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Abstract: Chitooligosaccharide (COS) is a degradation product of chitosan. Although COS increased
fruit resistance by regulating the metabolism of reactive oxygen species (ROS), few reports are avail-
able on whether COS regulates ROS homeostasis at wounds of potato tubers during healing. In
this study, COS increased gene expression and activities of NADPH oxidase and superoxide dismu-
tase, and promoted the generation of O2

•− and H2O2. Moreover, COS increased gene expression
and activities of catalase, peroxidase, and AsA–GSH cycle-related enzymes, as well as the levels
of ascorbic acid and glutathione levels. In addition, COS elevated the scavenging ability of DPPH,
ABTS+, and FRAP, and reduced cell membrane permeability and malondialdehyde content. Taken
together, COS could maintain cell membrane integrity by eliminating excessive H2O2 and improving
the antioxidant capacity in vitro, which contributes to the maintainance of cell membrane integrity at
wounds of potato tubers during healing.

Keywords: Solanum tuberosum L.; chitooligosaccharide; wound healing; ROS generation and scavenging;
cell membrane integrity

1. Introduction

Reactive oxygen species (ROS) play a crucial role in potato tubers during wound
healing. ROS produced in the early stages of healing act as signaling molecules to activate
a series of metabolisms related to wound healing, while ROS produced in the later stage
act as an oxidant and participate in the oxidative cross-linking of suberin polyphenolic
and lignin at wounds [1]. ROS in potato tubers during healing are mainly derived from
NADPH oxidase (NOX) [2], which generate O2

•− by transferring electrons to O2, and then
O2
•− is quickly dismutated into stable H2O2 by superoxide dismutase (SOD) [3].

Chitooligosaccharide (COS) is a low molecular weight product of chitosan degradation
with a degree of polymerization between 2–20 and an average molecular weight less than
3900 Da [4]. COS could induce the resistance of fruit and have antifungal activity [5]. COS
increased SOD activity, promoted the accumulation of H2O2, and induced the resistance of
citrus fruit against Colletotrichum gloeosporioides [6]. Moreover, COS increased catalase (CAT)
and peroxidase (POD) activities, and induced the resistance of peach fruit against Monilinia
fructicola and Penicillium expansum [7]. COS up-regulated gene expression of SOD and CAT
in kiwifruit and enhanced fruit resistance to Botrytis cinerea and P. expansum [8]. COS also
up-regulated gene expression of SOD, CAT, and APX, eliminated excessive ROS [9], and
increased ascorbate peroxidase (APX) activity and glutathione (GSH) contents in Dongzao
fruit [10]. In addition, COS increased the scavenging capacity of H2O2 in citrus fruit by
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inducing APX and glutathione reductase (GR) activities and promoting the accumulation
of ascorbic acid (AsA) and GSH [6]. Additionally, COS increased the scavenging ability
of DPPH and ABTS+ in blackberry fruit [11] and improved DPPH antioxidant capacity in
strawberry fruit by increasing total phenols and flavonoids contents [12]. Furthermore,
COS maintained cell membrane integrity and reduced malondialdehyde (MDA) content in
harvested kiwifruit [13].

Although it has been reported that COS induced fruit resistance by regulating ROS
metabolism, a few reports are available on whether COS regulates ROS homeostasis and
maintains cell membrane integrity at wounds of potato tubers during healing. Therefore,
we hypothesize that COS may regulate the generation and scavenging of ROS, and enhance
the antioxidant capacity at wounds of potato tubers during healing.

The objectives of this study were to (1) measure the gene expression and activities
of NOX and SOD, as well as the O2

•− and H2O2 contents at wounds of potato tubers;
(2) determine the gene expression and activities of CAT and POD at wounds; (3) assess
the enzymes activity, contents of substrates, and product related to the AsA–GSH cycle
at wounds; and (4) evaluate the antioxidant capacity in vitro and cell membrane integrity
at wounds.

2. Materials and Methods
2.1. Materials

Potato tubers (Solanum tuberosum L. cv. Atlantic) were obtained from Ailan Potato
Seed Industry Co., Ltd., Dingxi City, Gansu Province. Tubers with the uniform size and
without visible disease and mechanical damage were selected and transported to the lab
on the same day, and then placed at ambient conditions (22 ± 3 ◦C, RH 55–65%) for use.

Chitooligosaccharide (deacetylation ≥ 85%, purity ≥ 99%, molecular weight 1200 Da)
was purchased from Shandong Hailongyuan Biotechnology Co., Ltd., Zhucheng, China.

2.2. Methods
2.2.1. Artificial Wound of Tubers and COS Treatment

The creation of artificial wounds on tubers and the COS treatment were performed
according to the approach of Zhu et al. [14]. After washing and disinfecting surfaces, tubers
were wiped with 75% ethanol and then air dried. Subsequently, the tubers were cut in
half along the equator with a peeler and then dipped in 5 g L−1 COS solution (the treated
concentration was screened by the previous assay results) for 10 min. After air-drying, the
tubers were kept in polyethylene bags (25 cm × 40 cm, 0.02 mm thickness) and placed
in the dark (22 ± 3 ◦C, RH 55–65%) for wound healing. The tubers treated with distilled
water were measured as the control.

2.2.2. Determination of Cell Membrane Permeability

Cell membrane permeability was measured according to the method of Jiang et al. [1].
Nine discs (diameter 10 mm, thickness 3 mm) were taken from wounds and washed with
deionized water. Then, the discs were incubated in 40 mL deionized water, and conductivity
was immediately determined with a conductivity meter at 25 ◦C and recorded as C0. It was
then recorded as C1 after incubating for 3 h. Finally, the discs were incubated in boiling
water for 30 min, and conductivity was measured and recorded as CF after cooling. The
cell membrane permeability was calculated using the following formula:

Cell membrane permeability (%) =
C1 − C0

CF
× 100%

2.2.3. Sampling

At 0, 3, 5, 7, 14, and 21 d of tubers healing, 2 mm thick healing tissues were taken
from the surface of wounds with a scalpel. Samples were immediately ground into powder
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with a grinder (A11 B S025, IKA-Werke GmbH & Co.KG Co., Ltd., Staufen im Breisgau,
Germany) and stored at −80 ◦C [15].

2.2.4. Determination of MDA Content

MDA content was measured based on the method of Hodges et al. [16]. Frozen powder
(1.0 g) was added with 3 mL of 100 g L−1 trichloroacetic acid (TCA), and homogenate was
centrifuged at 12,000× g for 30 min at 4 ◦C. The supernatant was used for MDA analysis,
and absorbance was determined at 450, 532, and 600 nm. MDA content was expressed as
µmol mg−1 FW.

2.2.5. Determination of O2
•− and H2O2 Contents

The production rate of O2
•− was measured according to the method of Zheng et al. [17].

Frozen powder (1.0 g) was added to 3 mL of 50 mM phosphate-buffered solution (0.3%
Triton X-100, 20 g L−1 PVP, 1 mM EDTA) and the homogenate was centrifuged at 10,000× g
for 30 min at 4 ◦C. The supernatant was used as a crude enzyme solution. 1.0 mL su-
pernatant was added with 1.0 mL of PBS (50 mM, pH 7.8) and 1.0 mL hydroxylamine
hydrochloride, and incubated at 25 ◦C for 1 h. Then, 4-aminobenzene sulfonic acid (1.0 mL,
17 mM) and α-naphthylamine (1.0 mL, 7 mM) were added. The absorbance was measured
at 530 nm after incubation at 25 ◦C for 20 min. The production rate of O2

•− was calculated
with sodium nitrite as the standard, which was expressed as µmol g−1 min−1 FW.

The H2O2 content was determined with an H2O2 assay kit (Solarbio Biotechnology
Co., Ltd., Beijing, China). The H2O2 content determination was performed according to the
instructions of the manufacturer at 415 nm, and expressed as mmol kg−1 FW.

2.2.6. Total RNA Extraction and qRT-PCR Analysis

Total RNA was extracted according to the method of Kundu et al. [18]. RNA was
extracted from frozen powder with Polysaccharides & Polyphenolics-rich (TianGen, DP441)
and cDNA was synthesized by the PrimeScrip RT reagent Kit with the gDNA Eraser Kit
(TaKaRa, RR047A). The TB Green Premix Ex TaqTM II (Tli RNaseH Plus) (TaKaRa, RR820A)
kit and real-time fluorescence quantitative PCR system (QuantStudioR5, THERMO FISHER)
were used for quantification. Each gene was detected three times and relative expressions
were calculated using the 2−∆∆Ct method. All primer sequences are shown in Table 1.

2.2.7. Enzyme Activities

NADPH oxidase (NOX) activity was determined according to the method of Sagi and
Fluhr. [19]. Frozen powder (1.0 g) was homogenised in 5 mL Tris-MES buffer (pH 7.8)
containing 250 mM sucrose, 3 mM ethylene diamine tetraacetic acid (EDTA), 0.9% polyvinyl
pyrrolidone (PVP), 5 mM dithiothreitol (DTT), and 1 mM phenylmethanesulfonyl fluoride
(PMSF) for 30 min. Then, the homogenates were centrifuged at 3000× g for 10 min at 4 ◦C.
After removing the supernatant, the residue was centrifuged at 12,000× g for 40 min. The
precipitate obtained was suspended in 1 mL Tris-MES buffer containing 250 mM sucrose,
5 mM KCl, 5 mM DTT, and 1 mM PMSF, and used for assaying the NOX activity. The
reaction mixture contained 50 mM Tris-HCl buffer (pH 7.5), 0.5 mM XTT, 100 µM NADPH,
and 30 µL enzyme extraction with the final addition of NADPH. The NOX activity is
expressed as U g−1 FW, where U was defined as an increase of 0.01 in absorbance per
minute at 290 nm.

Superoxide dismutase (SOD) activity was determined according to the method of
Bai et al. [20]. Frozen powder (1.0 g) was homogenised in 3 mL 50 mM phosphate buffer
(pH 7.8) for 30 min and centrifuged at 12,000× g for 30 min at 4 ◦C, and the supernatant
was used for the SOD activity assay. The reaction mixture consisted of 1.5 mL 50 mM
phosphate buffer (pH 7.8), 200 µL 100 mM methionine (MET), 100 µM EDTA-Na2, 750 µM
nitro blue tetrazolium (NBT), and 200 µL supernatant, followed by 100 µL of riboflavin.
After reacting under a fluorescent lamp of 4000 lx for 1 min, the absorbance was measured
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at 560 nm and defined through the amount of enzyme that caused a 50% inhibition of NBT
and was expressed as U g−1 FW.

Table 1. List of primer sequences used for Quantitative Real-Time PCR analysis.

Gene Gene Accession Number Primer Sequences (52032–3′)

StNOX NM_001288375.1
Forward Primer: GTT TAC CTG GGC ATG AAC GC

Reverse Primer: CTC CAC CAA TAC CGA CTC C

StSOD AF354748
Forward Primer: GTT TGT GGC ACC ATC CTC TT

Reverse Primer: GTG GTC CTG TTG ACA TGC AG

StPOD M21334.1
Forward Primer: CAG CAA CCA AGG TAT AAT GTT T

Reverse Primer: CGC GGA TGG AGG CAA GTC T

StRCAT AY442179
Forward Primer: TGC CCT TCT ATT GTG GTT CC

Reverse Primer: GAT GAG CAC ACT TTG GAG GA

StAPX AB041343.1
Forward Primer: ACC AAT TGG CTG GTG TTG TT

Reverse Primer: TCA CAA ACA CGT CCC TCA AA

StDHAR DQ512964
Forward Primer: AGG TGA ACC CAG AAG GGA AA

Pr Reverse imer: TAT TTT CGA GCC CAC AGA GG

StMDHAR NM_001247084.2
Forward Primer: GCT GAT CCC AAC TCT GCA ACT

Reverse Primer: CAC TCT CGA GGA ATG CAC CAA

StGR X76533
Forward Primer: GGA TCC TCA TAC GGT GGA TG

Reverse Primer: TTA GGC TTC GTT GGC AAA TC

Efla AB061263.1
Forward Primer: CAA GGA TGA CCC AGC CAA G

Reverse Primer: TTC CTT ACC TGA ACG CCT GT

Peroxidase (POD) activity was determined according to the method of Venisse et al. [21].
Frozen powder (1.0 g) was homogenised in 3 mL 50 mM phosphate buffer (pH 7.5) (con-
taining 1 mM polyethylene glycol (PEG), 1 mM PMSF, 8% PVPP (w/v) and 0.01% Triton
X-100 (v/v)) and extracted for 30 min, then centrifuged at 12,000× g for 30 min at 4 ◦C and
the supernatant collected for a POD activity assay. The reaction mixture, containing 2 mL
phosphate buffer (pH 7.5), 200 µL crude enzyme, 25 mM guaiacol and 0.25 M H2O2, was
maintained at 24 ◦C for 5 min and the absorbance was measured at 470 nm. The POD
activity was expressed as U g−1 FW.

Catalase (CAT) activity was determined using a kit (Solarbio Biotechnology Co., Ltd.).
Frozen powder (0.1 g) was added to 1 mL of the pre-cooled extract solution to homogenize
in an ice bath. The homogenate was centrifuged at 8000× g for 10 min at 4 ◦C, and the su-
pernatant was collected and added to the other reagents according to the kit manufacturer’s
instructions. The CAT activity was measured at 405 nm and was expressed as U g−1 FW.

Ascorbate peroxidase (APX) activity was determined according to the method of
Bao et al. [22]. Frozen powder (1.0 g) was homogenized with a mortar and pestle in 3 mL
100 mM phosphate buffer (pH 7.5) containing 1 mM ethylene diamine tetraacetic acid
(EDTA) and centrifugated at 12,000× g for 30 min at 4 ◦C. The supernatant was used for
enzyme assays. The assay mixture consisted of 2 mL of 100 mM phosphate buffer (pH 7.5),
200 mL of 3 mM ascorbic acid, 1.4 mL of 30% H2O2 (v/v), and 200 mL of crude enzyme
extract. The absorbance was measured at 290 nm and the APX activity was expressed
as U g−1 FW.

Dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MD-
HAR) activities were determined using a kit (Solarbio Biotechnology Co., Ltd.). Frozen
powder (0.1 g) was homogenised in 1 mL of the pre-cooled extract solution to homogenize
in an ice bath. The homogenate was centrifuged at 8000× g for 10 min at 4 ◦C, and the
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supernatant was collected and added to the other reagents according to the kit manufac-
turer’s instructions. The DHAR and MDHAR activities were measured at 265 nm and
340 nm, and was expressed as U g−1 FW.

Glutathione reductase (GR) activity was determined according to the method of
Queirós et al. [23]. Frozen powder (1.0 g) was homogenised in 3 mL 0.1 M Tris-HCl (pH 7.8)
extraction buffer (containing 2 mM EDTA and 2 mM DTT) and centrifugated at 12,000× g
for 30 min at 4 ◦C. The supernatant was used for GR activity analysis. The reaction mixture
was a total volume of 200 µL crude enzyme, 2 mM NADPH, 3 mM MgCl2 and 10 mM
oxidised glutathione. GR activity was defined as the amount of enzyme that caused a
decrease in absorbance within 120 s at 340 nm, and was expressed as U g−1 FW.

2.2.8. Determination of Substrates and Product Contents of the AsA–GSH Cycle

Ascorbic acid (AsA) and dehydroascorbic acid (DHA) were determined according to
the method of Turcsányi et al. [24]. Frozen powder (1.0 g) was added to 3 mL 100 mmol L−1

HCl, and the homogenate was centrifuged at 8000× g for 10 min at 4 ◦C. The AsA reaction
system comprised 100 µL supernatant, 2 mL of 100 mM potassium phosphate buffer,
and 0.5 mL distilled water, and absorbance was determined at 265 nm. AsA content was
expressed as mg g−1. The total ascorbic acid reaction system comprised 100 µL supernatant,
2 mL of 100 mM potassium phosphate buffer, and 0.5 mL of 2 mM DTT, and absorbance
was determined at 265 nm after reaction at room temperature for 8 min. Total ascorbic
acid content minus the AsA content results in the DHA content, which was expressed
as mg g−1.

The content of GSH was determined with a GSH assay kit (Solarbio Biotechnology
Co., Ltd.). The GSH content determination was performed according to the instructions of
the manufacturer at 412 nm and was expressed as mg g−1.

The content of GSSG was determined with a GSSG assay kit (Solarbio Biotechnology
Co., Ltd.). The GSSG content determination was performed according to the instructions of
the manufacturer at 412 nm and was expressed as mg g−1.

2.2.9. Determination of the Scavenging Ability of ABTS+, DPPH and FRAP

The scavenging ability of DPPH, ABTS+, and FRAP were determined with an assay kit
(Solarbio Biotechnology Co., Ltd.). The determination of the scavenging ability of DPPH,
ABTS+, and FRAP was performed according to the instructions of the manufacturer at
515 nm, 734 nm, and 593 nm, and was expressed as µmol Trolox g−1 FW.

2.3. Statistical Analysis

The result was exhibited as mean ± standard error and three biological replicates
were performed. Differences between the treatments were compared by ANOVA. Mean
comparisons were performed using Duncan’s multiple range test, which examined if the
differences were significant at p < 0.05.

3. Results
3.1. COS Activated NOX and SOD and Enhanced O2

•− and H2O2 Contents at Tuber Wounds

NOX generates O2
•− by transferring electrons to O2, and then O2

•− is quickly dismu-
tated into stable H2O2 by SOD [1]. In the present study, StNOX expression showed single
peaks at 3 d and 5 d, respectively. The COS group had higher StNOX expression during
healing, which was 1.1-fold higher than that of the control at 7 d (Figure 1A). Likewise,
NOX activity increased in all groups on the first 5 d of healing, and the COS group had
higher NOX activity compared to the control during healing (Figure 1B). The StSOD ex-
pression in the COS group showed a single peak at 5 d, while a decreasing trend of the
expression was found in the control during healing. Moreover, higher StSOD expression
was found in the COS group during healing, which was 3.1 folds higher than that of the
control at 5 d (Figure 1C). Additionally, SOD activity increased in all sample groups during
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healing, while the COS group maintained higher activity than that of the control except 3 d
(Figure 1D).
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Figure 1. Effect of COS treatment on the relative expression of StNOX (A) and StSOD (C), and the
activities of NOX (B) and SOD (D) at wounds of potato tubers during healing. Bars indicate standard
error. Asterisks denote significant differences (p < 0.05).

The peak of O2
•− content was found at 5 d of healing in all groups, while the COS

group maintained a higher value during healing, which was 37.6% higher than that of the
control at 5 d (Figure 2A). The H2O2 content peaked at 14 d in all groups, while the COS
group maintained a higher value during healing (Figure 2B).
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Figure 2. Effect of COS treatment on the contents of O2
•− (A) and H2O2 (B) at wounds of potato

tubers during healing. Bars indicate standard error. Asterisks denote significant differences (p < 0.05).

These results suggested that COS activated NOX and SOD, and enhanced the contents
of O2

•− and H2O2 at tuber wounds.
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3.2. COS Elicited CAT and POD at Tuber Wounds

CAT and POD are important enzymes for scavenging H2O2 [25]. The expression
of StCAT and StPOD in all sample groups showed a single peak at 5 d, and the COS
group maintained higher levels during healing, which were 2.63 and 2.66 folds higher
than the control at 7 d, respectively (Figure 3A,C). The CAT activity in all sample groups
showed a single peak at 7 d, and the COS group maintained higher activity during healing
(Figure 3B). An increase of POD activity was found in all sample groups during healing,
while the COS group maintained higher activity, which was 55.6% higher than the control
at 21 d (Figure 3D). These results suggested that COS treatment activated CAT and POD at
tuber wounds.
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Figure 3. Effect of COS treatment on the relative expression of StCAT (A) and StPOD (C), and the
activities of CAT (B) and POD (D) at wounds of potato tubers during healing. Bars indicate standard
error. Asterisks denote significant differences (p < 0.05).

3.3. COS Activated the AsA–GSH Cycle at Tuber Wounds

APX, DHAR, MDHAR, and GR are involved in the AsA–GSH cycle [26]. The expres-
sion of StAPX, StDHAR, and StMDHAR in all groups showed a single peak, while the
COS group had higher levels during healing, which were 3.1, 2.4, and 0.8 folds higher
than that of the control at 7 d of healing (Figure 4). APX activity increased in all groups
during healing, while the COS group maintained higher content, which was 32% higher
than that of the control at 21 d of healing (Figure 4). DHAR and MDHAR activities peaked
at 7 d of healing in all groups, and the COS group kept higher values, which were 29.2%
and 30.6% higher than that of the control at 21 d of healing, respectively (Figure 4). The
StGR expression in the COS group peaked at 3 d of healing, while it decreased and then
increased in the control during healing. At 7 d of healing, the StGR expression in the COS
group was 4.3 folds higher than that of the control (Figure 4). Likewise, the peaks of GR
activity in all groups were found at 7 d, while the COS group maintained a higher level,
which was 38.4% higher than that of the control at 7 d of healing (Figure 4).
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Figure 4. Effect of COS treatment on the relative expression of StAPX, StDHAR, StMDHAR, and
StGR, and the activities of APX, DHAR, MDHAR, and GR at wounds of potato tubers during healing.
Bars indicate standard error. Asterisks denote significant differences (p < 0.05).

AsA, DHA, GSH, and GSSG are substrates and products of AsA–GSH [27]. A peak of
AsA content was found at 7 d of healing in all groups, and the COS group stayed higher
during healing; 40% higher than the control at 5 d of healing (Figure 5A). Likewise, the
DHA content peaked at 7 d of healing in all groups, while the COS group maintained a
lower value during healing; 43.9% lower than the control at 7 d of healing (Figure 5B).
A trend showing an increase of GSH content was found in all groups during healing, while
the COS group had a higher value, which was 25.2% higher than the control at 21 d of
healing (Figure 5C). A peak of GSSG content was found at 7 d of healing in all sample
groups, while the COS group had a lower value during healing, which was 24.7% lower
than the control at 7 d of healing (Figure 5D).
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Figure 5. Effect of COS treatment on the contents of AsA (A), DHA (B), GSH (C), and GSSG (D) at
wounds of potato tubers during healing. Bars indicate standard error. Asterisks denote significant
differences (p < 0.05).

These results suggested that COS treatment increased the activities of APX, DHAR,
MDHAR, and GR, and promoted the accumulation of AsA and GSH, thereby contributing
to the elimination of the excessive H2O2 at tuber wounds.

3.4. COS Enhanced the Antioxidant Capacity In Vitro at Tuber Wounds

The scavenging ability of DPPH, ABTS+, and FRAP are important indicators for
evaluating antioxidant activity [28]. The scavenging ability of DPPH was higher in all
sample groups, and the COS group had a higher value during healing, which was 20.4%
higher compared to the control at 21 d of healing (Figure 6A). An increased scavenging
ability of ABTS+ and FRAP were found in all groups during healing, while the COS
group was higher compared to the control (Figure 6B,C). These results suggested that COS
treatment enhanced antioxidant capacity in vitro at tuber wounds.

3.5. COS Reduced Cell Membrane Permeability and MDA Content at Tuber Wounds

Cell membrane permeability and MDA content reflect membrane integrity and the
level of membrane lipid peroxidation [29]. In all groups, cell membrane permeability
increased during healing, while the COS group maintained a lower value, which was 21.5%
lower than the control at 21 d of healing (Figure 7A). A peak of MDA content was found in
all groups, while the COS group had a lower value during healing, which was 23.8% lower
than the control at 7 d of healing (Figure 7B). These results suggested that COS treatment
effectively maintained cell membrane integrity and inhibited membrane lipid peroxidation
at wounds of tubers.
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Figure 7. Effect of COS treatment on cell membrane permeability (A) and MDA content (B) at wounds
of potato tubers during healing. Bars indicate standard error. Asterisks denote significant differences
(p < 0.05).
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4. Discussion

During the healing process of potato tubers, ROS mainly comes from NOX, POD,
and PAO, while NOX is considered as the most important source [1]. NOX generates
O2
•− by transferring electrons to O2. Then, O2

•− is quickly dismutated into stable H2O2
by SOD due to its instability [30]. In this study, COS treatment activated NOX and SOD
(Figure 1), and promoted the generation of O2

•− and H2O2 (Figure 2) at wounds of potato
tubers. These results are similar to the results which showed that COS activated NOX and
induced H2O2 accumulation in rice leaves [31]. It has been reported that COS induced
extracellular Ca2+ influx and increased the resistance of tobacco against the tobacco mosaic
virus [32]. Moreover, COS increased the activity of calcium-dependent protein kinase
(CDPK) in Brassica napus [33] and up-regulated the expression of CDPK7 and CDPK26 in
Arabidopsis [34]. Increased concentration of intracellular Ca2+ activated CDPK, and the
interaction of CDPK and NOX induced ROS bursts at tuber wounds [3]. Therefore, we
hypothesize that COS may activate CDPK by inducing extracellular Ca2+ influx, primarily at
wounds of tubers, and then CDPK phosphorylates NOX, which generates O2

•− and H2O2.
CAT and POD are important enzymes for scavenging H2O2 in plants. CAT can reduce

H2O2 to H2O and O2 [35]. Moreover, POD also can hydrolyze H2O2 into H2O and O2 [36].
In this study, COS treatment up-regulated StCAT expression and increased CAT activity
at wounds of tubers (Figure 3).These findings are similar to the results that found COS
increased CAT expression and CAT activity in kiwifruit [8]. Moreover, COS treatment
activated StPOD expression and increased POD activity at wounds of tubers. These results
are similar to the results that found COS activated POD expression and increased POD
activity in peach fruit [37]. Therefore, we hypothesized that COS treatment promotes H2O2
generation at tuber wounds during healing, which may provide substrates for CAT and
POD and activate CAT and POD.

AsA–GSH is a significant ROS-scavenging system in organisms, which contributes to
scavenging excess H2O2 [38]. APX is the first enzyme in AsA–GSH, which can specifically
catalyze AsA to MDHA [25]. MDHAR cooperates with APX to eliminate H2O2 [39]. DHAR
catalyzes DHA to AsA in the presence of GSH and NADH [26], and GR converts GSSG to
GSH by the action of NADPH, which further reduces oxidative stress [40]. In this study,
COS treatment activated the expression of StAPX, StDHAR, StMDHAR, and StGR, and
increased activities of APX, DHAR, MDHAR, and GR at wounds of tubers (Figure 4).
Moreover, the treatment also enhanced AsA and GSH contents and decreased DHA and
GSSG contents (Figure 5). These results are similar to the results that found COS activated
APX and GR, and increased AsA and GSH contents in citrus fruit [6]. Therefore, we hypoth-
esized that COS treatment increases H2O2 content (Figure 2), which may provide substrates
for AsA–GSH, thereby activating the AsA–GSH cycle and promoting the scavenging ability
of H2O2 at wounds of tubers.

DPPH, ABTS+, and FRAP are important indicators for evaluating antioxidant activity
in vitro. DPPH is mainly used to evaluate the antioxidant capacity of phenols, flavonoids,
and terpenoids in plants [41]. ABTS+ and FRAP are mainly used to evaluate the antioxi-
dant capacity of vitamins and carotenoids, respectively [42]. In this study, COS treatment
increased the scavenging ability of DPPH, ABTS+, and FRAP at wounds of tubers, these re-
sults are similar to the results that found COS increased the scavenging ability of DPPH and
ABTS+ in blackberry fruit [11]. An amount of phenols, flavonoids, terpenoids [43], AsA [44],
polyamines, and alkaloids [45] were generated at the wounded surface of potato tubers
during healing. In addition, COS has a strong free radical scavenging ability [46]. Therefore,
we inferred that COS could enhance the scavenging ability of DPPH, ABTS+, and FRAP
at tuber wounds, which may closely relate to the increase of the total phenols, flavonoids,
AsA, and terpene contents at wounds, as well as to its free radical scavenging ability.

Cell membrane integrity is the key to maintaining normal metabolisms, and intact cell
membranes ensure the smooth progress of primary and secondary metabolisms of tubers
during healing [1]. Excessive ROS leads to membrane lipid peroxidation, which formats
MDA and destroys cell membrane integrity, thereby reducing the normal metabolic levels
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of cells [47]. In this study, COS treatment reduced cell membrane permeability and MDA
content, and maintained cell membrane integrity at tuber wounds (Figure 7). These results
are similar to the results that COS reduced MDA content in peach fruit [7]. Therefore, we
infer that COS activated CAT and POD (Figure 3) and AsA–GSH (Figures 4 and 5), which
may contribute to scavenging excessive H2O2 at tuber wounds (Figure 2). In addition, COS
treatment increased the scavenging ability of DPPH, ABTS+, and FRAP at tuber wounds
(Figure 6), which may maintain cell membrane integrity and ensure the smooth progress of
normal metabolisms during healing.

As nearly almost all potato tubers are harvested mechanically, after harvesting, the
tubers are handled by grading, packaging, and transportation, which can damage the
tubers to varying degrees [45]. The wounds not only accelerate water evaporation, but also
provide access to pathogen invasion, which causes serious decay during storage [48]. Our
research indicates that COS could promote wound healing of potato tubers by depositing
suberin and lignin at wounds (unpublished), and ROS homeostasis regulated by COS
plays an important role in maintaining the monomers synthesis of suberin and lignin.
Interestingly, potato tubers have a wound-healing ability, which contributes to the inhibition
of water evaporation and helps to reduce pathogen infection by forming a periderm layer at
wounds [49]. However, since natural healing of tubers takes a long time, specific techniques
are needed to speed up the process [14]. In addition, COS is generally considered a chemical
with safe, low-cost, and broad-spectrum effects. Therefore, COS could be developed as an
environment-friendly wound healing accelerator.

5. Conclusions

COS activated NOX and SOD, and promoted the generation of O2
•− and H2O2 at

tuber wounds. COS activated CAT, POD, and AsA–GSH to eliminate excessive H2O2 at
tuber wounds. In addition, COS also increased the scavenging ability of DPPH, ABTS+,
and FRAP at wounds, which contributed to the maintenance of cell membrane integrity
and ensured the smooth progress of primary and secondary metabolisms at tuber wounds
during healing. This study elucidates that COS could maintain cell membrane integrity by
regulating ROS homeostasis at wounds of potato tubers. Therefore, COS can beneficially
accelerate the process of wound healing and reduce postharvest loss of potato tubers during
storage. The possible mode of ROS generation and scavenging in potato tubers induced by
COS treatment during healing is shown in the graphical abstract.
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