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ABSTRACT: Poly(methyl methacrylate) (PMMA) is widely used in the preservation and exhibition of cultural relics in museums.
Accurately predicting its service life can help avoid many negative effects caused by PMMA aging. To study the change in the
yellowing index of PMMA after aging in a UV light environment, an aging experiment was conducted. A prediction model for the
service life of PMMA was established using nonlinear curve fitting and a back propagation (BP) neural network. By comparing the
goodness of fit, simulation and modeling capabilities of the initial data, and the predictive ability for new data, it was found that the
BP neural network prediction model outperformed the nonlinear curve fitting prediction model. In this study, the service life of
newly produced PMMA samples was calculated as 7.83, 8.47, and 8.42 years, based on the yellowing index of retired PMMA as a
benchmark and using the output data from the BP neural network prediction model. At this time, the performance and exhibition
effect of the PMMA are poor, and the batch of PMMA needs to be updated.

1. INTRODUCTION
Poly(methyl methacrylate) (PMMA) has the advantages of
high transparency, high mechanical strength, lightweight, easy
processing, good dielectric properties, and insulation, and has
been widely used in various fields such as architecture, aviation,
medicine, and the chemical industry.1−6 It is also used in
museum artifact preservation and exhibition, allowing arche-
ologists and other researchers to directly observe artifacts. Due
to the characteristics of this organic polymer material, long-
term exposure to sunlight and air can result in a certain degree
of aging, which manifests as molecular chain degradation and
molecular weight reduction at the microscopic level, and a
decrease in optical properties such as light transmittance, as
well as reduced toughness, tensile strength, and fatigue
strength at the macroscopic level.7 Therefore, it is necessary
to regularly check its aging degree and replace it according to a
cycle to prevent the reduction of light transmittance and
yellowing caused by PMMA aging from affecting the display
effect of artifacts or even causing them to crack and damage.
The issue of the aging of PMMA has long been a concern,

and scholars at home and abroad have conducted many aging
tests on this topic. Research has shown that climate and

environmental factors, such as sunlight, oxygen, ozone,
temperature, and humidity, can cause PMMA to age, with
temperature, humidity, and sunlight being the main factors.
PMMA exposed to sunlight undergoes photodegradation,
where the polymer absorbs radiation, promotes chemical
reactions, and changes the material’s physical and mechanical
properties. The yellowing index test and the degree of
yellowing observed in PMMA under sunlight exposure
correlate well, so the aging degree of PMMA can be evaluated
by testing its yellowing index. In specific environments,
studying the degree of aging of PMMA to determine its
service life has significant importance. Combining test data
with intelligent algorithms is a good method, in which test data
are obtained through aging tests, the intelligent algorithm’s
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parameters are continuously adjusted to obtain an accurate
model, and the conclusion is obtained through simulation.8−10

Scholars at home and abroad have made certain theoretical
achievements and practical experiences in predicting material
life and indicate that neural networks have good perform-
ance.11

For years, numerous studies have been conducted on the
accelerated aging of PMMA and its longevity prediction. In the
experimental study of artificially accelerating the aging of
PMMA, Yin et al.12 investigated the aging behavior of PMMA
under different temperatures and static tensile forces in liquid
scintillators. It was found that an increase in aging temperature
led to a rapid decrease in the tensile strength of PMMA, and
the time−temperature superposition method was used to
predict the service life of PMMA. Murray et al.13 exposed two
types of PMMA to high-intensity UV radiation and focused
xenon arc, and pointed out that compared to xenon arc, UV
radiation caused a 3−6 times increase in photodegradation of
PMMA. Yousif and Haddad14 reported that photodegradation
is the main cause of deterioration in the aging resistance of
polymers when exposed to UV radiation. Miller et al.15 studied
the effect of UV light, temperature, and humidity on the aging
of PMMA materials using an aging test bench equipped with a
xenon lamp and compared the results of outdoor exposure
tests to predict the service life of these materials. de Castro
Monsores et al.16 placed PMMA in a UV−B accelerated aging
chamber for 811 h and found that UV radiation can change the
hardness of PMMA, leading to a decrease in its fracture
elongation and tensile strength.
In the neural network prediction study based on the

experimental data, Kechagias et al.17 employed a feedforward
and backpropagation neural network (FFBP-NN) to predict
the geometry of PMMA thin plates cut by a CO2 laser. Kuo et
al.18 integrated a backpropagation neural network (BPNN)
with the Levenberg−Marquardt (LM) algorithm to establish a
prediction system for the CO2 laser processing of light guide
plates. Chen et al.19 utilized neural networks and multiple
linear regression analysis to forecast the glass transition
temperature of polymers. Asante-Okyere et al.20 developed
feedforward backpropagation (FFBP) and generalized regres-
sion neural network (GRNN) models to predict the
flammability of PMMA. Khanlou et al.21 applied response
surface methodology and artificial neural networks (ANNs) to
predict and optimize the parameters of the electrospinning

process for PMMA nanofibers. Kimmig et al.22 introduced a
method for predicting nanoparticle size, combining multilayer
graph convolutional networks with fully connected neural
networks. D’Addona et al.23 utilized ANN computing
technology to predict the depth and surface roughness of
PMMA laser milling tests. Wiangkham et al.24 employed an
artificial intelligence approach, combining ANN and adaptive
neural fuzzy reasoning system (ANFIS), to predict the mixed
mode I/II fracture toughness of PMMA materials. Paturi et
al.25 successfully predicted the optimal weld width and
indentation depth of PMMA products in the plastic injection
molding process using an ANN model. Chen et al.26 forecasted
the water absorption of PMMA and its composite materials
using a BP neural network. Sadan et al.27 employed ANN to
quantitatively estimate the membrane diameter of PMMA
nanofibers. However, there are few studies on using neural
networks for predicting the service life of PMMA. It is possible
to establish corresponding models and equations for prediction
using the data obtained from accelerated aging tests, based on
the principle of consistency between the mechanisms of
artificial accelerated aging and the natural aging of PMMA.28

In this study, we employ a data-driven machine learning
(ML) algorithm to predict the lifetime of PMMA. Obtaining
material life data through experiments usually takes a lot of
time and resources, and ML models can analyze large-scale
data in a relatively short time, thus speeding up the process of
predicting material life and reducing the cost of experiments.
The use of ML methods can not only predict the life of
materials more accurately in complex environments but also
help improve the reliability of material design and engineering
applications. Therefore, based on the accelerated aging test of
PMMA simulated by a xenon lamp, the life prediction model of
the yellow index was established by using two ML algorithms
of nonlinear curve fitting and BPNN. The degree of initial data
fitting, simulation and modeling ability, and new data
prediction ability of nonlinear curve fitting and the BPNN
prediction model are compared.

2. MODELING STRATEGY
In this work, a novel modeling strategy based on the yellow
index is used to predict the life of PMMA, as shown in Figure
1. First, PMMA samples were subjected to a xenon lamp
accelerated aging test for 180 days, and the yellow index of
different aging times was tested; second, the life prediction

Figure 1. Modeling strategy for life prediction based on the PMMA yellow index.
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model was established based on the yellow index, and the
optimal algorithm is selected by comparing the nonlinear
fitting curve with the BPNN. Finally, by calculating the time
correspondence between natural aging and accelerated aging,
combined with predicted values, it can be used for predicting
the lifespan of PMMA.

3. EXPERIMENTAL SECTION
3.1. Specimens Preparation. This experiment used the

newly produced PMMA as shown in Figure 2a and the PMMA

as shown in Figure 2b that has been used for eight years
provided by the Jingzhou Cultural Relics Protection Center.
The original plate was made into 6 specimens of 30 mm × 20
mm × 4 mm specifications.

3.2. Aging Test. The text describes a testing method for
plastics using laboratory light sources, as outlined in GB/T
16422.1-2019 (Plastics�Laboratory Light Sources Exposure
Test Method Part 1: General Principles) and GB/T 16422.2-
2022 (Plastics�Laboratory Light Sources Exposure Test
Method Part 2: Xenon Arc Lamp). To simulate natural
exposure environments, a PMMA specimen is placed in a Q-
SUN Xe-1 desktop xenon lamp accelerated aging test chamber,
with a set blackboard temperature of (50 ± 5 °C), a
wavelength of 340 nm, relative humidity of (70 ± 5)%, and
an irradiation interval of 1 day, with each irradiation lasting 5
days. The cumulative irradiation time is 180 days, and a
yellowing index test is conducted every 15 days by taking
specimens.

3.3. Characterization of the Yellow Index of Speci-
mens. According to ASTM E313-2010 (Standard Practice for
Calculating Yellowness and Whiteness Indices from Instru-
mentally Measured Color Coordinates), measurements were
taken using a Color i7 spectrophotometer. The three stimulus
values X, Y, and Z of the samples were measured under a D65
light source and a 10° standard observer. The yellowing index
was then calculated using eq 1

= C X C Z
Y

YI
100( )X Z

(1)

3.4. Experimental Results and Discussion. The
morphologies of the PMMA before and after xenon lamp
accelerated aging are shown in Figure 3, with the old sample
on the left and the new sample on the right. As can be seen
from the two images, before accelerated aging, the old sample
had a yellowish color, while the new sample was relatively
transparent. After accelerated aging, the yellowing of the old
sample slightly intensified, while the new sample began to
show a slight yellowing with a relatively small observable
change in color.
The test results are listed in Figure 4. It can be seen that the

initial yellow index of the two kinds of PMMA is quite

different. The initial yellow index of the new sample of PMMA
is about 0.5, while the initial yellow index of the old sample of
PMMA is about 2.5. With the increase in aging time, the
yellow index of both kinds of PMMA showed an upward trend,
and the rising rate of the yellow index of the new sample was
significantly higher than that of the old sample. This indicates
that the new sample is more susceptible to the aging process,
and its yellow color changes faster. In the aging process, the
yellow index of new samples increased significantly, while the
yellow index of old samples increased slowly. This indicates
that the physical and chemical structure of PMMA has
changed rapidly in the early stage of the aging process, leading
to the rapid increase of the yellow index. However, in the late
aging period, the change rate of its physical and chemical
structure is relatively slow, leading to the slow increase rate of
the yellow index. The test results are shown in Appendix I in
the supplementary file.
According to the test data, the average yellow index of

natural aging in the museum environment for eight years is
about 2.5, which is equivalent to the artificial accelerated aging
time of about 105 days. According to the aging time calculation
in eq 2, the aging factor B is equal to 681.96.

i
k
jjj y

{
zzz=T

A
B

DT/10

(2)

=B A
T DT10/ (3)

Figure 2. (a) New PMMA. (b) PMMA after eight years of use.

Figure 3. (a) Specimens before and after aging. (b) Specimens after
aging.

Figure 4. Yellow index at different aging times.
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where T is the aging time, A is the actual days, B is the aging
factor, and DT is the difference between the actual temperature
and aging temperature. The aging temperature is 55 °C, and
the actual temperature is 23 °C.

4. LIFE PREDICTION
4.1. Nonlinear Fitting Curve. In scientific experiments,

the functional relationship between the independent variable x

and the dependent variable y sometimes cannot be directly
expressed but can only obtain the function value or derivative
value of the function at several points.29 When the value of a
function outside the observation point is required, it is
necessary to estimate the value of the function at that point.
Based on the values of the observation points, construct a
relatively simple function y = ∂(x), so that the value of the
function at the observation point is equal to the known
numerical value or derivative value. To find such a function,
∂(x), based on the accuracy of the measurement data, there are
two methods for processing the observation data:
(1) The measured values are accurate and have no errors

compared to the true values, and interpolation is
generally used;

(2) When there are errors between the measured values and
the true values, curve fitting is generally used.

The nonlinear curve fitting algorithm can be customized
according to the specific problem, and the appropriate function
form and parameters can be selected. This ability to customize
allows them to adapt more quickly to the needs of specific
problems. In addition, in the case of small amounts of data,
nonlinear curve fitting algorithms are usually better adapted to
the data and can provide more reliable models. In nonlinear
fitting, with experimental data (xi, yi), (i = 1, 2,...,n), search for
the function f(x, ŷ) to minimize the sum of squares of the
deviation between the function values at points xi, (i = 1,
2,...,n) and the observed data. Find the functions x and y that
meet the following conditions, and find the minimum value of

= f x y y( ( , ) )i
n

i i1
2. To solve such problems, the following

steps can be taken:
(1) First, make a scatter plot and determine the type of

function;

(2) Determine the initial value of the unknown parameters
based on the known data, and calculate the best
parameters;

(3) Compare the fitting effect based on the coefficient of
determination.

The accuracy of the prediction performance is evaluated by
the determination coefficient R2 (Goodness of fit). The larger
the determination coefficient, the better the Goodness of fit.
Let y be the value to be fitted, with an average value of y̅ and a
fitted value of ŷ.

=
=

y ySST ( )
i

n

i
1

2

(4)

=
=

y ySSR ( )
i

n

i
1

2

(5)

=
=

y ySSE ( )
i

n

i i
1

2

(6)

= = ==

=
R

y y

y y
SSR
SST

( )

( )
1

SSE
SST

i
n

i

i
n

i

2 1
2

1
2

(7)

4.1.1. Variable Selection. The yellowing index from 0 to
180 days in the xenon lamp accelerated aging test of PMMA
was selected as shown in Table 1 for variable selection. The
output variable for the model is the yellowing index Y, and the
input variable is the aging time X.

4.1.2. Model Construction. The allometric function was
used and nonlinear least-squares based on the Levenberg−
Marquardt algorithm (LMA) were employed for model
construction.30 The maximum number of iterations was set
to 100, and the error tolerance was set to 10−9. The fitting
equation y = axb was used to simultaneously fit specimens 1, 2,
and 3.

4.1.3. Model Validation. The fitted curve output is y =
0.23377x0.50761, with a standard error of 0.03332 for the a value
and 0.02991 for the b value. The fitting results are listed in
Figure 5. From the perspective of fitting goodness, the sum of
squared residuals is 1.44598, the mean squared error (MSE) is
0.03908, R2 is 0.92635, and the adjusted R2 is 0.92419, which is
close to 1. This indicates that the equation has a high degree of
fitting goodness and that the independent variable can
accurately explain the variability in the dependent variable
with an accuracy rate of over 92.4%.

4.2. Back Propagation Neural Network. ANN is a
model for parallel distributed information processing that
imitates the structure of human brain neurons and neural
networks. It does not require a predetermined mathematical
equation to map the relationship between input and output but
instead learns a certain rule through its training to produce
results closest to the expected output given a specific input
value. There are many models of ANNs, but the most widely
used and intuitive is the multilayer feedforward neural network
with an error backpropagation learning algorithm. The BPNN
was proposed in 1986 by a group of scientists led by Rumelhart
and McClelland. It is a powerful nonlinear model that can
adapt to various complex nonlinear relationships, which makes
it more flexible in dealing with practical problems. The
multilayer structure of the BPNN allows hierarchical feature
learning. By abstracting the features of data layer by layer, the
network can learn the representation of multiple levels in the

Table 1. Yellowing Index of PMMA at Different Aging
Times

aging time/day

yellowing index

specimen 1 specimen 2 specimen 3

0 0.4672 0.6028 0.5813
15 1.0181 0.9028 0.8927
30 1.5343 1.1224 1.3502
45 1.8414 1.4509 1.4078
60 2.2382 1.6017 1.5120
75 2.5385 1.7377 1.9244
90 2.6613 2.0411 2.0632
105 2.6335 2.6739 2.4406
120 2.8126 2.6202 2.8463
135 2.7130 3.0304 2.7927
150 2.8608 3.1952 2.9534
165 3.0179 3.2120 3.0430
180 3.0984 3.2524 3.1840
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data to better capture the abstract features of the data. It can
learn and store a large number of input-output pattern
mappings without revealing the mathematical equations that
describe these mappings beforehand. Its learning rule uses the
steepest descent method to continuously adjust the network’s
weights and thresholds through BP to minimize the sum of
squared errors. The topology of the BPNN model includes an
input layer, a hidden layer, and an output layer.
As shown in Figure 6, the BPNN model was constructed by

using MATLAB software in this study.
4.2.1. Variable Selection. The sample uses the yellowing

index test results of PMMA with different aging times in the
experiment. The experimental data from 0 to 120 days are used

as training samples, and the experimental data from 120 to 180
days are used as testing samples. The input variable is aging
time, and the output variable is the yellowing index.

4.2.2. Model Construction. The literature has proved that a
three-layer BPNN can meet the mapping requirements of
general functions and can approximate any number of variable
functions with any accuracy requirements.31 The single-
hidden-layer BPNN can be used to solve a series of problems
such as classification, regression, and pattern recognition, and
it can achieve good performance in many tasks. Due to the
small-scale data in this study, it may be more appropriate to
use a single-hidden-layer network, which is relatively simple
and has a faster training speed. Therefore, a three-layer BPNN

Figure 5. (a) Nonlinear curve fitting. (b) Nonlinear curve fitting residual plot.
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is established, which mainly includes the input layer, the
output layer, and the hidden layer with the following settings:
Input layer: taking aging time as the input variable, the

number of input layer nodes is set to m.
Output layer: taking the yellowing index as the output

variable, the number of output layer nodes is set to n.
Hidden layer: the number of hidden layer nodes N is

selected using the empirical formula = + +N m n a, where
m is the number of input layer nodes, n is the number of
output layer nodes, and a is a value between 1 and 10 selected
based on the optimal node principle.
The training is carried out using sample vectors with one

neuron in the input layer and one neuron in the output layer.
Based on the empirical expression for the number of hidden
layer neurons and through multiple tests, the optimal number
of hidden layer neurons is determined to be 6. The simplified
single-hidden-layer network is shown in Figure 7.

4.2.3. Parameter Configuration. In this BPNN, the
activation function is the sigmoid function because when the
independent variable of this function is greater than a certain
value, its function value tends to be 0 or 1, so the initial data
need to be normalized. tansig function is used to transfer from

the input layer to the hidden layer, and the purelin function is
used to transfer from the hidden layer to the output layer.
trainlm is used as the training algorithm, and its convergence
speed is faster than that of trainbp and trainpx. Generally, the
maximum number of iterations is 1000 times, and then, the
training convergence is observed. If the convergence is
advanced, then the maximum number of iterations is reduced
to reach the training goal. The minimum error of the training
target is generally 0.001−0.00001, which is adjusted according
to the situation of the training test. Too large is easy to overfit,
the test effect is poor, and too small can not achieve the desired
effect. The learning rate is generally set to 0.01−0.5. The more
data there are, the greater the data noise, the more difficult it is
to fit the data, and the smaller the value is generally required. If
the setting is too large, then it is easy to stop convergence
prematurely.

4.2.4. Parameter Optimization. The Grid Search method is
used to optimize the training parameters and hyperparameters.
It searches the given parameter combination exhaustively,
trains and evaluates each combination, and finds the best
parameter combination. First, the parameters to be tuned and
their range of values. Generate all possible parameter
combinations based on the defined parameter space; For

Figure 6. BPNN algorithm flowchart.

Figure 7. Single-hidden-layer simplified network.
Figure 8. Training state and performance.
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each parameter combination, use cross-validation or other
evaluation methods to evaluate the performance of the model.
Finally, according to the evaluation results, the parameter
combination with the best performance is selected as the final
model parameters.

4.2.5. Training Network. According to the results of
parameter optimization, the minimum goal error net.trainpar-
am.goal is set to 0.00001. The learning rate net.trainparam.lr is
0.01; The number of training steps net.trainparam.epochs is
1000. The training process is shown in Figure 8. According to
the settings described earlier, the BPNN is trained until it
meets the predetermined target, and the training results are
shown in Figures 9 and 10. The neural network was iterated 10
times, and the convergence speed was faster and the minimum
training error was reached at the fourth iteration.

4.2.6. Model Validation. The simulated Sim function was
used to test the trained network using test samples, and the test
results were good and were in line with the predetermined
settings. The MAE of the model is 0.012479, MSE is 0.019873,
and R2 is 0.97836, which has a good goodness of fit.

4.3. Prediction Results and Discussion. 4.3.1. Initial
Data Simulation and Simulation Capability Comparison.
From the above two models, the Goodness of fit of the
nonlinear fitting model R2 is 0.92419, and the MSE is 0.03908;
the goodness of fit R2 of the BPNN model is 0.97836, and the
MSE is 0.01987. Among them, the closer R2 is to 1, the closer
MSE is to 0, which means better performance of the model.
Compared with the two models, the BPNN model has a higher
goodness of fit and better modeling effect.
Comparing the simulated values of the nonlinear fitting

model with those of the BPNN model, Table 2 shows that the

relative error of the nonlinear fitting model is within ±21%,
and the relative error of the BPNN prediction model is within
±12%. Overall, the BPNN model has smaller prediction errors,
higher prediction accuracy, and greater stability. However, this
does not mean that the BPNN is necessarily the best choice.
Other ML models such as random forests (RF), or gradient
boosting machines (GBMs) need to be considered. Two
gradient boosting methods, in particular, XGBoost and
LightGBM, excel in handling tabular data, especially in
classification and regression problems. They are both capable
of handling large-scale data sets and are fast to train, with high
prediction accuracy. These models are also likely to perform
well when dealing with tabular data. Therefore, the two
algorithms were trained and compared. As shown in Table 3,
for both R2 and MSE, the BP neural network had the best
fitting effect, while LightGBM had the worst. The relevant
code can be found in Appendix II of the supplementary file.

4.3.2. Life Prediction. Based on the service life of PMMA,
the yellow index of the old PMMA sample before aging in this
experiment is about 4.5 times that of the new sample.
Therefore, this study takes the new PMMA yellow index as the
standard to increase 4.5 times, reaching the final service life.
Samples 1, 2, and 3 will be withdrawn when the yellow index
reaches 2.1028, 2.7217, and 2.6301, respectively. In the BPNN
model, the input yellow index is 2.1028, 2.7217, and 2.6301,
and the output aging times are 98.3, 126.2, and 123.8 days.
Then, the corresponding actual days are A1, A2, and A3.

= =A d y2860.43 7.831 (8)

= =A d y3092.71 8.472 (9)

Figure 9. Training, testing, validation, and overall R2 = 0.9974 were obtained for the training data set.
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= =A d y3074.21 8.423 (10)

The service life of the three samples is 7.83, 8.47, and 8.42
years, respectively.

5. CONCLUSIONS

(1) A PMMA life prediction modeling strategy was
proposed, which obtained experimental data through
xenon lamp accelerated aging test using PMMA, and
then established a model using BPNN to predict the
PMMA life.

(2) In the xenon lamp accelerated aging test, the yellow
index of PMMA showed an upward trend with the
increase of aging time, and the upward trend gradually
became slow; By comparing the yellow index of the old
PMMA sample and the new sample after xenon lamp
accelerated aging when the accelerated aging time is 105
days, the corresponding natural aging time is 8 years,
then the aging factor at the aging temperature of 55 °C
and the actual temperature of 23 °C is 681.96.

(3) The life prediction model of PMMA is established by
using nonlinear curve fitting and BPNN. By comparing
their goodness of fit, mean squared error, and simulation
ability, the BPNN has higher prediction accuracy than
nonlinear curve fitting. Taking the yellow index of
PMMA after eight years of use as the standard, the life of
three samples of newly produced PMMA is calculated as
7.83, 8.47, and 8.42 years, respectively, through the
output data of the BPNN prediction model. The
performance and exhibition effects of PMMA are poor,
and a batch of organic glass needs to be updated.
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