋅𝑀𝑛 (1) 

where H is a Nx3 matrix (in this case, N = 24) of experimental L∗ a∗ b∗ values, each row containing a color in the chart and each
column a color descriptor, L∗ , a∗ and b∗ . Next, Pn (R,G,B) is a NxK matrix, containing the different terms of a polynomial of degree
“n ” in R, G and B (for instance, if n = 2, the K = 10 columns contain the terms 1, R, G, B, RG, RB, GB, R2 , G2 and B2 , respectively)
and Mn represents the Kx3 matrix of coefficients of the polynomial. 

The degree of the polynomial was selected based on two main factors. First, the predictive capacity of the model to yield correct
color descriptors, and second, the potential overfitting that might arise when using unnecessarily complex models. Check section 
Validation of the characterization of the camera for the results of this selection process. 

The camera’s characterization model intends to account for the sensitivities of the RGB sensors, the influence of the lighting
conditions and the effects of the image enhancement software of the camera, so that real CIELAB descriptors can be obtained from
the image. Therefore, to increase the robustness of the procedure, matrix Mn (see equation [ 1 ]) is computed for each photograph. In
4
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Fig. 4. Schematic representation of the camera characterization and signal treatment to obtain corrected CIELAB descriptors of the painted spots. 

 

 

 

 

 

 

 

this way, slight changes in illumination among photographs of the same scene or the influence of a change in the objects included in the
scene will be accounted for in the model obtained from that specific photograph. At a practical level, this means that the coefficients,
Mn , are idiosyncratic of each one of the photographs. In Fig. 4 there is a schematic representation of the camera characterization and
signal treatment as described in this section. 

Samples’ RGB extraction and application of the characterization model 

Once the camera has been characterized and the correction model has been created as described above, the painted surfaces can
be studied from their colorimetric properties perspective. To that end, different spots are segmented following the same approach 
explained before, ensuring that the sampling represents the colored spot and not sampling the same area more than once. These RGB
values are now inputted in Eq. (1) , using the polynomial of degree 2 ( P2 ) and the coefficients ( M2 ) obtained for their respective
photographs (as these represent the experimental conditions that correct the significant variables like lighting environment or color 
enhancement). As an output of the computation, a set of corrected CIELAB descriptors will be obtained (matrix H , which will contain
as many rows as samples, and 3 columns: L∗ , a∗ and b∗ ). 
5
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Fig. 5. CIE ΔE2000 values obtained for the comparison of the three different polynomials tested. 

Table 2 
Pairwise comparison of the color differences obtained with the 3 different models. If the confidence interval of the 
mean difference includes 0, both groups do not show statistically significant differences; otherwise, both groups 
are consider as having significant difference. 

Degrees compared Difference between the 
estimated group means 

Confidence interval for the 
true mean difference (95%) 

p -value 

1 – 2 2.75 [1.73 – 3.76] 6.7·10–10 

1 – 3 5.19 [4.18 – 6.20] 0 
2 – 3 2.45 [1.43 – 3.46] 4.8·10–8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Creation of a classification method 

Using the corrected CIELAB values obtained as described in section “Samples’ RGB extraction and application of the character-

ization model ”, a Support Vector Classifier (SVC) model is created. In this work. The method has been developed for three different
color hues: blue, green and yellow. Each hue was represented by three different inorganic species. Thus, one SVC model was created
for each hue, obtaining a total of three SVC. The reason for this choice is that this method aims to help in the distinction among
similar colors painted with different pigments: hence, it is necessary, for instance, to distinguish different shades of blue but not
between blue and yellow. 

SVC models need to be optimized in advance for different parameters and variables. In this article, all three SVC used the radial
kernel (as it is needed to expand the classification boundaries further from two categories: in this case, three). This kernel uses
an intrinsic value ( ɣ ) that also requires optimization, and for this case study, their optimal values were 0.5, 3 and 0.5 for yellow,
blue and green, respectively (see the reference article for the discussion about the influence of each variable on predictive capacity
[ 6 ]). To create these models, R [ 7 ] was used, and pROC [ 8 ], verification [ 9 ] and e1071 [ 10 ] packages were employed. Graphical
representation was carried out using ggplot2 [ 11 ]. 

Method validation results 

Selection of the degree of the polynomial 

Three models were tested, with 1st, 2nd and 3rd degree polynomials respectively using data from 10 captures of the reference
color chart. The color differences between the predictions of the models and the experimental L∗ a∗ b∗ values for each sample were
computed using the CIE ΔE2000 color difference formula [ 12 ]. The results are shown in Fig. 5 . Besides the global color difference,
ΔE∗ , Fig. 5 includes the differences in chroma ( ΔC∗ ), in lightness ( ΔL∗ ) and in hue ( ΔH∗ ), as described in the work of Luo et al. [ 12 ].

Acceptable color differences must be below 4.0 CIE ΔE2000 units, which is the tolerance limit proposed for printed materials
[ 13 ]. The Friedman test indicates significant differences in ΔE∗ between the models (chi-square 431, p-value ≈ 0). A Tukey-Krammer
post-hoc test ( Table 2 ), shows that all pairwise comparisons are statistically significant, with significantly lower ΔE∗ values when the
degree of the polynomial is n = 3 and worse results for n = 1, as suggested in Fig. 5 . 

As expected, increasing the degree, n , in the polynomial reduces the dispersion of the result and the magnitude of the color errors,
since the median value of ΔE∗ gets closer to 0 in Fig. 5 . Acceptable ΔE∗ results within the tolerance limit of 4 units are obtained for
n ≥ 2. Nonetheless, the 2nd degree polynomial was selected following the parsimony principle. This idea states that when selecting
between two potential methods that yield good results, the simpler one is preferred, as it avoids potential overfitting. Overfitting
accounts for the creation of very complex models that get tuned exclusively to the dataset used for its creation, meaning that the
interpolation of new samples not originally considered could lead to high prediction errors. In this paper, as both 2nd and 3rd degree
6
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Fig. 6. Distribution of ΔL∗ , ΔC∗ , Δh∗ and ΔE∗ computed values for the validation of the camera characterization procedure ( n = 240). Differences 
were calculated as (value provided by the reference device - value provided by the proposed method). In red, the threshold value as stablished by 
the literature [ 13 ]. 

Table 3 
Composition of the dataset. 

Hue Pigment Total number of 
samples 

Number of 
samples per hue 

Training 
set 

Validation 
set 

Prediction 
error /% 

Green Lead-tin yellow 80 213 170 43 2.9 
Yellow ochre 68 
Orpiment 65 

Blue Egyptian blue 90 272 218 54 2.2 
Azurite 90 
Lapis lazuli 92 

Yellow Celadonite 65 203 162 41 5.7 
Green malachite 70 
Verona green 68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

polynomials provided good analytical results in terms of color reproduction, the 2nd degree was selected. Note that in each image,
data from 24 color samples are used to derive 10 parameters when n = 2 but 20 when n = 3. 

An inspection of the outliers allowed to observe that degree 1 presented no outliers (defined as any observation out of the range
comprised between the 1st quartile minus 1.5 times the interquartile range and the 3rd quartile plus 1.5 times the interquartile range),
degree 2 presented 1 outlier (0.4% in total) on the upper end, and degree 3 had 10 outliers (4.2% in total) on the upper end. This
investigation also advises against the use of the 3rd degree, as it yields more outliers. 

Validation of the characterization of the camera 

To validate the performance of the smartphone as a colorimeter under the working conditions, the computed CIELAB data of the
color chart spots are compared to their real CIELAB values (shown in Table 1 ). To that end, the CIE ΔE2000 values shown in Fig. 5 for
the model of 2nd degree are depicted in Fig. 6 for clarity. 

Fig. 6 shows that ΔE∗ , with a median of 1.8 ± 1.4 units, is within the tolerance limits. This means that, overall, the method
described here is able to acceptably measure color from smartphone images when compared to a reference spectrocolorimeter. The
lightness differences ΔL∗ have a centered distribution very close to 0 (median value − 0.1, Interquartile Range (IQR) of 2.5), meaning
that the corrected lightness (L∗ ) values reproduced by the smartphone are comparable to the ones measured by the colorimeter.
Chroma differences, ΔC∗ , have a median of − 0.2 CIE ΔE2000 units, with an IQR of 0.9. Lastly, ΔH∗ ’s median value was found to
be 0.0 ± 1.6 CIE ΔE2000 units. The results shown for ΔC∗ and ΔH∗ demonstrate that the method colorimetric errors are within the
accepted tolerance, with larger dispersion in lightness L∗ than in chroma and hue (C∗ and H∗ ). Also, the fact that all three differences
are found centered at 0 means that the proposed method is not biased towards a specific direction, that is, it does not systematically
overestimates or underestimates neither of the parameters. 

Validation of the predictive capacity of the chemometric model 

Using the information obtained by the image-based method, three different classificatory methods were built and validated. To 
that end, the dataset (shown in Table 3 ) was split into an 80 – 20 proportion to be used for the model training and validation,
respectively. 
7
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According to the validation data shown in Table 3 , the performance of the classification method based on color parameters is
confirmed. For all three hues, the models demonstrated a great predictive potential allowing to objectively distinguish among the 
different pigments. 
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