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Abstract: It is well known that the performance of thermoelectric measured by figure of merit ZT
linearly depends on electrical conductivity, while it is quadratic related to the Seebeck coefficient,
and the improvement of Seebeck coefficient may reduce electrical conductivity. As a promising
thermoelectric material, BiCuOCh (Ch = Se, S) possesses intrinsically low thermal conductivity, and
comparing with its p-type counterpart, n-type BiCuOCh has superior electrical conductivity. Thus,
a strategy for increasing Seebeck coefficient while almost maintaining electrical conductivity for
enhancing thermoelectric properties of n-type BiCuOCh is highly desired. In this work, the effects of
uniaxial tensile strain on the electronic structures and thermoelectric properties of n-type BiCuOCh
are examined by using first-principles calculations combined with semiclassical Boltzmann transport
theory. The results indicate that the Seebeck coefficient can be enhanced under uniaxial tensile
strain, and the reduction of electrical conductivity is negligible. The enhancement is attributed to the
increase in the slope of total density of states and the effective mass of electron, accompanied with the
conduction band near Fermi level flatter along the Γ to Z direction under strain. Comparing with the
unstrained counterpart, the power factor can be improved by 54% for n-type BiCuOSe, and 74% for
n-type BiCuOS under a strain of 6% at 800 K with electron concentration 3 × 1020 cm−3. Furthermore,
the optimal carrier concentrations at different strains are determined. These insights point to an
alternative strategy for superior thermoelectric properties.
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1. Introduction

The development of new energy materials is on the rise in recent decades and attracts more
and more attention owing to the impact on the environment [1,2]. As a newly promising material,
thermoelectric material possesses a prominent advantage for being able to directly convert heat energy
into electricity [3–7]. The performance of thermoelectric materials is quantified by a dimensionless
constant known as the figure of merit ZT = S2σT/κ, with S being the Seebeck coefficient, σ being the
electrical conductivity, κ being the thermal conductivity, and T being the absolute temperature. To
achieve a higher ZT, it is necessary to enhance the power factor S2σ or reduce the thermal conductivity.
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Newly discovered thermoelectric materials BiCuOSe and BiCuOS [BiCuOCh (Ch = Se, S)] have
attracted attentions due to their intrinsically low thermal conductivity [8–11], whose conductive
layers (Cu2Se2)2− or (Cu2S2)2− are alternately stacked with an insulating layer (Bi2O2)2+, composing
of the ZrSiCuAs structure type, and this layered structure may be an important factor affording its
low thermal conductivity [12,13]. Because of the low lattice thermal conductivity, efforts to improve
thermoelectric performance ZT of these compounds have mainly focused on enhancing their power
factor S2σ. To obtain high power factor, several approaches to increase the electrical conductivity of
BiCuOCh, such as doping [14,15], pressure [16], and strain [17], have been attempted. As the electrical
conductivity, σ, and Seebeck coefficient, S, are coupled, improving electrical conductivity will reduce
Seebeck coefficient [1]. Compared with p-type BiCuOSe, n-type BiCuOSe possesses higher electrical
conductivity [16]. On the other hand, it is also noticed that the power factor, S2σ, depends linearly on
electrical conductivity, σ, but quadratically on Seebeck coefficient S. Thus, it is an alternative pathway
to achieve the enhancement of power factor for n-type BiCuOCh via enhancing Seebeck coefficient
while keeping electrical conductivity with only slight reduction.

Recently, band engineering has proved to be an effective method to improve the electronic transport
properties of thermoelectric materials [18]. Some works have verified that the transport properties
can be tuned by strain, including both in-plane biaxial strains and out-of-plane uniaxial compressive
strain [17,19,20]. It is also well known that materials with micro/nanopillar array structures are always
subjected to out-of-plane uniaxial strain imposed by surrounding matrix [21,22], and thus applying
uniaxial tensile strain to thermoelectric materials can be easily realized in pillar array structures
in experiments by using appropriate matrix. As uniaxial tensile strain can also tune the electronic
structures of thermoelectric materials, it may provide a possible pathway to enhance thermoelectric
performance. Thus, it is necessary to explore how uniaxial tensile strain affects the electronic structures
and transport properties of n-type BiCuOCh, and it is expected that the present work will offer a
useful pathway to tune the electronic structures leading to the enhancement of the thermoelectric
performances of n-type BiCuOCh. In this work, we study the effects of uniaxial tensile strain along c axis
on the electronic structures of n-type BiCuOCh by using first-principles calculations, and investigate
the thermoelectric properties of n-type BiCuOCh under uniaxial tensile by semiclassical Boltzmann
transport theory. We find that uniaxial tensile strain can be utilized as an alternative pathway to
enhance the thermoelectric properties of n-type BiCuOCh.

2. Computational Details

Density function theory (DFT) has been adopted to calculate the lattice constants and electronic
structures of BiCuOCh (Ch = Se, S) under strain constraint, which are implemented in the Vienna ab
initio Simulation Package (VASP) [23–26]. The projector augmented wave (PAW) method is chosen
with Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA) exchange-correlation
potential [27]. The plane-wave basis sets with a kinetic energy cut-off of 550 eV are used in the
calculations. The relaxing force is set to be 10−3 eV Å−1. The convergence energy criterion is set to
be 10−6 eV per unit cell. The generalized gradient approximation (GGA) always underestimates the
exchange-correlation effect of the strongly localized Cu 3d electrons. To resolve this issue, DFT + U
is adopted to adjust the on-site Coulomb interactions [28,29], and it is an effective solution to deal
with the band gaps of semiconductors with Cu [30,31]. In this work, we set U = 4 eV for Cu 3d state
based on our previous investigations on BiCuOSe [13]. BiCuOCh includes heavy metal element Bi,
thus the spin-orbit coupling (SOC) is considered in our calculations, which takes into account of their
relativistic effect.

Based on the simulated electronic structures, the thermoelectric transport properties of n-type
BiCuOCh are calculated by the semiclassical Boltzmann theory via the BoltzTraP package [32,33].
Similar to treatments employed in literature [13], constant relaxation time approximation is used in the
calculations of thermoelectric transport properties, because the scattering time of most semiconductors
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is insensitive to energy [34]. A Monkhost–Pack mesh of 31 × 31 × 13 k-point is used to obtain the
accurate thermoelectric transport properties of BiCuOCh [35,36].

3. Results and Discussion

3.1. Crystal Structures

The typical crystal structure of BiCuOSe is shown in Figure 1a, in which the (Cu2Se2)2− layers
and the (Bi2O2)2+ layers are alternatively stacked together along the c axis direction. BiCuOS, whose
crystal structure is similar to that BiCuOSe, is not shown here. As we can see from Figure 1a, it
belongs to the layered structure, and can exhibit unique thermoelectric properties: the (Cu2Ch2)2−

layers can be considered as the conductive layers that are responsible for electrical conductivity, and
the (Bi2O2)2+ layers can be treated as charge reservoir layers that are expected to have a large Seebeck
coefficient. In addition, such layered structure also can lead to a low thermal conductivity [16,32].
In this work, the effects of uniaxial strain on the electronic structures, and thus the thermoelectric
properties of n-type BiCuOCh, are studied, with the uniaxial strain imposed along the c axis defined by
∆c = (c− c0)/c0. Notice that c and c0 are the optimized lattice constants for BiCuOCh under strained
and unstrained states.
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Figure 1. (a) Crystal structure of BiCuOSe. Variation of energy with respect to volume during
optimizing structures of unstrained (b) BiCuOSe and (d) BiCuOS. The optimized lattice constants of (c)
BiCuOSe and (e) BiCuOS as function of uniaxial tensile strain.

The optimized lattice constants are determined according to energy minimization. For example,
the variations of energy with respect to volume for unstrained BiCuOCh (Ch = Se, S) are plotted in
Figure 1b,d, where the optimized lattice constants with energy minimization are a = b = 3.9641 Å and
c = 9.0371 Å for unstrained BiCuOSe, and a = b = 3.8987 Å and c = 8.6546 Å for unstrained BiCuOS, as
tabulated in Table 1. These theoretical calculations agree well with the corresponding experimentally
measured values [37] listed in Table 1. Notice that BiCuOSe has larger lattice constants than BiCuOS
due to the larger atomic radius of Se. The optimized lattice constants under different uniaxial tensile
strains are plotted in Figure 1c,e. It is observed that an increase in uniaxial tensile strain leads to an
increase in the out-of-plane lattice constant c of BiCuOSe but a decrease in the in-plane lattice constant
a. Similar trends with respect to uniaxial tensile strain can also be observed for the lattice constants of
BiCuOS. Thus, the parameters of the crystal structures of both BiCuOSe and BiCuOS can be tuned via
uniaxial tensile strain, which may affect the electronic structures and the thermoelectric properties.
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Table 1. Comparison of lattice constants of unstrained BiCuOCh (Ch = Se, S) between calculations
and experiments.

Our Work Experiment [37]

BiCuOSe a (Å)
c (Å)

3.9641
9.0371

3.9287
8.9291

BiCuOS a (Å)
c (Å)

3.8987
8.6546

3.8691
8.5602

3.2. Electronic Structures

The characteristics of the band structure are relevant to the thermoelectric transport properties. To
gain insight into the band structures tuned by uniaxial tensile strain, the band structures of BiCuOSe
and BiCuOS with and without strain are plotted along several high symmetry points in the Brillion
zone in Figure 2. The calculation results indicate that both the conduction band minimum and the
valence band maximum are located at the Z point, meaning that BiCuOSe has a direct band gap.
BiCuOS shows an indirect band gap, whose conduction band minimum is located at the Z point, but
whose valence band maximum is located between the M point and Γ point. Of particular interest to
us is n-type BiCuOCh, whose thermoelectric transport properties rely on conduction bands of band
structures, allowing us to focus on the changes in conduction bands under uniaxial tensile strain. In
Figure 2a, as the uniaxial tensile strain is increasing, the conduction band near Fermi level of BiCuOSe
becomes flatter from Γ to Z direction, and the energy at M point is significantly decreased. It has
been reported that variations in the conduction band may affect the transport properties of n-type
BiCuOSe [38]. The changes in band structure of BiCuOS under tensile strain are similar to those of
BiCuOSe under tensile strain. Note that the energy variations of conduction band at M point and
Z point under strain have significant differences. The energy decreases more obviously at M point,
whereas the energy increases mildly at Z point. Considering thermoelectric transport properties closely
related to band structures, those changes in the conduction band near the Fermi level may influence
the thermoelectric properties of n-type BiCuOSe and BiCuOS.
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Figure 2. Band structures of (a) BiCuOSe and (b) BiCuOS at different uniaxial tensile strains.

In Figure 3, the density of states (DOS) of both BiCuOSe and BiCuOS under different uniaxial
tensile strains are plotted, and it is observed that the DOS curves in conduction bands close to the Fermi
level have steeper slopes when uniaxial tensile strain increases, which is consistent with the energy
variations around conduction band minimum. Larger slope of DOS near Fermi level is beneficial for
promoting Seebeck coefficient [16], suggesting that the Seebeck coefficients of BiCuSeO and BiCuOS
may be enhanced under uniaxial tensile strain.
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Figure 3. Total density of states (DOS) of (a) BiCuOSe and (b) BiCuOS under different uniaxial
tensile strains.

To examine the impact of uniaxial tensile strain on the DOS in detail, the projected density of
states (PDOS) are calculated in Figure 4 to show the density of states in different orbitals for each
atom. In both BiCuOSe and BiCuOS, Figure 4a,d indicates that the p orbital of Bi atoms contributes
to the major part of the DOS around the conduction band minimums near Fermi level, whereas the
contributions of O atoms, Se atoms, and Cu atoms are relatively small. In Figure 4b, when BiCuOSe
is imposed by uniaxial tensile strain, PDOS of each atom is shifted to lower energy, where a dashed
line at 1.2 eV is marked as a guide for distinguishing the shifts. For the case of BiCuOS, PDOS is also
shifted to lower energy with the increase in the uniaxial tensile strain.

To further illustrate the influences of uniaxial tensile strain on the electrical conductivity of n-type
BiCuOCh, the partial charge density near Fermi level of BiCuOSe and BiCuOS under different strain
states are calculated and shown in Figure 5. The partial charge density distribution is usually used
to explore the nature of electrical conductivity as reported in the references [39,40]. As the electronic
transport properties of n-type BiCuOCh are determined by the conduction bands near Fermi level,
only the distributions of charge of Bi atoms and O atoms of conduction bands near Fermi level (0 to
2 eV) are shown. From the partial charge density without strain in Figure 5a, we can see the obvious
antibonding characteristics between Bi and Bi atoms due to the lack of charge density between them,
which determines the electrical conductivity of n-type BiCuOCh, consistent with previous reports [16].
As the strain increases from 0 to 6%, as shown in Figure 5a–c, the charge densities around the Bi
atoms slightly increases, suggesting that the antibonding of Bi–Bi becomes weakened slightly under
strain, which can lead to a slight decreasing trend in electrical conductivity of n-type BiCuOSe under
increasing uniaxial tensile strain. The trends of changes in partial charge density in n-type BiCuOS
under strains are shown in Figure 5d–f. The scenarios for BiCuOS are similar and we will not discuss
them in detail.
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and 1.35 eV for BiCuOS marked as guides for distinguishing the shifts of PDOS.
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Figure 5. Contour plots of partial charge density of the conduction bands near Fermi level (0–2 eV) on
the Bi-O-Bi plane subjected to different strains. (a–c) BiCuOSe and (d–f) BiCuOS. (a,d) 0%, (b,e) 3%,
and (c,f) 6%.

3.3. Thermoelectric Properties

Thermoelectric properties are correlated with electronic structures. After examining the effects of
uniaxial tensile strain on the electronic structures of BiCuOCh, we further investigate the effects of
uniaxial tensile strain on the thermoelectric properties, which are estimated by solving the Boltzmann
transport equation. Notice that the relaxation time τ cannot be determined via the Boltzmann theory.
Similar to previous work [32], the electrical conductivity derived with respect to the relaxation time is
obtained under the assumption of constant relaxation time. The thermoelectric properties of n-type
BiCuOSe and BiCuOS as a function of electron concentration under different uniaxial tensile strains
are shown in Figure 6, where the temperature is chosen at 800 K as BiCuOSe and BiCuOS belong to
medium temperature thermoelectric materials [17,37].
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electrical conductivity with respect to relaxation time σ/τ, and (c,f) power factors with respect to
relaxation time S2σ/τ.

For the unstrained state, both n-type BiCuOSe and BiCuOS have negative Seebeck coefficients,
and the absolute values of the Seebeck coefficients decrease with the increase in electron concentration
(Figure 6a,d), whereas the electrical conductivities increase (Figure 6b,e), as expected. Opposite
trends in the variations of Seebeck coefficients and electrical conductivities with respect to electron
concentration result in a peak with maximum value in power factor, as shown in Figure 6c,f. Comparing
with n-type BiCuOS, n-type BiCuOSe possesses a lower Seebeck coefficient but a higher electrical
conductivity. It is well known that the electronic conductivity of n-type thermoelectric materials is
mainly dominated by the conduction band near Fermi level. Combining with the DOS curves in
the conduction bands close to Fermi level shown in Figure 3, the slope of DOS curves of BiCuOS
is steeper than that of BiCuOSe, suggesting that n-type BiCuOS has higher Seebeck coefficient than
n-type BiCuOSe, whereas the trend in electrical conductivity is just opposite [39].

In Figure 6a,d, when uniaxial tensile strain is applied to n-type BiCuOSe and BiCuOS, an obvious
enhancement of Seebeck coefficient can be observed over a wide range of concentration, except
possibly at high concentration. Quite encouragingly, the decrease of electrical conductivity is negligible,
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as shown Figure 6b,e. Thus, uniaxial tensile strain can be utilized to promote Seebeck coefficient
while almost maintaining electrical conductivity, which significantly enhances the power factors of
n-type BiCuOSe and BiCuOS, as evidenced in Figure 6c,f. To understand the enhancement of Seebeck
coefficient under strain, we resort to changes of electronic structures under uniaxial tensile strain.
According to the results of Figure 2 described above, the conduction band near Fermi level of BiCuOCh
becomes flatter along the Γ to Z direction under strain, suggesting that the effective mass of electron
increases when strain is imposed. It is noticed that Seebeck coefficient is correlated to the effective mass

according to S =
8π2k2

B
3eh2 m∗T

(
π
3n

)2/3
[4], where m* is the carrier effective mass, and kB, e, h, and n are the

Boltzmann constant, charge per electron, the Planck constant, and carrier concentration, respectively,
suggesting that large effective mass results in high Seebeck coefficient. Thus, an increase in effective
mass of electron under uniaxial tensile strain induces an enhancement in Seebeck coefficient. It is also
noticed that the slope of DOS near Fermi level becomes steeper under uniaxial tensile strain (Figure 3),
which is beneficial for increasing Seebeck coefficient [16], again implying that uniaxial tensile strain
can enhance the Seebeck coefficients of n-type BiCuOSe and BiCuOS.

To exhibit the effects of uniaxial tensile strain on the thermoelectric properties more clearly, the
power factors of n-type BiCuOSe and BiCuOS as functions of uniaxial tensile strain at fixed electron
concentration are shown in Figure 7. It is seen that the power factor increases rapidly when the uniaxial
tensile strain increases initially, before it reaches a plateau after a uniaxial tensile strain of approximately
5% for both n-type BiCuOSe and BiCuOS. Comparing with the unstrained counterpart, the power
factor of n-type BiCuOSe is enhanced by 54% at a uniaxial tensile strain of 6%, whereas an enhancement
of 74% is reached for the n-type BiCuOS under a uniaxial tensile strain of 6%. Furthermore, according
to the curve of power factor plotted in Figure 6c,e, the optimal electron concentration, located where
the power factor shows a peak value, can be determined for each uniaxial tensile strain, as shown
in Figure 8. It can be seen that the n-type BiCuOS has a higher power factor than that of the n-type
BiCuOSe, as the n-type BiCuOS possesses a higher Seebeck coefficient (Figure 6a,d). In Figure 8, it can
be observed that the power factors of both n-type BiCuOSe and BiCuOS can be enhanced by uniaxial
tensile strain, however they have different optimal electron concentrations, suggesting that uniaxial
tensile strain is an alternative pathway to induce superior thermoelectric properties.Materials 2020, 13, x FOR PEER REVIEW 10 of 13 
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4. Conclusions

In summary, the electronic structures of BiCuOCh under uniaxial tensile strain have been
investigated based on first-principles calculations, and the strain-dependent thermoelectric properties
of n-type BiCuOCh were then estimated by semiclassical Boltzmann transport theory. The electrical
transport property results show that the Seebeck coefficient can be increased under uniaxial tensile
strain, while the decrease of electrical conductivity is negligible. The calculations of electronic structures
indicate that the conduction band near Fermi level becomes flatter along Γ to Z direction under strain,
leading to an increase in the slope of the total density of states and the effective mass of electron,
resulting in the enhancement of Seebeck coefficient. Comparing with its unstrained counterpart, the
power factor is improved by 54% for n-type BiCuOSe and 74% for n-type BiCuOS under a strain of
6% at 800 K with electron concentration 3 × 1020 cm−3. The optimal carrier concentrations at different
strains have been also determined. These insights offer an alternative strategy for enhancing the
thermoelectric properties of n-type BiCuOCh.
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