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Local‑feature 
and global‑dependency based tool 
wear prediction using deep learning
Changsen Yang1, Jingtao Zhou1*, Enming Li1, Mingwei Wang1 & Ting Jin2

Evaluation of tool wear is vital in manufacturing system, since early detections on worn‑out condition 
can ensure workpiece quality, improve machining efficiency. With the development of intelligent 
manufacturing, tool wear prediction technology plays an increasingly important role. However, 
traditional tool wear prediction methods rely on experience and knowledge of experts and are labor‑
extensive. Deep learning provides an effective way to extract features of raw data and establish the 
mapping relationship between features and targets automatically. In this paper, a new local‑feature 
and global‑dependency based tool wear prediction method is proposed. It is a hybrid approach 
combining manual features with automatic features. Firstly, an enhanced CNN network is designed 
and applied on the transformed wavelet scalogram to learn the local single‑scale specific features and 
multi‑scale correlation features automatically. Secondly, sequence of local feature vectors combining 
manual features with automatic features are fed into multi‑layer LSTM step by step for the global 
dependency. A fully connected layer is then trained to predict tool wear. Finally, two statistics are 
proposed to illustrate the overall prediction performance and generalization ability of the model. An 
experiment illustrates the effectiveness of our proposed method under multiple working conditions.

The rise of multi-variety, variable batch and customized production mode requires the production system to be 
equipped with stronger monitoring ability of the production process in the complex and changeable produc-
tion  environment1,2. Production system endued with self-perception can response to the changeable production 
environment in time. Under the new production mode, tool wear prediction system, as an indispensable part 
of automatic and intelligent processing, has been paid more and more attention by researchers and engineers. 
Accurate prediction of tool wear during machining can be of great significance for ensuring workpiece quality, 
improving machining efficiency, and promoting automatic and intelligent  machining3.

In recent years, the development of computer technology, sensor technology and signal processing technology 
make it possible to monitor the signal of the machining process in real time, which promotes the development 
of data-driven method in tool wear  prediction4,5. Scholars have done a lot of research on data-driven tool wear 
prediction. The main idea of the data-driven method is to train the tool wear model based on the historical data, 
and then input the data collected online into the trained model to predict the tool wear. The data-driven method 
can be divided into traditional method and deep learning-based method.

Traditional data‑driven tool wear prediction method. Traditional data-driven tool wear modeling 
methods, such as fuzzy  clustering6, support vector  machine7, decision  tree8 and neural  network9, do not require 
in-depth analysis of the complex tool failure mechanism in the cutting process, but are a kind of methods to 
predict tool wear by mining correlations between wear characteristics and wear value. With the continuous 
development of various supporting technologies, their reliability and stability have also made great progress, and 
these methods have become the mainstream in tool wear prediction.

Li et al.6 extracted signal features of cutting vibration by applying frequency-band energy decomposition using 
wavelet packets. Then tool wear states can be recognized by affinities between the known state and unknown state 
obtained through the fuzzy clustering. Zhang et al.10 solved the highly nonlinear and noisy black-box modelling 
problems by studying the least square support vector machine (LS-SVM), and established the tool wear model 
of ball-end milling cutter based on LS-SVM considering the joint effect of machining conditions. Krishnakumar 
et al.11 used Dimensionality Reduction Technique to select a set of prominent features. Then classifications of tool 
conditions were carried out using J48 decision tree algorithm and artificial neural network (ANN). In addition, 
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some researchers integrate physical information into the data-driven model to optimize it. Li et al.12 proposed a 
physics-informed meta-learning framework for tool wear prediction under varying wear rates. An experimental 
was performed to validate the effectiveness of the method.

Traditional data-driven method mentioned above requires manual extraction of tool wear features or very 
professional domain knowledge to build the model, and the performance of the model largely depends on the 
quality of the extracted features and the structure of the model. It relies heavily on the expertise of experts in 
related fields, which makes it less adaptable in different fields and scenes.

Deep learning based tool wear prediction method. In recent years, thanks to the development of 
big-data in all walks of life and the improvement of computing power, deep learning has become a popular 
technology in machine learning and data-driven algorithms. With its powerful feature extraction, feature fusion 
and abstraction  ability13–15, it can directly extract features from original data without relying on human expe-
rience, which makes it widely used in various industries and gradually applied in tool wear  prediction16–18. 
Zhao et al.16 convolved and pooled the original data along the timing sequence with 1D convolutional neural 
network (CNN) to obtain the compressed timing features and input them into the bi-directional long short-
term memory network (LSTM) to predict tool wear. Chan et al.19 proposed Holistic–Local Long Short-Term 
Memory (HLLSTM), which uses CNN to extract features from original data and uses the extracted results as 
input of LSTM to predict tool wear. However, when original data is directly input into the network, the model 
is usually overfitted due to too a large number of  parameters5 and may not work as well due to unclear features. 
Therefore, some scholars combine feature engineering with deep learning to extract more abstract features from 
manual  features20. Some good results have been achieved. Martinez et al.21 converted the time series into images 
using GAF imaging technique, and then input the images into CNN for training prediction and tool wear clas-
sification. Marani et al.22 extracted statistical features from the raw data and proposed a prediction model for 
tool flank wear derived from long short-term memory (LSTM) modelling, the results show that the best LSTM 
model demonstrates its capability to capture tool flank wear. Zhao et al.5 proposed local feature-based gated 
recurrent unit (LFGRU) networks, which combined handcrafted features design with automatic feature learning 
for machine health monitoring and achieved a favorable effect on tool wear prediction. Zhang et al.23 converted 
the original vibration signals into corresponding energy spectrum using wavelet packets transform, and built a 
tool wear monitoring model using a deep convolutional neural network (DCNN) to realize the adaptive extrac-
tion of tool wear features and the classification of wear degree. Duan et al.24 introduced a multi-frequency-band 
feature extraction structure based on a DCNN structure for sensitive feature extraction of wavelet coefficients 
in different frequency bands.

In addition to the methods described above, researchers are also trying to implement feature engineering 
using deep learning techniques. The attention  mechanism25 is regarded as a secondary screening method of 
data information and is also used to improve the feature learning ability of the model. Muneer et al.26 proposed 
the LSTM model with attention mechanism to emphasize the most critical pieces of information to improve 
the feature learning ability of the model. The experimental results showed that the method achieved accurate 
remaining useful life prediction of the turbofan engine. Xu et al.27 introduced the channel attention mechanism 
into the deep learning model based on CNN and considered the weight of different feature map to enhance the 
performance of the model. Achievements have been made in the research above. However, there are still some 
potential concerns that need to be considered in the prediction of tool wear under multiple working conditions 
based on time series data.

(1) Data representation and feature extraction The machinery data collected during machining process is non-
linear. The representation of data is related to the quality of feature extraction and ultimately affects the 
effectiveness of the  model28. How to effectively represent tool wear time-series data and extract features 
appropriately are still issues that need to be paid attention to.

(2) Temporal information The machinery data collected during machining process are in a sequential form, 
which has the problem of being non-linear and time-variant. The transient  signatures29 and long-term 
dependence  relation30 in time-series signals are very important in indicating dynamic process relevant to 
tool wear and breakage. Mining the local details and the global information hidden in the time-series data, 
such as mutative symptom within a short period of time, or the inherent trend and correlation hidden in 
the whole time series, is very important for tool wear prediction.

(3) Model evaluation Whether the prediction model is suitable in a scene depends on the reasonable evaluation 
of the prediction ability and stability of the model. How to evaluate prediction ability and stability of the 
model is a problem that needs to be considered.

In this paper, we propose a new deep-learning based tool wear prediction framework named Local-Feature 
and Global-Dependency based Tool Wear Prediction (LFGD-TWP). Firstly, discrete wavelet transform is used 
to transform the pre-processed original signals so that the wear characteristics can be manifest without loss of 
original signal  information28. Then, a local feature extraction model is proposed based on the translation invari-
ance of convolutional neural networks and its powerful non-linear feature extraction capability. The obtained 
wavelet scalogram is fed into convolution neural network for single-scale and multi-scale local feature extrac-
tion. Finally, local hybrid feature vectors are fed into LSTM step by step to realize tool wear prediction based on 
the capability of long-term dependency mining. The contributions of this paper can be summarized as follows.

(1) A new hybrid tool wear prediction method combining manual features and automatic features is proposed, 
which is suitable for multi-sensor fusion scenarios. Therefore, the model not only inherits the powerful 
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feature extraction capability of deep learning, but also can use artificial features to optimize the model 
without significantly increasing the size of the model, and the required professional knowledge does not 
need to reach an expert level.

(2) Wavelet transform is used to manifest characteristics without losing information of original data. The sen-
sitive features of tool wear can be further extracted and selected from wavelet coefficients, which makes it 
more conducive to data mining.

(3) A local time series feature extraction model based on enhanced multilevel-CNN is proposed for local 
information in a short, relatively stable cutting period, which can automatically extract single-scale specific 
features and multi-scale correlation features. The global dependency mining is realized by multi-layer 
LSTM. Therefore, the local information and long-term dependencies hidden in the original data are taken 
into consideration, which can solve the problem of non-linear and time-variant in tool wear signals.

(4) Two statistics are proposed to evaluate the overall prediction performance and generalization ability of the 
model, and the effectiveness of the model is verified.

This paper is organized as follows. In “Introduction” section, Current situations and problems of tool wear predic-
tion are discussed and analyzed, and the research contents and results of this paper are introduced. “Local-feature 
and global-dependency based tool wear prediction” section presents the methodologies, including local time 
series data conversion, local time series feature extraction and global time series dependency mining. “Case study 
and experimental results” section presents the results of proposed approach on tool wear data set. “Conclusions” 
section presents the conclusions of this paper and future research works.

Local‑feature and global‑dependency based tool wear prediction
In this section, our proposed LFGD-TWP framework will be presented in the scenario of multisensory machine 
monitoring. As shown in Figure 1, the enhanced CNNs are applied on the sequence of wavelet scalograms 
transformed from original multi-sensor data to learn local representation of wear condition. The enhanced 
LSTM network is applied on the sequence of local feature vectors to learn global-dependency and predict the 
tool wear. The input of our framework is the time series data collected during machining, which is denoted as 
X = [x1, x2, ..., xT ] where T is the length of data sample.

Local time series data conversion. In traditional data-driven tool wear prediction method, the origi-
nal data or manual features are input into the training model, which usually leads to overfitting problems or 
information loss. In this paper, a wavelet-based data representation method is proposed, through which the 
time-domain raw data are converted to images. And then we can extract tool wear features automatically using 
CNN automatically.

Multi-layer 
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2dCNN 2dCNN 2dCNN 2dCNN 2dCNN

Multi-1dCNN Multi-1dCNN Multi-1dCNN Multi-1dCNN Multi-1dCNN
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Figure 1.  Local-feature and global-dependency based tool wear prediction.
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As shown in Fig. 2, each set of time-series raw data is first divided into N local segments. Each segment is a 
window of raw data with a length of TN  . Therefore, the time-series raw data can be transformed to a sequence of 
local segments as X = [X1,X2, ...,XN ].Then, each local segment signal is processed by wavelet transform into a 
multi-scale spectrogram image to manifest the wear characteristics. The result wt(s, τ) of wavelet transform is 
obtained by multiplying a family of wavelets ψτ ,s with the raw data x(t) along time. It decomposes the raw signal 
onto a time-scale plane, which each scale ‘ s ’ corresponding to specific frequency information of the original 
signal. The formulas of wavelet transform are as follows:

where ψ(t) is the base wavelet and ψτ ,s is the wavelet function obtained from shifting ( τ ) and scaling ( s ) of the 
base wavelet. The wavelet transformation of a signal x(t) with finite energy can be performed through convolu-
tion of x(t) with the complex conjugate of a family of wavelets ψτ ,s according to (2). Therefore, we get the result 
of wavelet transform in terms of wt(s, τ).

Discrete wavelet transform is adopted in order to avoid information redundancy and reduce computation. 
After the wavelet transform, each segment is represented as ws = [c1, c2, ..., cl+1].Where l  denotes the level of 
decomposition. The last element cl+1 is approximation coefficients array and the previous elements c1, c2..., cl 
are absolute values arrays of details coefficients. From the definition of the wavelet transform and (3), it can be 
deduced that there is no loss of information or energy thorough the transform. Therefore, the irregular array ws 
which is composed of c1, c2, ..., cl+1 is another multi-scale representation of the original data.

Local time series feature extraction using CNN. This section presents the proposed multilevel-CNN-
based feature extraction method. First, multilevel 1D-CNNs are adopted to extract tool wear features from 
single-scale information, and then single-scale features are recombined for the sake of data balancing and multi-
scale information. Finally, 2D-CNN is adopted to extract the multi-scale correlation features from the previous 
combined features.
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Figure 2.  Local time series data conversion.
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Single‑scale feature extraction and recombination. Once the raw signals have been converted to multi-scale 
vectors, multilevel 1D-CNNs can be trained to extract single-scale features. Convolutional layers slide the filters 
over input vectors to generate feature maps. It is assumed that ki,j filters with a window size of mi,j are used cor-
responding to the j-th convolution operation of input vector ci . Then, the max pooling is adopted to compress 
generated feature maps to produce significant features. Therefore, the operation in the j-th convolution layer of 
the input vector ci can be expressed as:

where func represents activation function and Max
(

1× pi,j
)

 represents a max-pooling with region 1× pi,j.
Finally, the extracted single-scale features are reconstructed into an image of size (l + 1)× n . Where n is the 

number of features after feature extraction for each scale.
As shown in Fig. 3, 1D-CNN for c1 can be illustrated with the scheme of

It means a 1D-CNN with ms input sequences of size 1 × 512, a convolutional layer with 32 feature maps and 
1 × 8 filters which is followed by a max-pooling with region 1 × 2, a convolutional layer with 32 feature maps and 
1 × 8 filters which is followed by a max-pooling with region 1 × 2, a convolutional layer with 32 feature maps and 
1 × 4 filters which is followed by a max-pooling with region 1 × 2, a convolutional layer with 32 feature maps and 
1 × 4 filters which is followed by a max-pooling with region 1 × 2. The activation function of the convolution layer 
is Rectified Linear Units (ReLU). Once all single-scale features have been extracted, the extracted single-scale 
features are concatenated into a tensor of size m× (l + 1)× n . Where m is the channels of outputs and n is the 
number of features after feature extraction for each scale.

Multi‑scale correlation feature extraction. Convolutional neural networks are very suitable for image-like data 
and can extract essential features because of its structure and convolution operation. After the single-scale fea-
ture extraction and recombination, 2D-CNN was adopted to extract correlation features of multi-scale informa-
tion over the input sequence.

As shown in Fig. 4, the size of the input tensor is m× (l + 1)× n . The first convolutional layer takes as input 
the tensor and filters it with 32 convolutions of size 5 × 5 × m, which is followed by a max-pooling with region 
1 × 2 to summarize the outputs. The second convolutional layer takes as input the (pooled) output of the first 
convolutional layer and filters it with 32 convolutions of size 5 × 5 × m, which is followed by a max-pooling with 
region 1 × 2. The latter two fully connected layers have 500 and 50 neurons respectively.

Global time series dependency mining using multiple LSTM. LSTM is developed from RNN, 
inherits the recurrent structure of RNN and solves the problem of vanishing gradient or exploding gradient. It is 
good at dealing with complicated problems of long time series dependency. Therefore, LSTM is applied on local 
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Figure 3.  Single-scale feature extraction and recombination.
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hybrid feature vectors to obtain long-term global dependencies. The hybrid features vector consists of automatic 
features generated by multilevel-CNN-based feature extraction model and manual features. The manual feature 
vector usually consists of time-domain, frequency-domain and time–frequency domain  features31.

As shown in Fig. 5, the sequence of hybrid feature vectors is taken as input passing through multiple LSTM 
layers. The hidden output of an LSTM cell is not only passed to the next cell of the same layer over time, but also 
used as the input of next LSTM layer.

Figure 1 shows the basic architecture of the proposed local-feature and global-dependency based tool wear 
prediction model. The parameters of 2D-CNN extracting the feature of each time-series segment are shared, 
which are the same as 1D-CNNs. Therefore, the model parameters can be reduced and the essential features of 
tool wear in different time-series segments can be extracted. Moreover, the local hybrid features are input into 
the multi-layer LSTM in time series, which enables the model to mine the long-term dependency related to tool 
wear in the machining process.

Case study and experimental results
In this section, an experiment was designed to test the performances of our proposed LFGD-TWP method.

Introduction of experimental data. The machining experiment was carried out in milling operation 
and the experimental equipment and materials used in this experiment are shown in Table 1. The cutting force 
acquisition system mainly consists of sensor, transmitter, receiver and PC. The sensor and signal transmitter are 
integrated into a toolholder, which can directly collect the force data during machining and send it out wirelessly. 
The signals are collected at a frequency of 2500 Hz. The collected data from sensor is transmitted wirelessly to 
receiver, which in turn transmits the data to PC via USB cable. The signal collection process is shown in Fig. 6.

The Anyty microscope was fixed inside the machine tool as shown in Fig. 7. The coordinate where image of 
tool wear can be clearly taken is recorded into the CNC so that the spindle can move to this fixed position for 
wear measurement after each milling. This measurement method avoids the errors caused by repeated removal 
and installation of cutters, which improves the efficiency and accuracy of tool wear measurement. A sample 
photo of the microscope is shown in Fig. 8.

Conv2d(5×5×32)/ReLU+Max(1×2) Conv2d(5×5×32)/ReLU+Max(1×2)

FC 500

/ReLU

FC 50

/ReLU

Figure 4.  2D-CNN for multi-scale correlation feature extraction.

LSTM-Cell

local hybrid 
feature vector

target

FC-LayerLSTM-Cell

Figure 5.  Global time series dependency mining using LSTM.

Table 1.  Experimental equipment and materials.

Hardware conditions Model number

Experimental platform SMU50 5-axis vertical machining center

Bending moment sensor SPIKE

Torsion sensor SPIKE

Wear measurement Anyty Microscope 3R-MSUSB601

Milling cutter Zhuzhou GM-4E-D10.0

Workpiece 1045
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Figure 6.  Signal acquisition.
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Figure 7.  Tool wear measurement.

Figure 8.  A sample photo of tool wear.
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Orthogonal experimental method was adopted in this paper in order to test the performances of our method 
under multiple working conditions. Tool wear experiments are conducted using nine cutters under nine differ-
ent cutting parameters. The 9 cutters are marked as C1, C2,…, C9. The milling parameters were set as shown in 
Table 2. The cutting width was fixed at 7 mm. Each row in the table corresponds to a new cutter. Every 1000 mm 
cutting was a cut and the tool wear was measured after every cut. Replace the cutter and cutting parameters when 
the previous tool wear exceeds the threshold or the cutter is broken.

The data acquisition files have three columns, corresponding to: bending moment in two directions (x, y) 
and torsion. Each cutter has a corresponding wear file. The wear file records the wear values of the four flutes 
corresponding to each cut. The cutting quality will become poor if the wear value of any edge exceeds a certain 
value. Therefore, this paper takes the maximal flank wear of all flutes as target.

Results and discussion. Data preparation. Considering the multisensory input contain three channels, 
the bending moment in X direction is used as an example to illustrate the data preparation process in this paper. 
Firstly, the original signal of each cut is truncated to obtain the valid data segment containing 10,240 recorded 
values in the middle part of each signal. Finally, the data is equally divided into 10 segments based on practice, 
denoted as Xfx = [X1,X2, ...,X10].

Local time series data conversion. The maximum level of decomposition in DWT is related to the length of 
signals and the chosen wavelet. In this paper, db5 is used for decomposition and we select the optimal level of 
decomposition by comparing the performance under different levels of decomposition. Decomposition level 3, 
4, 5 and 6 were chosen for comparison in this paper. The results showed that level 5 had the best performance. 
Therefore,X1,X2, ...,X10 are converted to multi-scale spectrogram images respectively by 5-level wavelet decom-
position using db5 based on the practice, denoted as WS = [ws1,ws2, ...,ws10] where ws = [c1, c2, ..., c6] with the 
length of [512, 256, 128, 64, 32, 32] is multi-scale vectors corresponding to each segment.

Local time series feature extraction. For each segment, 1D-CNNs are used to extract single-scale features from 
c1, c2, ..., c6 respectively. The structure and parameters of the model are shown in Table 3.

The activation function of the convolution layer is ReLU. Every convolution layer of c1, c2, c3, c4 is followed 
by a max-pooling layer with region 1 × 2 to compress generated feature maps. The input channel of the model is 
set to 3 because of the three-channel sensory data.

After the single-scale Feature Extraction by 1D-CNNs and the concatenation of single-scale Features, a feature 
image of size 32× 6× 32 is obtained, which is used as the input of our multi-scale correlation feature extraction 
model. Finally, the local feature size of each segment after automatic extraction is 1 × 50.

Global time series dependency mining. In this case, the dimension of automatic feature vector is 50, and the 
dimension of manual feature vector is 30. The adopted manual features are shown in Table 4. Therefore, the 
dimension of the hybrid features of each segment is 80.

The number of segments is T = 10 so that the shape of the input sequence of Global Time Series Dependency 
Mining Model is 80 × 10. The Mean Squared Error (MSE) was selected as the model loss during model training. 

Table 2.  Parameter setting.

No. Cutting speed (m/min)
Feed rate
(mm/z) Cutting depth (mm)

C1 150 0.1 0.2

C2 150 0.15 0.3

C3 150 0.2 0.4

C4 200 0.1 0.3

C5 200 0.15 0.4

C6 200 0.2 0.2

C7 250 0.1 0.4

C8 250 0.15 0.2

C9 250 0.2 0.3

Table 3.  Structure and parameters of single-scale feature extraction model.

c1 c2 c3 c4 c5 c6

Conv(1 × 8 × 32) Conv(1 × 8 × 32) Conv(1 × 4 × 32) Conv(1 × 4 × 32) Conv(1 × 4 × 32) Conv(1 × 4 × 32)

Conv(1 × 8 × 32) Conv(1 × 4 × 32) Conv(1 × 4 × 32)

Conv(1 × 4 × 32) Conv(1 × 4 × 32)

Conv(1 × 4 × 32)
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An Adam  optimizer32 is used for optimization in this paper and the learning rate is set to be 0.001. MSE was 
calculated on test data set for the models having one, two, and three layers and 100, 200, 300, 400, 500 hidden 
units. The results show that the most accurate model contained 2 layers and 300 hidden units in LSTM models 
and 400 hidden units in FC-Layer. In order to improve the training speed and alleviate the overfitting issues, we 
apply batch normalization (BN)33 to all convolution layers of Single-Scale Feature Extraction Model, and apply 
the dropout  method34 to the fully connected layer. To get a relatively optimal dropout value, we set different values 
to train the model, i.e., p = 0, p = 0.25, p = 0.5, p = 0.75. Where p is the probability of an element to be zeroed. The 
results show that the dropout setting of 0.5 gives a relatively optimal result. After updating the parameters of the 
model with the training data, the trained model is applied on the testing data to predict tool wear.

In order to quantify the performance of our method, mean absolute error (MAE) and root mean squared 
error (RMSE) are adopted as measurement indicators to evaluate regression loss. The equations of MAE and 
RMSE over n testing records are given as follows:

where yi is predicted value and ŷi is true value.
To analyze the performance of all our methods, cross validation is used to test the accuracy of the model in 

this paper. Eight cutter records are used as training sets and the rest one is used as testing set, until all cutters 
are used as testing set. For example, records of cutters C2, C3, …, C9 are used as the training sets and records of 
cutter C1 are used as the testing set, the testing case is denoted as T1. Then the records of cutter C2 are used as 
the testing set, and the records of the rest cutter are used as the training sets, the testing case is denoted as T2. 
The rest can be done in the same manner. Nine different testing cases are shown in Table 5.

To mitigate the effects of random factors, each testing case is repeated 10 times and the average value is used 
as the result of the model. Moreover, in order to demonstrate the effectiveness of the hybrid features in this paper, 

(5)MAE =
1

n

n
∑

i=1

∣

∣yi − ŷi
∣

∣,

(6)RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − ŷi)2,

Table 4.  Manual features for tool wear prediction.

Features Equations

Mean 1

n

∑n
i=1

xi

RMS Z =

√

1

n

∑n
i=1

x2i

Variance 1

n

∑n
i=1

(xi − x)2

Maximum Max(x)

Minimum Min(x)

Skewness E[( x−µ
σ

)3]

Kurtosis E[( x−µ
σ

)4]

Spectral skewness ∑k
i=1

((fi − f )/σ )3S(fi)

Spectral Kurtosis ∑k
i=1

((fi − f )/σ )4S(fi)

Spectral power ∑k
i=1

(fi)
3S(fi)

Table 5.  Testing cases.

Testing cases Training Testing

T1 C2, C3, C4, C5, C6, C7, C8, C9 C1

T2 C1, C3, C4, C5, C6, C7, C8, C9 C2

T3 C1, C2, C4, C5, C6, C7, C8, C9 C3

T4 C1, C2, C3, C5, C6, C7, C8, C9 C4

T5 C1, C2, C3, C4, C6, C7, C8, C9 C5

T6 C1, C2, C3, C4, C5, C7, C8, C9 C6

T7 C1, C2, C3, C4, C5, C6, C8, C9 C7

T8 C1, C2, C3, C4, C5, C6, C7, C9 C8

T9 C1, C2, C3, C4, C5, C6, C8, C8 C9
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two models are trained, namely the network with hybrid features and the network with automatic features only. 
The results of each testing cases are shown in Table 6.

It can be seen from Table 6 that our proposed LFGD-TWP achieves low regression error. In most cases, the 
model with hybrid features performs better than the model with automatic features only. By calculating the 
average performance improvement, we can reach a 3.69% improvement in MAE and a 2.37% improvement in 
RMSE. To qualitatively demonstrate the effectiveness of our model, the predicted tool wears of testing case T2 
and T7 are illustrated in Fig. 9. It can be seen from Fig. 9 that the closer to the tool failure zone, the greater the 
error. The reason for this may be that the tool wears quicker at this stage, resulting in a relatively small number of 
samples. Or it could be that the signal changes more drastically and the noise is more severe due to the increasing 
tool wear, leading to greater error.

Two statistics are adopted to illustrate the overall prediction performance and generalization ability of the 
model under different testing cases: mean and variance. Mean is the average value of the results under different 
testing cases. Obviously, it indicates the prediction accuracy of the method. Variance measures how far each 
result is from the mean and thus measures variability from the average or mean. It indicates the stability of gen-
eralization under different testing cases. The equations of mean and variance of two measurement indicators 
over n testing cases are given as follows:

where ri is the mean value of the results for each testing case.

(7)Mean = r =
1

n

n
∑

i=1

ri ,

(8)Variance =
1

n

n
∑

i=1

(ri − r)2,

Table 6.  Measurement indicator (MAE and RMSE) achieved by LFGD-TWP.

Testing cases

Hybrid feature
Automatic 
features

Performance 
improvement

MAE RMSE MAE RMSE MAE (%) RMSE (%)

T1 5.52 7.03 5.68 7.64 2.82 7.98

T2 7.82 10.34 8.04 10.29 14.07 11.47

T3 9.43 12.15 11.25 15.14 16.18 19.75

T4 7.73 10.08 9.1 11.68 3.86 2.04

T5 7.41 9.86 6.72 8.49  − 10.27  − 16.14

T6 6.81 8.76 6.92 9.14 1.59 4.16

T7 7.40 9.79 7.15 8.95  − 3.50  − 9.39

T8 7.08 9.59 7.16 9.44 1.12  − 1.59

T9 7.03 9.21 7.59 9.5 7.38 3.05

Figure 9.  Tool wear predicted by LFGD-TWP.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:14574  | https://doi.org/10.1038/s41598-022-18235-3

www.nature.com/scientificreports/

The definition of mean and variance shows that the smaller their values are, the better performance of the 
model will be. In our proposed method, the means of MAEs and RMSEs are 7.36 and 9.65, and the variances of 
MAEs and RMSEs are 0.95 and 1.65.

Further comparison. Other deep learning models are used to compare model performance with the pro-
posed LFGD-TWP. They are  CNN24, and  LSTM30 and CNN-BiLSTM19, and the structure of these models are 
shown as follows.

Structure of CNN model in brief: The input of CNN model is the original signal after normalization, and the 
signal length is 1024. The input channel of the model is set to 3 because of the three-channel sensory data. CNN 
model has 5 convolution layers. Each convolutional layer has 32 feature maps and 1 × 4 filters which is followed 
by a max-pooling with region 1 × 2. Then flatten the feature maps. Finally, it is followed by a fully connected layer, 
which has 250 hidden layer units. The dropout operation with probability 0.5 is applied to the fully connected 
layer. The loss function is MSE, the optimizer function is Adam, the learning rate is set to be 0.001, which are 
kept the same as the proposed model. The means of MAEs and RMSEs are 12.64 and 16.74, and the variances 
of MAEs and RMSEs are 10.74 and 18.90.

Structure of LSTM model in brief: The model is of type many to one. The input of LSTM is the manual features 
in Table 4. Therefore, an LSTM cell has an input dimension of 30. The MAE and RMSE values were calculated for 
models with one, two, and three layers and 100, 200, 300, 400 hidden units. Therefore, 12 structures of an LSTM 
model were constructed for the most accurate model. Also, the timesteps are 10, the loss function is MSE, the 
optimizer function is Adam, the learning rate is set to be 0.001, which are kept the same as the proposed model. 
The results show that the most accurate model contained 2 layers and 200 hidden units. The means of MAEs and 
RMSEs are 10.48 and 13.76, and the variances of MAEs and RMSEs are 5.12 and 9.28.

Structure of CNN-BiLSTM model is shown in Ref.19, and the input of this model is the original signal after 
normalization. The means of MAEs and RMSEs of this model are 7.85 and 10.24, and the variances of MAEs 
and RMSEs are 2.71 and 5.06. Comparison results of our method (LFGD-TWP) and popular models are shown 
in Table 7. Compared to the most competitive result achieved by CNN-BiLSTM, the proposed model achieves a 
better accuracy owing to the multi-frequency-band analysis structure. Further, it can be seen that the proposed 
model achieves lower variances in MAE and RMSE. It means that the proposed model has better overall predic-
tion performance and better stability of generalization under different testing cases by comparing the variance 
of the results.

To further test the performance of our proposed method, we additionally use the PHM2010 data  set35, which 
is a widely used benchmark. The machining experiment was carried out in milling operation and the experi-
mental equipment and materials used in this experiment are shown in Ref.19. The running speed of the spindle is 
10,400 r/min; the feed rate in x-direction is 1555 mm/min; the depth of cut (radial) in y-direction is 0.125 mm; 
the depth of cut (axial) in z-direction is 0.2 mm. There are 6 individual cutter records named C1, C2,…, C6. 
Each record contains 315 samples (corresponding to 315 cuts), and the working conditions remain unchanged. 
C1, C4, C6 each has a corresponding wear file. Therefore, C1, C4, C6 are selected as our training/testing dataset. 
Also, cross validation is used to test the accuracy of the model and the results are shown in Fig. 10.

Table 7.  Comparison results.

Algorithms

MAE RMSE

Mean Variance Mean Variance

CNN 12.64 10.74 16.74 18.90

LSTM 10.48 5.12 13.76 9.28

CNN-BiLSTM 7.85 2.71 10.24 5.06

LFGD-TWP 7.36 0.95 9.65 1.65

Figure 10.  Tool wear (PHM2010) predicted by LFGD-TWP.
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In our proposed method, the mean of MAEs is 6.65, the mean of RMSEs is 8.42. Compared with the mean 
value of MAEs (6.57) and RMSEs (8.1) in Ref.19. The reason for the slightly poor performance may be that in 
order to enhance the adaptability to multiple working conditions, the architecture of the model is more complex, 
which leads to overfitting. Although the proposed architecture might overfit the PHM2010 case, the complexity 
of the architecture ensures that more complex scenarios like the test cases in the paper can be handled.

Conclusions
In this paper, a new tool wear prediction method LFGD-TWP based on deep learning has been proposed. It 
combines manual feature extraction with automatic feature extraction based on machine learning. Enhanced 
CNN is used to extract the local features of a time series segment. Single-scale features are extracted from the 
wavelet transformed data by different depths respectively, and finally the single-scale features are combined for 
multi-scale feature extraction. Both the specific extraction of different single-scale features and the correlation 
extraction of multi-scale features are achieved. And multiple LSTM is used to extract the long-term dependency 
of multiple time series segments. Mean and variance are adopted to illustrate the overall prediction performance 
and generalization ability of the model under different testing cases. Good results are obtained in predicting tool 
wear under multiple working conditions.

However, the method proposed in this paper still has limitations. The sample frequency of this method is 
2500 Hz, and we still need to do some extra work when processing data at different sample frequencies. Gener-
ally speaking, the actual level of decomposition depends on specific application scenarios. The features of tool 
wear exist in different frequency bands, and the change of sample frequency may affect the feature expression 
of tool wear. Therefore, the optimal level of decomposition may vary with sample frequency. When the sample 
frequency is higher than that in this paper, we can keep the sample frequency consistent with that in this paper 
by downsampling. Therefore, the architecture of the model will not be changed. When the sample frequency is 
lower than that in this paper, we can choose the level of decomposition by comparing the performance of different 
levels, which is the same as that in this paper. In the future work, we are going to explore the performance of our 
framework in a wider range of scenarios to improve the applicability of our model in intelligent manufacturing 
systems. For example, tool wear prediction under variable working conditions and tool wear prediction with 
variable sample frequency.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due the data also forms 
part of an ongoing study but are available from the corresponding author on reasonable request.
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