
 International Journal of 

Molecular Sciences

Review

Plant–Microbe Interaction: Aboveground to Belowground,
from the Good to the Bad

Kalaivani Nadarajah * and Nur Sabrina Natasha Abdul Rahman

����������
�������

Citation: Nadarajah, K.; Abdul

Rahman, N.S.N. Plant–Microbe

Interaction: Aboveground to

Belowground, from the Good to the

Bad. Int. J. Mol. Sci. 2021, 22, 10388.

https://doi.org/10.3390/

ijms221910388

Academic Editor: Marouane Baslam

Received: 27 July 2021

Accepted: 17 September 2021

Published: 27 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan
Malaysia, Bangi 43600, Malaysia; nursabrinatasha@gmail.com
* Correspondence: vani@ukm.edu.my

Abstract: Soil health and fertility issues are constantly addressed in the agricultural industry. Through
the continuous and prolonged use of chemical heavy agricultural systems, most agricultural lands
have been impacted, resulting in plateaued or reduced productivity. As such, to invigorate the
agricultural industry, we would have to resort to alternative practices that will restore soil health
and fertility. Therefore, in recent decades, studies have been directed towards taking a Magellan
voyage of the soil rhizosphere region, to identify the diversity, density, and microbial population
structure of the soil, and predict possible ways to restore soil health. Microbes that inhabit this region
possess niche functions, such as the stimulation or promotion of plant growth, disease suppression,
management of toxicity, and the cycling and utilization of nutrients. Therefore, studies should be
conducted to identify microbes or groups of organisms that have assigned niche functions. Based on
the above, this article reviews the aboveground and below-ground microbiomes, their roles in plant
immunity, physiological functions, and challenges and tools available in studying these organisms.
The information collected over the years may contribute toward future applications, and in designing
sustainable agriculture.
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1. Introduction

Plants are colonized aboveground and belowground by mutualistic and parasitic
organisms. These organisms can be categorized into groups based on areas of colonization;
for instance, microorganisms that colonize the external parts of the plant are generally
known as epiphytes, while those that colonize the inside of the plants are endophytes.
Furthermore, there are phyllosphere organisms that colonize the leaf surface; and the most
abundant group of them would be the rhizosphere inhabitants, which colonize regions
closest to the root system [1–3]. This region is teaming with microbes, which are attracted to
the root systems due to their exudates. The exudates depend on the developmental stages
and physiological statuses of the plants [4,5]. Although the recruitment of microbes to the
root region may be a consequence of plant exudation, the microorganisms that colonize
this region have diverse roles in supporting plant growth, development, and inhibition
of host pathogens. This implies interdependency between the host and microbes in the
aboveground and belowground interactions [6,7].

The microbial diversification, speciation, structural complexity, and interactions that
surround the root systems make it essential to understand the microbial population as well
as the root architecture, to have a clear view on how these interactome associate [8]. Due
to the high levels of interaction between the plant and microbes, these components are
observed as holobionts or metaorganisms [9,10]. In addition to the intertwining plant and
microbe associations (plant-microbe–plant), there is the microbe–microbe and microbe–soil
association. The complexity of the microbes in soil is not just circumnavigated by the
plant, but by the environment and other constituents in the soil. The physicochemical and
biological components of the soil largely influence the microbiome. For instance, climate
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change and its effect on agriculture, such as drought and flooding, severely impact soil
microbiomes. Furthermore, physical changes in temperature, pH, oxygen level, and soil
structure also affect its inhabitants [11]. In addition, the chemical compounds derived
through the cycling of materials in the soil or from agricultural practices also affects soil
biology. Microbes that adapt to a particular stress condition might be beneficial to plants,
since beneficial microbes are shown to increase soil health and fertility. This is not inclusive
of the role played by macro- and microorganisms belowground and aboveground in
influencing the plant-microbe interaction (such as animal grazing, etc.) [5].

Beneficial microorganisms can be inoculated in soil or used as input to improve
agricultural practices. Microbial inoculants are administered to the plant or the soil to boost
crop productivity and health, and mitigate the negative effects of agrochemicals. It is a
viable alternative to chemical treatment and is capable of promoting plant development,
controlling pests and diseases, and stabilizing soil structure. These inputs may be employed
as biocontrol agents, biopesticides, bioherbicides, and biofertilizers. Over the last few
decades, significant developments have been made in manufacturing, marketing, and use
of inoculants [12]. Nowadays, the use of inoculants is more widespread, owing to the
availability of excellent and multifunctional strains in the market, improving yield at a
lower cost than synthetic fertilizers. Rhizobia are the most extensively utilized microbes as
inoculants [13]. The legume–rhizobia symbiosis influences the mechanism of biological
nitrogen fixation (BNF), which satisfies the plant’s N needs [12]. Plant growth-promoting
bacteria (PGPB) can support a plant in a range of areas on its own or in combination with
other factors. PGPB influences plants through phytohormones and siderophores synthesis,
phosphate solubilization, and elicitation of a plant’s internal defense against biotic and
abiotic stressors [14,15]. Various microorganisms are increasingly being employed in
agriculture for ecological pest and disease management [16].

The recent surge in new technologies in genome studies has enabled us to further
characterize the microbial diversity, genome, and proteome of microorganisms living in
association in soil or on plants. DNA/RNA, genome analysis, transcriptome, proteome,
metagenome, and all other omics-based technologies have provided a means to dissect
beneficial and non-beneficial plant-microbe interactions at depths and speeds that were
not possible decades ago. These technologies enable us to understand the dynamics
belowground and aboveground, to further utilize this information to improve growth,
yield, and disease reduction [17]. If we are able to decipher the factors responsible for
the establishment of the microbial communities in the rhizosphere, we will be able to
utilize this information in designing sustainable ecosystems that are beneficial, stable, and
productive for the long haul [18,19]. Despite the fact that the ecosystem was sustainable
prior to interference, this approach restores the environment to its original state before
human intervention. Hence, given the above background, this current review focuses on
the aboveground and belowground microbial interactions, the development of diseases
and emerging threats, the beneficial uses of microbes, and the available new tools to study
them at greater depth (see Supplementary Figure S1 for the methodology of Systematic
Review for Plant Microbe Interactions).

2. The Two-Phase Microbial Communities
2.1. Aboveground Microbes

Endophytic and epiphytic groups of microorganisms colonize and inhabit plant tissues,
such as leaves and flowers [20]. The phyllosphere organisms (those that are on external
plant surfaces) will generally be influenced by the environment and may be commensal-
like organisms, or organisms that can cause disease. The phyllosphere is a severe and
unstable environment with oligotrophy-like features, such as nutritional restriction in
carbon and nitrogen, as well as numerous, highly variable physicochemical limitations
(light penetration, UV radiation, temperature, desiccation) [21]. Microbial adjustment to
the phyllosphere environment appears to be dependent on a number of factors linked to a
range of physicochemical and biotic limitations, such as exposure to air, water, soil, animal,



Int. J. Mol. Sci. 2021, 22, 10388 3 of 35

or insect borne microbes [1,22,23]. Meanwhile endophytic organisms systematically obtain
their microbial nutrients through the xylem and aerial tissue, such as fruits and flow-
ers [22,24]. The distribution of the endophytes within the plant tissue will largely depend
on the nutritional source within the organ to support the growth and development of the
endophytes. There will be observable differences in the genera between endophytes and
the phyllosphere inhabitants [25]. For example, in a study conducted on tomato plants, an
Acinetobacter dominant community was reported in stems and leaves, while tissues of stems
and leaves were colonized by Xanthomonas, Rhizobium, Methylobacterium, Sphingomonas, and
Pseudomonas [2]. When the tomato was compared to other host plants, Bacillus and Pantoea
dominated the lettuce phyllosphere. In potato phyllosphere, Devosia, Dyadobacter, and
Pedobacter were dominant, while Pseudomonas dominated the spinach phyllosphere [2]. In
another study conducted on maize, the phyllosphere was dominated by Sphingomonas and
Methylobacteria [26]. From this observation, we can conclude that the microbes dominating
a particular plant depends on the host tissue, geographical location, tissue nutrient content,
and the physicochemical characteristics of the soil [27]. While endophytes in tomatoes are
diverse, Acinetobacter, Enterobacter, Pseudomonas, and Pantoea were identified as the most
dominant, with varying densities in different vegetative tissues. Enterobacter, Pseudomonas,
and Pantoea were also commonly found in other host plants [2,28]. However, in grapes, the
phyllosphere was inhabited by Pseudomonas, Sphingomonas, Frigoribacterium, Curtobacterium,
Bacillus, Enterobacter, Acinetobacter, Erwinia, Citrobacter, Pantoea, and Methylobacterium, while
the endophytes were dominated by Ralstonia, Burkholderia, Pseudomonas, Staphylococcus,
Mesorhizobium, Propionibacterium, Dyella, and Bacillus [2,29]. Aleklett et al. [30] identified
Pseudomonas and Enterobacteriaceae taxa on apple flowers. Pseudomonads were the most
abundant genus in floral organs of several fruits, such as apples, grapefruits, and pumpkins.

Resistance and tolerance responses towards antibacterial and immunological chem-
icals generated by plant tissues, as well as competing microbes, can be developed by
epiphytic microorganisms [31]. In the phyllosphere of tobacco, epiphytic bacteria with
enzymes, which degrade N-acylhomoserine lactone (AHL) and quorum-sensing signals,
have been discovered; thus, it was proposed that signaling circuits may be associated with
the formation of complex epiphyllic microbial communities [32]. Epiphytic microbes could
also evolve pathways for aggregation or exopolysaccharide production, to increase adher-
ence or resistance to desiccation [33]. Epiphytic organisms could also produce and release
phyto-hormonal chemicals, such as indole-3-acetic acid (IAA), by stimulating the loosening
of plant cell walls and releasing saccharides from plant cell walls [34]. In conclusion, the
relationship between the plant host and aboveground microorganisms is host dependent
and largely influenced by the environment and signaling circuits associated to the microbial
communities. These organisms may provide beneficial or detrimental relationships with
the host, resulting in either enhanced growth and defense or the elicitation of disease and
losses, respectively [25,35].

2.2. Microbes from Belowground

The rhizosphere is a highly ubiquitous region, with plant exudates, which recruits
microbes, creating a microbial reservoir [8]. The microorganisms in the rhizosphere con-
stantly interact with one another, resulting in commensalism, parasitism, amensalism,
saprophytism, and symbiotic associations. These organisms affect the aboveground activi-
ties and are part of the bulk soil species. Plants and the environment of the soil determine
the soil microbial communities [36]. However, nothing is known about how the rhizosphere
composition is chosen from bulk soil. Two mechanisms might explain the population—the
neutral or niche-based mechanism. The neutral mechanism is based on the fact that most
organisms are able to exploit most soil niches and, therefore, are limited by the distance
among plants, recruitment parameters, and hampered dispersal [37]. However, for the
niche-based mechanism, environmental changes alter the microbial communities [38].
Plants have the tendency to recruit microorganisms to the rhizosphere that will assist with
biological functions, such as nutrient uptake, growth, and development. The example seen
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in cereals is the niche community, where richness and microbial abundance is strongly
dependent on the ecological space of the rhizosphere [39]. Similarly, the orchid microflora
studies, starting from seed germination through establishment, reproduction, and survival
of orchids are heavily reliant on orchid mycorrhizal fungi (OMF). Corollary, changes in
OMF composition and abundance can have a substantial influence on dispersion and
fitness of orchids [40], providing another example of a niche-based mechanism.

The recruitment agent, exudates/mucilages from the roots, release amino acids, cutin
monomers, flavonoids, hormones, organic acids, polyphenols, sugars, and nutrients that
are involved in moderating the plant-microbe interactions and microbial gene expres-
sion [23,41,42]. These chemicals act as signals; and are deployed to initiate the microbial
colonization of roots. While some of these compounds are elicited to enhance plant growth
and development, secondary metabolites, such as benzoxazinoids in maize roots, are
produced to specifically inhibit Actinobacteria and Proteobacteria [8,43]. The recruitment
of microbiota to the root is mobilized when the machinery involved in biofilm forma-
tion, chemotaxis, detoxification, mobility, polysaccharide degradation, and secondary
metabolism is switched on [44]. The microbiome begins to expand, establishes niches,
and recruits additional microbes through a cross-feeding approach, resulting in new niche
groups being developed within the population [45]. Once the microbial population estab-
lishes a community around the root, the plant’s exudate shifts its focus toward enhancing
the formation of biofilms around the roots [46].

Besides the variations that may be observed between plant genera, the differences in
variety and genotype will also affect the chemical constituents in the root exudate [47,48].
As mentioned above, these exudates are a blend of molecules, which are influenced by
plant size, genotype, photosynthetic activity, and soil conditions. These phytochemicals
influence the diversity and the composition of the microorganism around the root [49],
where the amalgamated exudate modifies bacterial assemblage in the rhizosphere. When
the influence of species was tested in the angiosperms, variation was observed in the
Pseudomonas species occurring in the soil. This variation in soil species was also influenced
by the spatiotemporal and physiochemical organization of the rhizosphere [25,50].

In addition to the microbes found surrounding the root system, there are also the endo-
phytic microbes in plants. The root source components play deeply into the colonization of
endophytes in the plants. Some of these endophytes have important symbiotic uses in agri-
culture. One example is the Piriformospora indica, which causes elevated phosphorous [P]
uptake and protects against various stressors in plants [51]. Further, Gill et al. [51] re-
ported that cyclophilin A–like from P. indica was overexpressed in protecting against salt
stress in tobacco plants. When working in concert, Azotobacter chroococcum and P. indica
help with nutrient acquisition and synergy in action [52]. Some of these endophytic or-
ganisms were also responsible in chemotaxis activities. In tomatoes, the non-pathogenic
Fusarium oxysporum reduced the occurrence of nematodes [53]. When biochar was used in
tomato plants, it absorbed the exudates and created a strong chemotactic signal towards
Ralstonia solanacearum, suppressing its swarming ability [54]. Collectively, the mechanisms,
functions, and communication signals in root–microbe interactions were reviewed in other
publications, detailing the intricacies of these interactions [25,46].

2.2.1. Root-Root Interaction

Plant species and genotypes have strong specificity of exudates that are able to in-
fluence the neighboring plants. Little is known on how these signals are transmitted and
received by both root and microorganism. These root exudates have been implicated
in several processes, including influencing nutrient availability [49] and mediating nu-
trient competition. Plant exudates have been reported to increase mineralization. The
presence of certain acids in the soil (phosphatases, carboxylase) improved ion availabil-
ity to the plant [55], and indirectly influenced N2-cycling. The absence of these acids in
exudates will influence N availability in soils [56] explaining the difference in nutrient
acquisition between plants. In addition, plants are not only influenced by its own exu-
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dates but are influenced by their neighboring plants. For instance, in intercropping where
leguminous and non-leguminous plants are grown together, the release of carboxylates
by legumes resulted in enhanced P nutrition and growth to neighboring plants [57]. In
phosphorous deprived soils, Zemunik et al. [58] reported that the phosphorous levels were
replenished through the influx of carboxylate exudates by arbuscular mycorrhizal fungi
(AMF) and plant roots. In plants such as cucumber, citric acids from the roots attracted
Bacillus amyloliquefaciens, and fumaric acid from banana roots attracted Bacillus subtilis
resulting in biofilm production [59].

The root–root interaction is not limited to the regulation of nutrient acquisitions. These
interactions also influence the root growth of neighboring plants through allelopathy, where
released phytotoxins are able to reduce the growth or survival of neighbors and, therefore,
reduce competition of resources. A classic example of toxins is catechin, which inhibits
germination, root growth, and development [60,61]. Volatile organic compounds (VOCs)
also function as allelochemicals to regulate rhizosphere signaling by mycorrhiza net-
works [62,63]. Allelopathic plants are mostly resistant to their own phytotoxins and,
therefore, act specifically on other plant species at different levels of effectiveness. How-
ever, there are certain non-allelopathic neighbors that can be resistant [64]. The exudates
around the roots are controlled by the rhizobiome, which affects the quantity, composition,
and possibility of feedback regulation between the plant and microbiome. From the above
observation, it would appear that the root–root interaction is one that is competitive and
not niche [65]. Competition between neighboring plants is seen in species that have root
systems spread across a wider region horizontally than those that have vertical and deep
root systems. Furthermore, when legumes, non-legumes, and interspecies studies were
conducted to evaluate root–root interactions, these plant exudates influenced each other
and the microbial communities within their vicinity [66,67].

The root–root interactions may show the presence of major bacterial communities
and AMF in the soil [36]. The bacteria may largely be responsible for hormone induced
growth and antibiotics based on inhibition of negative organisms. The AMF, on the other
hand, is an important component that plays an important role in water and nutrient
absorption. This organism has the ability to maintain some level of nutrient absorption
despite competition in soil; thus, it maintains the plant community composition [68,69]. In
addition to the positive interactions found in the soil, the ecosystem is home to soilborne
pathogens. These pathogens affect the plant soil feedback by affecting the plant growth,
nutrient accumulation, and other processes, resulting in a prolonged negative impact on
the soil microbial population due to the presence of the pathogen and the application
of fungicide [70,71]. This will cause a shift on the hierarchies of different soil microbial
communities, depending on the changes in the soil from environment, human activity, and
disease. While it is still unclear on how pathogens affect nutrient uptake, it is possible that
it negatively affects plants through root growth and resource uptake per unit root [72].

2.2.2. Root–Microbe Interactions

The root–microbe interactions can be addressed as symbiotic and parasitic interactions.
In this section, we explore the beneficial interactions established between the root–microbe,
such as: [1] rhizobacteria–legume; [2] actinobacteria–root; [3] mycorrhizal–root, and [4]
other root–microbe interactions; of these, the most widely studied relationship is between
legumes and rhizobacteria. These organisms produce Nod factors, perceived by the plant
receptors as inducing activation of the pathway, resulting in nodule formation from the
differentiation of pericycle and cortical cells [25,73]. The bacterium then uses this organ
as a processing site of atmospheric nitrogen into ammonia, which is then used in protein
synthesis. This process is regulated by feedback inhibition to reserve energy and inhibit
N2-fixation when the supply of nitrogen is sufficient [74].

As Rhizobium interactions are not established with every plant, certain model or-
ganisms have been used in understanding the changes that occur within the rhizobium
and nodule. Larrainzar and Wienkoop [75], Lorite et al. [76], and Wan et al. [77] con-
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ducted a proteome analysis on the genome sequence of Sinorhizobium meliloti, a symbiont of
M. truncatula, Mesorhizobium loti, the symbiont of L. japonicus, and Bradyrhizobium japonicum,
the symbiont of soybean, and compared it with the free-living organisms. These analyses
enabled them to answer some very important questions on the recognition of the host
by the rhizobacteria, nutrient exchange, and the control of nodulation. It is believed that
the flavonoids released by the legumes into the soil are able to activate the NodD protein,
which in turn sets into motion a series of nodulation genes encoded by Sym plasmids. From
the studies conducted by the above researchers and others, it is concluded that flavonoids
are responsible for the varied responses of several bacterial genes.

The rhizobacteria provides signaling chemicals that act on their host. A study on
Medicago truncatula disclosed that there was change in protein content within the nod-
ule during the formation of leghemoglobin and enolase isoforms [31]. In other legumes,
R. leguminosarum induced ethylene responsive proteins. Ethylene is a major regulator of
plant defense response. In the ethylene-insensitive mutant of M. truncatula (skl), hypern-
odulation was observed in the roots, likely due to a compromised immune system. It was
reported that the skl mutant had a defective ethylene pathway. Therefore, we hypothesize
that ethylene is responsible for the symbioses and nodulation of the host. Further, when
the root system in soybean was examined post inoculation with B. japonicum, there were
rhizobial proteins that were necessary for the induction of the Nod factors detected in the
roots [77]. Elevated levels of calcium-dependent protein kinase (CDPK) were observed
and were expected to trigger the activation of symbioses [78]. The presence of peroxidases,
lipoxygenases, phospholipases, and lectins indicate a possible role for lectins in attachment,
and lipids in the early infection process of rhizobacteria in the root system [79]. While
the success of the nodulation process is reliant on the lack of defense response against the
rhizobacteria, a proteomic study of the M. truncatula root colonized by S. meliloti identified
pathogenesis related protein (PR10) isoforms [80]. These proteins were implicated in phy-
tohormone interactions, and ligand binding, influencing specifically auxin and cytokinin
activity in plant meristem [79,81].

Nutrient exchange is another factor that influences the rhizobacteria-legume relation-
ship. Rhizobacteria are present as bacteroids in the plant symbiosomes where all nutrient
exchange is controlled by the composition of bacteroids and peribacteroid membranes.
When the proteins in these membranes were analyzed, heat shock proteins, proteases,
nodulins, transporters, receptor kinases, plant defense, and signaling proteins were identi-
fied, indicating that nodulation is an ongoing, complex process, where the plant’s defense
mechanism is continuously regulated to allow for the nodulation in the roots [82]. The nod-
ules contain enzymes required for C utilization, N2-fixation, heme synthesis, transporters,
and stress related proteins. The differences shown by the ABC transporter in free-living
and nodule inhabiting bacteria imply that they are responsible for specialized functions
in nutrient transfer and nodulation [83]. The proteome studies are indicative that bac-
teroids enhanced nitrogen and carbon metabolism while suppressing fatty acid and nucleic
acid metabolism [84]. However, transcriptome studies observed expression of high levels
of aquaporins, ATPases, metal binding proteins, nutrient transporters (carbon, nitrogen,
potassium, and sulfate), osmoregulators, and regulatory proteins in the nodules [85,86]. All
of these components are useful in maintaining homeostasis within the nodule, to facilitate
the transmembrane transport of nutrients and proteins.

The proteomes of nodules have also been studied under stress circumstances. Drought
is a primary stressor that prevents nodules from fixing nitrogen. The metabolic enzymes,
such as sucrose synthase, amino acid synthesis enzymes, and leghemoglobin, which
regulates oxygen levels within the nodule, were reduced in drought-stressed M. truncatula
nodules [87]. Drought results in an increase in protein accumulation in the bacteroid
fractions, including enhanced protein synthesis components, in contrast to the decreased
protein accumulation in the host [88]. As nodulation is a costly process for the plant, it is
presumed that this process is auto-regulated through signaling mechanisms. A suggested
mode of control involves auxin transport from the shoot to the root to regulate nodule
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numbers as seen from the differential expressions of auxin inducible proteins in mutant
and wild type M. truncatula [89,90]. The second possibility is the regulation of the plant
defense mechanisms that may arrest or inhibit nodulation [91].

Actinomycetes are also able to form symbiotic relationships with host plants. Some
symbiotic relationships of this group of bacteria have been reported in Angiosperms, such
as Alnus, Casuarina, and Datisca genera [92]. A study of proteomes in Frankia alni and
Alnus sp. identified secreted proteins, which were generally hydrolytic enzymes believed
to play a role in the formation of this symbiotic relationship [92,93]. Another group of
organisms involved in the symbiotic relationship with plants is the mycorrhizal fungi.
These fungi invade the root systems and establish the arbuscular in the cortical cells or
extracellular hyphal structures (ectomycorrhiza or EM). The AMF are the most dominant
of these fungal interactions [93,94]. Like in the rhizobacteria, AMF remains separated
in the plant by a membrane, which does not hamper the nutrient exchange between the
host and fungus. AMF provides the phosphorus to the plant in exchange for carbon and
lipids [95]. The carbon supply to the symbiont is feedback-regulated to limit excessive loss
of nutrients from the host [96]. A proteome analysis on the root of M. truncatula colonized
by Glomus mosseae exhibited redox, stress, respiration, and cell wall modifications, all
necessary changes to facilitate the colonization of the host root system by Glomus mosseae.

A differential expression of proteins was observed in wild type and mutant [dmi3]
M. truncatula proteins inoculated with G. intraradices [97]. Proteins, such as lipoxygenases,
thioredoxins, and ATPases, were identified through proteomic and transcriptome analy-
ses. Further, studies on these proteins showed the importance of transporters (nutrient
and water) [98], and metabolism (amino acids, fatty acids, and carotenoids) in AMF in-
fected roots [96]. When the G. intraradices infected wild type, dim3, and sunn mutants
of M. truncatula were analyzed, proteins that were specifically induced or reduced were
chalcone reductase, a 2,4-D-inducible glutathione transferase, a glutathione-dependent
dehydroascorbate reductase and a cyclophilin [97]. These proteins postulate the importance
of this symbiotic relationship in redox and defense mechanism facilitation for healthy plant
growth and stress management. With the presence of annexins, alcohol dehydrogenases,
and profucosidases—there is the possibility of the mycorrhizal infection playing a role in
detoxification, in addition to stress response [99].

One area of symbiotic relationship that is extensively studied is the relationship be-
tween free-living organisms, such as Trichoderma and its positive impact on plant host
protection from disease, induction of immune response, and improved plant growth. Tri-
choderma has become an important biological control agent as this genus has the ability to
parasitize other fungi through diverse mechanisms. T. harzianum, an extensively studied
species, produces proteases that are able to degrade fungal cell walls. T. asperellum was
known to induce the production of proteins related to disease and the defense response
pathway [5,43,63,100]. Additionally, these organisms resulted in an increase in levels of
isoprenoid, ethylene biosynthesis, energy metabolism, and protein folding. T. atroviride,
T. harzianum, and T. asperellum were reported to have elevated levels of disease resis-
tance proteins, such as chitinases and cyclophilins, which provides heightened resistance
in the plants [101].

2.2.3. Microbe–Microbe

Communication between microbe–microbe can be addressed as (1) between pathogenic
microbes; (2) pathogens and endophytes; (3) succession by microbes; and (4) lifestyle
changes in the environment. Pathogens are able to affect microbial community on plant
surfaces and soil. In maize exhibiting SLB infection, it was observed that the resident
microbial community was reduced in richness [102]. When infected by a pathogen, the host
is open to infection by others, even non-pathogenic microbes due to increased susceptibility.
When infected with white rust, Brassicaceae were more susceptible to mildew pathogens
and, hence, easily succumbed to white rust [103,104]. In A. thaliana, Albugo laibachii, was
observed to have increased susceptibility to non-host pathogen Phytophthora infestans [105].
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Bacterial populations utilized quorum sensing (QS) and biofilm formation as a means
to establish beneficial plant-microbe interactions [106,107]. QS mediated by QS signals
between pathogenic organisms were implicated in increasing the pathogenicity and vir-
ulence of these microbes on the host [108]. One such example is when QS resulted in
Phytophthora nicotianae zoospore aggregation, which resulted in heightened pathogenic-
ity [64]. However, while interaction between the species of microbes in the infection process
is evident, each microbial cell is responsible for the successful colonization and disease
progression in a host [109]. Many genes have been identified in bacteria, responsible for
the formation of biofilm, colonization of the roots, and improved growth [110]. The QS
signals produced by bacteria are able to effect plant transcriptome and proteome [79] by
adhering to the environment and plant surfaces and, thus, impacting the processes within
the plant [111].

Busby et al. [112] observed that foliar pathogens might be inhibited by endophytes
through hyperparasitism, competition, and/or antibiosis. These endophytes produce a list
of chemicals that are toxic to microbes and can prevent pathogen infiltration [113]. Some of
these interactions between endophytes and pathogens are direct. Jakuschkin et al. [114] re-
ported in his study that fungal endophytes acted antagonistically against powdery mildew
of Erysiphe sp. The presence of chemical constituents, such as polyketide synthase, are natu-
ral antibiotics in endophytes that enable these organisms to act as biocontrol agents against
pathogens [115]. T. atroviride, Ulocladium atrum, Stachybotrys sp., and Truncatella angustata
were shown to generate quantitative disease resistance in P. trichocarpa against Melampsora
rust pathogen by Raghavendra and Newcombe [116]. The afore-mentioned fungi, on the
other hand, were found to be relatively uncommon in wild P. trichocarpa [112], suggesting
that disease-modifying effects of foliar fungus differs between wild and experimental
settings. Endophytes also employ QS to inhibit harmful bacteria through the expres-
sion of QS inhibitors (QSIs) or quorum-quenching (QQ) enzymes to prevent signaling
molecules from working. The plant pathogens Erwinia carotovora, Bacillus thuringiensis,
and Enterobacter asburiae have all been inhibited by the AHL lactonase enzyme (a power-
ful QQ) found in endophytic bacteria [117,118]. Enzymes produced by bacteria protect
plants against environmental and biotic stressors. In drought, trehalose helps stabilize the
membranes and enzymes. Surplus supply of trehalose by bacteria not only helps alleviate
environmental stresses but also helps with eliciting disease response and induction of sys-
temic resistance (ISR) [119]. Further research is needed to decipher how these interactive
chemicals impact the plant microbiome structure and function and influence the plant
health [120].

Microbes that colonize a host will always compete for nutrient, space, and survival. It
was observed that the order of infiltration decides the resistance of the host against the infec-
tion. For instance, if an endophyte is present within a host before the arrival of a pathogen,
the resistance will be stronger compared to when the pathogen and endophyte infiltrate the
plant together or if the pathogen arrives slightly before the endophyte [121]. The biotrophic
pathogen Ustilago maydis was inhibited by co-inoculation with Fusarium verticillioides. The
endophyte did not protect when applied prior to the infection, indicating that the endo-
phyte inhibited U. maydis by direct interaction. U. maydis did not affect the endophyte
community, and it did not relate to the differences in the levels of resistance in the maize
lines [122].

U. maydis is an interesting organism that has the ability to exhibit different lifestyles in
different niche environments. There are other organisms that display such characteristics,
for instance Moesziomyces sp. and Ustilaginales act as biocontrol agents in certain niches [108]
through the secretion of hydrolase that antagonizes A. laibachii [123]. However, it was
reported that some of these Ustilaginales could switch between being plant pathogens or
beneficial epiphytes in different niches. This is also observed in instances where certain
Fusarium oxysporum can act as antagonists to other F. oxysporum strains [124]; this was linked
to the plethora of effector molecules produced. However, effector molecules have not been
identified from endophytes and cannot be linked to any host specificity [125]. Therefore,
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this suggests that the anamorphs of Ustilaginales may produce filamentous structures [126],
but there is no clear indication as to what the different adaptations in these organisms are
that make them switch between pathogenic and epiphytic lifestyles. Figure 1 provides the
plant-microbe interactions that are generally observed aboveground and belowground.
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Plants are an important source of nutrient for microorganisms. When microbes form
non-beneficial interactions with the host, the immune system of plants would be triggered,
either strongly or weakly, depending on the host and the pathogen. Unlike animals, plants
have a defense mechanism, with structural, chemical, and protein-based components,
to defend against attacks. A good understanding of the plant immune systems will
allow us to develop better disease resistant varieties. Unlike our mobile and adaptive
immune systems, plants depend on innate immunity, efficient signaling pathways, and
beneficial microbes [127]. The initial step in triggering a defense mechanism lies in the
invasion of the host cells. Pathogens, such as bacteria, infiltrate the host through various
mechanisms, e.g., trichomes, lenticels, stomata, and other openings. However, in fungi,
the infiltration process depends on the formation of the penetration pegs, while viruses
are opportunistic pathogens that enter through injuries or locations of infection to cause
disease in the plants [128–130].

When the primary defense is breached, the microbe associated molecular pattern
(MAMPs/PAMPs) activates both the MAMP-triggered immunity/PAMP-triggered im-
munity (MTI/PTI) and the effector-triggered immunity (ETI). MTI/PTI is the horizontal
immunity, while ETI is the vertical immunity. Some pathogens may trigger the ETI with-
out the PTI through the interaction of effector molecules and the nucleotide-binding
site-leucine-rich repeat (NB-LRR) found in the R genes, resulting in hypersensitive cell
death [HR] [130]. While PTI and ETI share some common chemical components, they
are viewed as separate evolutionary pathways [131] that are responsible for the plant’s
immunity. A single NB-LRR receptor (directly or indirectly) provides immunity against
pathogens once activated by pathogen effector molecules. The PTI involves protein recog-
nition receptors (PRRs) that are present on the cell surface that act as binding sites for
PAMPs/MAMPs. Consequently, the bound complex elicits a signaling cascade that is
responsible for inhibiting the growth of the pathogens/microbes [130,132]. While plants
have the PTI and ETI, microbes have evolved mechanisms that are able to overcome the
PTI, by releasing effector molecules into the plant, triggering plant susceptibility.

Previously, it was assumed that the presence of the R gene was necessary for the
perception of the pathogen. This was alluded to as the guard model. Recent research
has shown that the indirect recognition of the effectors is inconsistent with the guard
model. Presently, it seems that multiple recognition sites are available for different microbe
effectors. It is now well-established that multiple targets in hosts are present for different
pathogen effectors and the classical Guard Model does not explain this when lacking the
R protein [133]. What is observed above involves evolution and, therefore, would be
better explained by a decoy model [134]. The decoy is explained as a concept where the
effector target is the decoy that acts on pathogen perception, even when the R protein is
absent [133,135]. At the point of infection, systemic acquired resistance (SAR) is activated to
prevent further proliferation of the pathogen to neighboring cells through the activation of
the defense pathway, which results in the activation and expression of pathogenesis-related
(PR) proteins [136,137].

Through the advent of the genomic tools, a better understanding of the interactions
between plant and pathogens is obtained. Transcriptomics have enabled us to identify
genes that are enhanced or inhibited in the plant-microbe interaction, providing a clearer
picture of what may be happening in the regulation at the molecular level [25,138–140].
These studies also implied important roles for microRNAs in plant response against the
pathogens, the plants innate immunity, as well as the triggered defenses in plants [141–143].
Beyond the effectors, receptors, and models described, it was postulated that the immune
system in plants is moderated by systemic and local elicitation of phytohormones. These
hormones are involved in the activation of induced systemic resistance (ISR) and SAR. For
the above responses to take effect, there has to be interactions between the plant and the
microbe [37,137,144–146].

SAR is split into several steps, where the most significant stage of SAR response is
signal production and amplification at the site of infection and signal transduction to distal
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organs [147]. Numerous mobile chemicals were discovered as potential SAR signals or
significant contributors in the mobility of long-distance SAR signals. Among them are
methyl salicylate (MeSA) [148], glycerol-3-phosphate dependent factor (G3P) [149], azelaic
acid (AzA) [150], dehydroabietinal (DA) [151], the lipid transfer protein known as defective
induced resistance 1 (DIR1) [152], and pipecolic acid (PIP), a lysine catabolite amino
acid [153,154]. Following signal detection, the emergence of SAR (defense priming) in the
distal organ is linked with extensive metabolic and transcriptional remodeling [149,155].

In Arabidopsis, the important molecules that must be present in the distal pathogen
free leaves are the buildup of PIP and SA, followed by the expression of flavin-dependent-
monoxygenase1 (FMO1), enhanced disease susceptibility (EDS1), flowering locus D1
(FLD), isochorismate synthase 1 (ICS1), phytoalexin deficient 4 (PAD4), AGD2-like defense
response protein 1 (ALD1), and SNF1-related protein kinases 2.8 (SnRK2.8) genes. The ma-
jority of these components are parts of the SA-amplification chain [156]. The activation of a
transcription factor, a non-expressor of PR genes 1 (NPR1) by SA is also required for defense
priming [154,157,158]. It must be emphasized that defense priming and signal amplifica-
tion are interdependent with systemic PIP formation and PIP facilitated SA-independent
and SA-dependent priming of plant defenses in an FM01-dependent manner [154,155].

Previous findings also showed that the SAR-inducing action in cucumber and Ara-
bidopsis phloem sap caused by various phytopathogens proved efficacious in other
plants [149,151], suggesting that the mobility of SAR signal(s) are not unique to plants or
pathogens [156]. The SAR signaling transmission is as seen in Figure 2.
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Figure 2. The process of the SAR mechanism. The generation of signals in the diseased organ. The
signal is sent to other parts of the plant that are not affected. After transcriptional and metabolic
remodeling, the essential molecule is present in the healing organ as immunity. The black arrow
represents the movement of the SAR signal to the distal organ.

While SAR happens at the site of pathogen infiltration, ISR happens from its site of
trigger in the rhizosphere. The association between the plant and microbe in the soil can be
used to improve plant defense and crop productivity. When disease is present in the soil,
microbes with the ability to inhibit the activity of these pathogens may be introduced to
manipulate the environment into one community that ensures the health of the soil. This
may be achieved with a rich inoculum and the management of environments [136,159–162].
Finding the right balance in plant-microbe and microbe–microbe interaction is important
in establishing chemical communication in the rhizosphere. This association plays an
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important role in engaging the signaling cascade that prompts the resistance or defense in
the plant against pathogens and facilitates activities that improve yield and growth of the
crop [131,163,164].

The microbial assemblage in the soil secretes molecules that are able to induce gene
expression in the plant species. Some of these signals (VOCs, for example: alcohols, alkanes,
ketones, terpenoids, etc.) operate as communicators within the microbial communities in
the rhizosphere [25,131,165]. These compounds promote several functions, such as dis-
ease inhibition, nutrient acquisition, improved growth and development, mineralization,
and other processes. These compounds are also responsible for triggering alterations in
the plant’s transcriptome. While phytohormones, such as auxins, abscisic acid (ABA),
cytokinins, gibberellins, jasmonic acid (JA), and salicylic acid (SA) are at play in plants; the
same hormones are also secreted by beneficial microbes [145,166–168]. The beneficial chem-
icals exuded by microbes that activate plant defense mechanisms are listed in Table 1. In
addition to the induction of ISR by the plant-microbe interaction in the rhizosphere, immu-
nity or plant defense may also be elicited through a phenomenon called trans-generational.
This form of immune memory is transferred to the following generations in the plant in
response to pathogens [131,169]. For instance, when an avirulent Pseudomonas syringae was
applied on Arabidopsis, it resulted in the next generation of plants, showing increased levels
of salicylic acid [SA], which resulted in heightened disease resistance [131,162,169].

Despite many remarkable discoveries in the field of plant immunity, many mysteries
remain unresolved, such as the identification of avirulence (Avr) genes in plant–pathogen
interactions, plant root immune mechanisms, molecular mechanisms of pathogen col-
onization in plants, regulation of cellular activity and gene expression, and signaling
mechanisms involved in plant immunity. As a result, progress in post-genomic era tech-
nologies will open the door for a deeper understanding of plant–pathogen interactions and
plant immunity.

Table 1. The beneficial chemicals exuded by microbes and the benefit to plant defense mechanism.

Plant Producing Microbes Beneficial Chemicals Benefit in Plant Mechanism Reference

Banana Bacillus spp. Siderophores
• Can inhibit the spread of plant

pathogens [170,171]

Volatile Organic Compounds (VOCs)

Arabidopsis

Bacillus subtilis GB03
and Bacillus

amyloliquefaciens
IN937a

2,3-Butanediol
(2,3-BD)

• Enhances Arabidopsis
development

• Elicits ISR towards pathogenic
Erwinia using ethylene signaling
pathways

[172]

Corn and Tobacco Bacillus cereus C1L Dimethyl disulfide

• Protects plants against
Cochliobolus heterostrophus and
Botrytis cinerea

[173,174]

Arabidopsis thaliana Trichoderma asperellum 6-pentyl-pyrone
• Boosts plant defense responses

while suppressing B. cinerea and
A. alternata sporulation

[175]

Phytohormones

Medicago truncatula Salmonella Auxins

• Aids in the development of new
organs

• Inhibits plant defenses
• Controls phytobacteria

pathogenicity

[176,177]
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Table 1. Cont.

Plant Producing Microbes Beneficial Chemicals Benefit in Plant Mechanism Reference

Oryza sativa Bacillus
amyloliquefaciens

Abscisic acid (ABA)

• Improves resistance towards
salinity

• Integrates signaling during stress
exposure

[178]

Arabidopsis thaliana Pseudomonas
fluorescens

Cytokinin

• Maintains proliferation and
differentiation of the cell

• Inhibits premature leaf
senescence

[179]

Various plant

Azotobacter,
Azospirillum,
Pseudomonas,
Azotobacter,
Burkholderia,

Bacillus

Gibberellins

• Important in dormancy of floral
organ development, lateral shoot
growth

[180]

Tomato Fusarium oxysporum Jasmonic acid (JA)

• Plant defenses against
necrotrophic pathogens

• Activated ISR
[125,181]

Metasequoia
glyptostroboides,

Ginkgo biloba, Taxus
brevifolia, etc.

Pseudomonas tremae
Curtobacterium

herbarum
Salicylic acid (SA)

• Crucial role in plant stress
tolerance

• Increases resistance from tobacco
wildfire disease

[182,183]

Apple Pseudomonas syringae Ethylene • Promotes fruit ripening [184]

Signaling Molecules

Piloderma–Pinus,
orchids, etc. Mycorrhizal fungi Small signaling

proteins (SSPs)

• Function as mutualistic effectors
that promote mycorrhization in
their plant hosts

[185,186]

Arabidopsis thaliana PGPR N-acyl-homoserine
lactones (AHL)

• Stimulate the plant’s host to use
strategies to counteract the
bacterial signals

• Helps with root development,
plant defense, stress response,
hormonal balance, and
metabolism

[187–191]

Grapevine, lettuce,
etc.

Pseudomonas sp.,
Burkholderia sp., and

Bacillus sp.

Rhamnolipids and
Lipopeptides

• Plant immunity to
phytopathogens is increased
when the immune system of the
plant is stimulated

[192]

Tomato Pseudomonas
fluorescens

2,4-
Diacetylphloroglucinol

(DAPG)

• Promotes root development via
auxin dependent signaling
pathway

[193]

Arabidopsis Pseudomonas
aeruginosa Pyocyanin • Promotes ISR root development [194]

Arabidopsis Nematodes Ascaroside
pheromones

• Triggers the production of
defense genes and microbial
infections tolerance

[195]
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Table 1. Cont.

Plant Producing Microbes Beneficial Chemicals Benefit in Plant Mechanism Reference

Enzymes

Various plant

Trichoderma
harzianum,

Trichoderma virens and
Trichoderma viride

Lytic enzymes

• Eradicate plant disease-causing
substances in plants; inhibits a
wide range of fungal
phytopathogens that arise from
the air or soil

[196]

Doryanthes excelsa
Protea montana

Proteobacteria and
Acidobacteria Phosphatase

• Mineralize organic P
compounds.

• Control the carbon sink’s
capacity, given that P uptake may
be a limiting factor, in continual
growth, in changing climates

[197]

Phaseolus vulgaris Rhizobium etli Trehalose

• Increases the number of root
nodules and enhances N2
fixation

• Acts as an osmoprotectant
[198,199]

Canola Trichoderma atroviride Chitinase

• Resistance against the stem rot
disease caused by Sclerotinia
sclerotiorum

• Attacks the chitin of the
pathogenic fungi

[200,201]

Rice Bacillus spp. Proteases

• Boost antioxidant defense
functions

• Reduce oxidative damage and
occurrence of blast disease

[202]

3. Functions of Rhizosphere Consortia

As mentioned in the previous section, soil microbes are involved in three main
processes—growth and development, nutrient acquisition, and stress management against
biotic and abiotic stressors. These processes are managed through an interplay or chemical
signaling that facilitate these functions.

3.1. Hormones and Their Promotion of Growth and Development

Firstly, organisms, known as plant growth promoters, achieve their purpose in plant
growth and development through an array of phytohormones secreted into the soil. The
main players, such as auxin, cytokinin, ethylene, and gibberellin influence plant growth,
and are extensively studied in cereal root systems [8,136,203]. Pseudomonas, Burkholderia,
and Pantoea are involved in biological processes, such as P solubilization, N2-fixation,
auxin, and ACC deaminase production. Beneficial and non-beneficial organisms produce
auxin. Auxin is responsible for root growth and formation, elongation of nodular cells, and
response against stressors [204–206]. In pathogens, auxin is linked to its virulence. One
good example of auxin’s role in virulence has been studied in the Agrobacterium tumefaciens
where the expression of tumors in plants depends on the secretion of IAA [207,208]. As
tryptophan is required for auxin production, aminocyclopropane-1-carboxylic acid [ACC]
is needed for the production of ethylene and microbial growth. ACC deaminase-producing
PGPRs help in the utilization of ACC to equilibrate the levels of ACC inside and outside
the plant [209,210].
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Ethylene is involved in the regulation of growth, elicitation of defense, and the man-
agement of plant stressors [211]. The elicitation of defense response by singular or consortia
is dependent on ethylene. The role of ethylene in affecting the community structure was
determined using ethylene mutants. These studies showed that the mutants affected the
bacterial community structure, but these studies were not able to correlate the abundance
of species to ethylene due to variable ethylene levels, and the cross-talk with other hor-
mones [211–213]. Moreover, the original colonizers will have the ability to influence the
microbial population. Hence, if the microbial populations are linked to ethylene regulation,
they are likely to shape the microbial structure in the soil and control the regulation of
stress in the plants [36,136].

Jasmonic acid (JA) and its methyl ester (MeJA) have been associated with defense and
wound response in plants [214,215]. Recent studies have also alluded to JA being involved
in the recruitment of microbial communities around the roots [8,163]. JA regulates the
components in the root exudates, such as benzoxazinoids, known to improve herbivore
resistance. These compounds contribute to the allelopathic and chemotactic nature of root
exudates. These exudates recruit miscellaneous microorganisms that cater to specific niches
in the soil as well as the specific needs of the plant itself [164,216]. However, while JA is
responsible for the recruitment of microorganisms, we are unable to correlate JA and the
population structure due to too many variables in the environment.

Salicylic acid (SA) is another signal molecule that is involved in plant defense. How-
ever, unlike JA and ethylene, SA is directly related to SAR. Together with JA and ethylene,
SA forms the core defense hormone in the plant. The role played by SA has been studied
using A. thaliana mutants, where the knockout mutants showed lower levels of survival and
less prolific colonization [136,217,218]. Further, the study by Lebeis et al. [219] observed
that SA linked pathways were required for the colonization of endophytes and the shaping
of soil microbial structure. However, phytohormones (ABA, cytokinin, ethylene, JA, SA
IAA, brassinosteroid, and others) may show synergistic or antagonistic effects against plant
related processes. For instance, ABA is a major player in moderating abiotic stresses. ABA
negatively interacts with SA mediated defenses and works either positively or negatively
with JA and ethylene related biotic responses, respectively [41,220,221]. Therefore, in
either biotic or abiotic stressors, phytohormones play their specific roles in shaping the soil
microbial structures [25].

3.2. Biological Processes in Nutrient Acquisition

Microorganisms are involved in nutrient cycling and acquisition from the soil. There-
fore, organisms, such as plant growth promoting rhizobacteria (PGPRs), are studied exten-
sively for use as biofertilizers [222]. The compounds exuded by these microbes and plants
work together to facilitate processes, such as nodulation, quorum sensing, N2-fixation,
mineralization, and others [223]. Some of these processes have already been discussed
under plant–microbe interaction Nod factors bind lysin motif-containing receptor-like
kinases (LysM RLKs) and initiate signalling cascades, resulting in nodulation by bacteria in
exchange for photosynthetic carbon [25]. Further, bacteria that establish IAA secretion in
and around the root area enable the development of root hairs [223,224].

There is evidence that the biochemical constituents of rhizobacteria are able to elicit
defense as well as facilitate symbiotic relations. Iron, for instance, when secreted by certain
B. subtilis strains, is able to activate the host defense mechanism [35,46,136]. Bacterial
volatiles activate the Fe deficiency transcription factor that, in turn activates a series
of enzyme that results in iron accumulation. Freitas et al. [225] observed that when
G03 was used to treat cassava plants, iron content increased substantially in the leaves.
Similarly, certain organisms, such as Bacillus paramycoides KVS27, and Bacillus thuringiensis
KVS25, increased growth of Brassica juncea through P solubilization, N2 assimilation, IAA,
siderophore, and HCN production. The observed activities were attributed to the synergism
among these organisms that resulted in the secretion of multiple chemicals, collectively
resulting in plant growth. Therefore, the effects that are seen on plant defenses may involve
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a consortium rather than singular microbes. The interaction between microbe–microbe,
microbe–plant, and microbe–environment collectively influences growth and development
of plants and the microbial community [226].

3.3. Microbial Defense Mechanisms

The manifestation of disease depends on various factors, such as host range, suscepti-
bility of host, environment, pathogen population, agricultural practices, and various biotic
stressors [227,228]. The resistance towards any pathogen produced by a host depends on
the roles played by aboveground and belowground microbes that are able to modify the
defense responses in plants [73]. Though the control of disease has been largely through
chemicals, the effort to go green has directed research in the identification of biocontrols in
disease suppression [35,71,229,230]. The use of beneficial microbial population is slowly
gaining popularity worldwide, where enzymes, antibiotics, siderophores, volatile com-
pounds, and inhibitory chemicals control the spread of disease [231–233]. These biocontrol
agents have a myriad of activities that enable them to suppress the pathogens. Whether it
is antagonistic, competitive, or triggering of the defenses—all work well in keeping disease
in check. The antibiotics that are expressed by microbes promote growth and suppress
pathogens. This is achieved through the activation of certain hormones, such as auxins,
which enable changes to root architecture to improve nutrient absorption and improve
growth [234]. Pseudomonads are widely known to produce DAPG, which induces ISR,
while cyclic lipopeptides (cLPs-surfactin, fengycin, and iturin) from Bacillus spp. and
Pseudomonas spp. produce surfactants that are able to inhibit pathogens [44,235,236]. In
addition to the antimicrobials, and lipopeptides, QS enzymes play a role in suppression of
disease, and induction of ISR [35,237]. Some of these organisms also play a role in regulat-
ing defense through the control of hormones in plants [238]. While certain taxa, such as
Actinobacteria, Serratia, and Enterobacter are able to control several soil-borne diseases. These
groups of organisms are able to induce action through ISR and SAR, protecting the plant
systemically through the involvement of hormones, signal molecules, and the activation of
pathways in the plant [239,240].

4. Challenges of Emerging Plant Pathogens and Their Impacts on Plant–Microbe
Interaction

As addressed in sections above, plant–microbe interactions can be either positive
or negative. However, an immediate challenge to agriculture is the new and emerging
pathogens that continue to plague the industry. While plant defense mechanisms are in
place to protect the plants from the exposure to pathogens, new and emerging pathogens
may have evolved mechanisms that enable them to evade the host’s innate immune
system [241]. Since it has been observed that pathogens co-evolve with their host, it is likely
that, to avoid this “arms race”, the pathogens expand their host ranges. These organisms
evolve their virulence or pathogenicity factors to enable them to elicit disease in the same
susceptible host and new ones [242]. These new and rapidly evolving microbes pose a
threat to the agricultural industry. A better understanding of the pathogen’s invasion and
infiltration strategies will enable better control over disease through strategic heightening
of defenses or breeding [127].

Several possibilities for the emergence of new harmful organisms (such as bacteria
and fungus) are (i) the bacteria may be endemic in agricultural land, but a novel host
has just been found, (ii) After becoming endemic, the microorganism turns pathogenic,
owing to a rise to its pathogenicity or a loss in the host’s defenses, (iii) The microbe may
have just been introduced into a new environment with unknown hosts, and the organism
might be harmful to novel plants, and (iv) Insect vectors feed on a new host, containing
harmful organisms, and spreading the organism to succeeding plants [243]. Diseases arise
due to a variety of causes, including interactions between pathogenic organisms, plant–
pathogen interactions, plant–insect–pathogen interactions, and unfavorable environmental
circumstances. According to Deberdt et al. [244], climate change, can modify the character
of microbes, transforming them into opportunistic diseases. It is well known that when
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plants are weakened or stressed by external conditions, microbes may easily colonize them,
resulting in plant mortality. Certainly, various abiotic stress, such as drought, heat factors,
and so forth affect the plant, inflicting great damage to the forest and agriculture [245].

Further, trade has become an agent of disease transmission globally. Though scrutiny
of migration pathways and quarantines have been imposed, new and emerging diseases
are constantly being reported [246]. The advent of omics tools has enabled us to obtain new
information on emerging populations. There is also a flood of databases of phytopathogens
and plant genomes that has made it possible for us to study the plant-microbe interaction
more closely [247]. The current information derived from the sequence databases show
that there is an accelerated genome adaptation in pathogens to their environment. This
high rate of evolution has further compounded the problem of disease in host–pathogen
interactions. Population genomics studies is a good way to study the adaptive evolution
of plant pathogens and design better disease management strategies. In the following
section, we will deal with the technologies used to study the microorganisms and the
plant-microbe interactions [248,249].

5. Unraveling Plant–Microbe Interaction at the Molecular Level

The underlying theme in this review involves the three main interactions observed
between plants and microbes. While symbiosis and mycorrhizae are two main facets of this
interaction, the aspect of disease has garnered interest, especially with the losses incurred by
current pathogens and the threat of emerging diseases. The exploitation of this interaction
provides for the development of sustainable disease management strategies [35].

While our current method of addressing disease in plants is through resistance breed-
ing via conventional or molecular techniques, the advent of new genome platforms has
enabled us to acquire large amounts of big data on plants and pathogens through a series
of sequencing and re-sequencing of these genomes. The method of identification, such as
16S rRNA sequencing, WGS, or classic culture techniques, can potentially have an impact
on the reporting of the discovered microbiome. Delmont’s [250] 2009–2012 survey of Park
Grass, for example, employed at least six distinct techniques of DNA extraction to produce
an accurate representation of the soil microbiome. The genomic and post genomic era is
upon us, and we are now faced with this large amount of data that needs to be deciphered
and utilized in the development of disease resistance in plants, as well as in improving our
understanding of ISR and SAR [249,251–253]. It is now possible to dissect and scrutinize
the plant-microbe interaction at a molecular level through the utilization of platforms of
genomics, proteomics, transcriptomics, and metabolomics. The genome data on microbe
and plants, the various proteins that are secreted in the plant–microbe interaction, and
the differentially expressed genes in the host and the metabolomes involved helps us
understand these complex relationships [254,255]. While the genome information may be
utilized to develop resistant plants through breeding or genetic engineering, the protein
information may be utilized to identify key proteins in plant growth and development that
controls various physiological and biochemical pathways [79]. The transcriptome data en-
ables us to observe the variations in the expression of genes in response to the environment,
growth, and development, while the metabolome data provides us with the metabolic
changes incurred through the interaction between the plant and the microbe. Collectively
the post-genomic era data have enlightened us in the area of gene discovery, beneficial
microbes, and proteins that may be used in crop improvement, growth improvement, and
heightened disease resistance [256]. Below, we will briefly go through the techniques that
are useful in deciphering the biological functions and benefits of plant-microbe interaction.

5.1. Genome Sequencing

The various genome-sequencing platforms that have been developed over the years
have made studying the interactions between plants and pathogens, at the molecular
level, possible, and more informative. The availability of genome sequences of plants and
microbes and the ability to conduct genome wide annotation of proteins and genes through
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bioinformatics platforms has further advanced the field of plant–microbe interactions [257].
The very first contribution to the bacterial genome was first obtained in 1995, which
resulted in the ability of computational modeling in envisioning the entire operation of this
organism from the sequence structure alone [258]. In 2000, the sequencing and annotation
of Arabidopsis paved the way for better understanding of the sequence to operations through
the use of genome scale modeling and annotations [258]. Through genome informatics,
we are able to understand the microbe and plant systems better at the molecular level.
Genome sequencing also allows us to connect the multifaceted signaling pathways that
regulate the defense mechanism in the plant. However, despite the large amount of data
available from the genomic- and post-genomic era, there are still gaps in the knowledge
due to the high complexity of the interaction between plants and microbes, complicated
further by internal and external regulatory factors [259].

Generally, the genomics and transcriptomics data allows us to draw information
necessary for the metabolic network modeling of plants and pathosystems. By merging
the metabolic pathways of the plant and pathogen, we are better able to study the positive
and negative effects of these interactions [249,257]. The initial study of plant–microbe
interactions and understanding of the relationship at the genome level was taken one gene
at a time or one protein at a time. Over time, a more holistic approach was taken where
the entire plant and pathogen genome was elucidated together. In the early 21st century,
transcriptomic tools, such as the cDNA microarray and SuperSAGE, were used to profile
gene expression and signaling in Arabidopsis thaliana–P. syringae and rice–Magnaporthe oryzae
interactions [95,260,261]. As the sequencing platforms became more advanced, the RNAseq
technology was developed, and the differential expression profiles of plant−pathogen
interactions were elucidated. Combined with the transcriptomics data, the proteome data
of plant–microbe interactions were also derived through 2D gels, MS/MS, GC/MS, LC/MS,
and iTRAQ [262].

One of the important outcomes of the post-genomic era is the utilization of the sequenc-
ing data in annotations, making sense of how the organisms operated through metabolic
modeling [258]. Through these modeling activities, we are able to investigate the capabil-
ities and inefficiencies of an organism through studies from the genes, to proteome and
transcriptome [258,259]. Through these network models, we are able to address all possible
interactions between plants and pathogens. Genome-scale reconstruction models (GSRMs)
were developed for many organisms and are useful in understanding the multi-cellular
community interactions for phenotype−genotype gap bridging, and to investigate the
functional evolution of metabolic and regulatory networks [263].

5.2. Amplicon Sequencing

High-throughput sequencing of marker gene amplicons is commonly used to clarify
the composition, structure, and geographic dispersion of microbial populations in the envi-
ronment, and remains a popular method in plant microbiome research [251]. Amplicon
sequencing has the benefit of being very precise, identifying specific groups of microorgan-
isms or functional genes [264]. Amplicon sequencing specificity enables it to accurately
identify many rare species; yet, its sensitive characteristics makes it susceptible to contami-
nation [265]. Hence, any analysis that depends significantly on amplicon sequencing must
include both positive and negative controls [266]. This technique involves the sequencing
of PCR products, obtained by using primers for the taxon-specific variable regions [267].

When studying bacterial populations, the 16S rRNA gene is the target used for ampli-
fication, sequencing, and identification of the targeted microbiome [268]. Several different
primer sets were developed for the 16S rRNA genes of bacteria and the 18S rRNA genes
and ITS segments that surround their regions of diversity. The universal primers used
in amplicon sequencing amplify genes from various taxonomic groups with varying de-
grees of effectiveness [269–271]. Given their length, 16S genes with large introns may
be overlooked by standard PCR design [272,273]. The quantity of rRNA gene clusters
per genome has a direct influence on determining the total relative abundance of specific
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bacterial species [274]. The amplified product is then subjected to any one of the sequencing
platforms that are available [267].

The sequence information obtained from the amplified products can be used in phylo-
genetic studies of the organisms within the sample. The phylogenetic relationship derived
can be used in inferring taxonomic information. This taxonomic identification is largely de-
pendent on how extensive the reference databases are. While 18S rRNA and ITS is available
for the identification of fungi, the ITS is preferred as there are good reference databases and
the sequences from ITS show a higher level of variance [275]. Detailed categorization of
observed reads to the genus or species level is sometimes challenging because the amplicon
sequence lacks the necessary sequence diversity to identify closely related genera or species
with 18S rDNA primers, [276]. As a result, the ITS region was recommended over the
18S rRNA gene because of the greater sequence diversity seen in the ITS region and the
availability of a much more curated and extensive reference database [275]. Nonetheless,
unequal ITS fragment lengths may encourage PCR amplification of shorter ITS sequences
as an alternative. This might result in a skewed estimation of the relative abundances
of fungal species. However, to make sure that there are no biases of relative abundance
of fungal taxa based on ITS sequence identification, non-ITS based targets may also be
included to provide robustness to the data derived [277]. Following amplicon sequencing,
the microbiome is analyzed through clustering of OTUs based on the defined sequence
similarity thresholds. Sequences with similarity are assigned to the same taxa by OTU.
These microbes are assumed to share origins.

Although amplicon sequencing may be used to infer community function, it is not
an ideal method unless particular functional genes are utilized, where the function and
phylogeny are congruent [278]. The following issues are linked with the amplicon sequenc-
ing approach: (i) During DNA amplification, sequencing mistakes and chimaeras can
occur [279]. (ii) It is possible that primer coverage will not cover the necessary microbial
diverse populations [269]. (iii) The relative abundance of operational taxonomic units
(OTUs) may be skewed due to differences in amplification efficiency across the target
genes [280,281]. (iv) Variability in gene copy numbers may have an impact on conclusions
based on the relative abundance of the OTUs [282].

5.3. Metagenomics

Metagenomic analysis provides a variety of approaches that are based on biomolecules,
such as lipids, DNA, RNA, and proteins [283] that researchers may use to uncover plant
microbiome activity and diversity to identify microbial participants in soil. The shotgun
genome sequencing method of metagenomics, as opposed to the amplification of targets in
the amplicon sequencing, provides more information. This method provides sequences
from bacteria, viruses, archaea, phages, and fungi. However, in comparison to the 16S
rRNA method, this technique will require higher information depth to distinguish the
uncommon/rare members of the microbiome, and quality control to trim and filter the
reads using bioinformatic tools [284]. The online-based tools are easily used for any
sequence information and can be easily utilized to map the reads obtained against any
reference databases. These mapped reads are then functionally annotated using various
online resources [285].

The shotgun metagenome sequencing makes it possible to study greater structure of
microbial communities while also providing an unbiased perspective of the phylogenetic
and functional makeup of environmental microbial populations [286]. Through metage-
nomics, the level of identification can go right down to the strain level, which is at higher
efficiency compared to amplicons, which are more likely to provide characterization to the
taxonomic levels of the amplicons [287]. However, while the identification is more precise,
this method would require additional bioinformatic tools to reconstruct the genome based
on the short reads obtained, or the utilization of higher resolution sequencing platforms.
The metagenomic method is a useful tool to find and characterize microbes at the strain
level, where the algorithm used will enable the system to overcome the intergenomic
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repetitive elements and detect small differences in the genetics of the organisms [288–290].
Further, the gene sequences in metagenomics may be functionally annotated to provide a
clearer picture of the microbial characterization compared to the amplicon survey. The func-
tional annotation will include gene prediction and annotation, where, firstly, the protein
coding sequences are identified, followed by matching this predicted protein to a protein
function [291,292]. However, the identification of genes from the metagenome analyses
does not ensure that all genes identified are expressed. While both amplicon sequencing
and metagenome use the sequencing platforms, these methods have their limitations. This
is precisely why sequencing platforms and bioinformatic tools are constantly updated and
upgraded to improve the quality of reads and informatics obtained [293]. Therefore, to
gain a better understanding of the total microbial diversity, studies may employ one or
a combination of methods to acquire as much information as possible while adhering to
their sample size.

5.4. Soil Proteomic

Proteomics is used in the study of the function and control of biological systems based
on the prediction of protein profiles. Considering that soils have the capability to restore
extracellular proteins through a variety of ways, the effectiveness of protein retrieval from
diverse sources must be evaluated as part of the progress of soil proteomics [294]. Although
metagenomics enables the identification of microbes in the rhizosphere, metaproteomics
enables the investigation of rhizosphere biological activities [295]. It is feasible to relate
ecological function to microbial community composition when these two techniques are
used for the same problem [295]. Previous studies that used this technique attempted to
comprehend the truffle brûlé mechanism in its specific niche, where other symbiotic fungi
were driven away by this fungus once it formed symbiotic relations with the plant [296].
Recent research conducted on soil microbes have combined various omics methods (cultur-
omics, metaproteomics, and 16S rRNA sequencing) to identify microbial communities and
elucidate microbial population roles in the glacial ecosystem [297].

The idea behind mass soil protein analyses is that having a full proteomic profile
of a microbial community would make it easier to find distinctive polypeptides whose
syntheses are influenced by certain ecological factors [298]. Due to a huge number of
unique proteins synthesized by various species, molecular characterization of soil proteins,
for revealing species composition and metabolic activity, has been challenging. Amidst this
drawback, advances in immunological methods, as well as a spike in the range of accessible
enzyme analyses, have been utilized to complement precise molecular resolutions in
situations where a specific polypeptide was of interest [299]. Understanding ecological
activities by measuring molecular diversity in soil settings requires the understanding of
protein structural complexities in comparison to other identifiable compounds, such as
fatty acids and nucleic acids. One- or two-dimensional polyacrylamide gel electrophoresis
(PAGE) can be used to create comparison protein profiles, relying on electric charge and
physical size attributes [298]. Concerns of evolutionary variety within particular groups
of species inhabiting comparable ecological niches may also be addressed using amino
acid sequence analysis. Despite the fact that the metaproteomics approach has been
around for more than a decade, it is still constrained by computational and technical
support [295]. First, contamination by humic acid and other pollutants that impedes
protein extraction makes it extremely reliant on soil type. Secondly, various extraction
techniques might have an impact on the detected metaproteomics [300]. This limitation
can be circumvented by utilizing several extraction techniques simultaneously and pooling
all extracted proteins prior to further analysis [295]. Thirdly, protein identification is
hampered by the lack of a comprehensive protein database [301,302]. Building in-house
libraries largely depends on the metagenomics data acquired from comparable settings in
previous studies [303]. The current availability of low-cost high-throughput sequencing
has undoubtedly aided the integration of metagenomics with metaproteomics. However,
by using next generation sequencing (NGS), it is feasible to get more reads in less time,
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allowing the species to be identified, and at the same time establishing an optimized
databases for protein identification [295].

Overall, metaproteomics is a strong tool used for studying biological functions of a
microbial community, and this information is used to correlate functional and taxonomic
soil makeup in the ecosystem [304,305]. Furthermore, soil protein analysis might provide
relevant data on the biogeochemical capacity of the soil and pollutant decomposition,
as well as operate as a predictor of soil health and restoration [306]. This might help us
comprehend organic contaminants and organic compound degradation, nutrient cycles,
and plant–plant and plant–microbial interaction at the molecular level.

6. Microbes in Sustainable Agriculture

Microorganisms have a huge impact on the physical, chemical, and biological pro-
cesses in the soil that are directly and indirectly important for plant and animal growth and
development. While extensive studies have been carried out on a global scale to identify
suitable microbes for use in the agricultural industry, more can be done in the continuous
isolation and characterization of future biocontrol and growth promoting organisms that
are suitable for specific applications. In this section, we will look at how bacteria can be
used in agriculture.

Nutrient cycling: microbes recycle several nutrients, such as carbon, nitrogen, phos-
phorus, potassium, zinc, calcium, manganese, and silicon on a constant basis. Nutrient
recycling is critical, not only for plants, but also for all forms of life, as it provides essen-
tial components for the synthesis of amino acids, proteins, DNA, and RNA required by
all living organisms. The contribution of microbes in this regard is largely undervalued.
Identifying and maintaining the density and community of essential microorganisms in
each cycle will be of utmost importance. Further, to boost the organism’s cycle abilities,
key genes, such as the Nod factors, can be genetically modified to improve nitrogen-fixing
ability, for instance. The same can be done with any other nutrient cycling process [36,307].

Bioremediation: industrialization and current agricultural techniques increase the
negative impacts on agricultural land and water by releasing vast amounts of hazardous
waste, heavy metals, and organic contaminants, all of which are severe problems, not just
for agriculture, but also for human health. Although trace amounts of heavy metals, such as
lead (Pb), cadmium (Cd), mercury (Hg), chromium (Cr), zinc (Zn), uranium (Ur), selenium
(Se), silver (Ag), gold (Au), nickel (Ni), and arsenic (As) are beneficial to plants, excessive
uptake reduces plant growth by interfering with photosynthesis, mineral nutrition, and
essential enzyme activities. Industrialization and contemporary farming methods are
putting increasing amounts of pressure on the environment. Bioremediation is a process
that uses algae, bacteria, fungi, or plants to remove heavy metal ions from a polluted envi-
ronment. Bioremediation with microorganisms is long-term and sustainable since it helps
to restore the natural state of the damaged environment while being cost-effective. Heavy
metal detoxification by microorganisms can occur spontaneously, by the addition of native
microbial strains or through genetic manipulation. To reduce the active concentration of
metal ions present in polluted environments, microorganisms use biosorption, adsorption,
compartmentalization of heavy metals into intracellular molecules, metal binding, vacuolar
compartmentalization, extracellular mobilization, or immobilization of metal ions [307,308]

Growth and development: microorganisms use a variety of processes to enhance
plant development and growth in both normal and stressful settings, including nitrogenase
enzyme activity, nitrate reductase activity, siderophore generation, and phytohormone
synthesis. Major plant hormones include auxin, cytokinin, gibberellin, abscisic acid, and
ethylene, with more phytohormones being discovered. Phytohormones are produced by a
variety of microbial species, and they are frequently used in agriculture to improve plant
growth and stress tolerance. Plant growth-promoting bacteria (PGPB), also known as
rhizobacteria, have been genetically modified to increase the synthesis of stress-induced
hormones, antibiotics, antifreeze proteins, trehalose, and lytic enzymes, all of which help
plants develop and cope with stress. In order to compete with the already-adapted indige-
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nous microorganisms, PGPR must develop and sustain a biologically active population.
Genes that promote growth have been shown to improve strains. As a result, efforts have
been undertaken to vary the timing or level of their expression, as well as transfer and
express them in different hosts, in order to improve plant growth and development [307].

Genes involved in growth promotion were shown to be effective tools for strain im-
provements by altering their expression timing and level, or by transferring and expressing
them in different hosts to increase plant growth and fitness. Microorganisms modified
through genetic engineering have improved specific characteristics, such as the ability to
degrade a wide range of contaminants for bioremediation of soil, water, and activated
sludge, improved plant biotic and abiotic stress tolerance, and increased phytohormone
production, among other things. In a hostile environment, the modified strain can survive
and remain active [13]

Stress management: as sessile organisms, plants are subject to abiotic and biotic stress.
Diseases, drought, submergence, metal toxicity, salinity, and various other stressors are
faced by crops throughout the seasons. Microbes are key regulators of stress through
the various biomolecules that are exuded in the form of antibiotics and hormones. The
chemical exudates from the microbes activate ISR and induce the resistance mechanism in
plants. Genes, such as chitinases and glucanases, have been effectively used to engineer
both crops and microbes to enhance the expression of these genes in planta or in microbes
for enhanced resistance towards pathogens [309].

While the wild type and mutant microbes have the general functions as stated above,
the transition from laboratory to field and market is slow. Transition to market would
require the optimization of concoction, determination of concentration, frequency of appli-
cation, and selection of carriers for these organisms. All of this requires time and funding
to fine-tune. While some microbial concoctions have made their way into the market as
biofertilizers, biocontrols, soil amendments, and biostimulants, many are still in the labora-
tory and greenhouse phase, working on optimization. Another factor that has impeded
the transition to the utilization of microbes is the efficacy of these compounds compared
to chemicals agents, as chemical have wider spectrums of efficacy and and result in more
consistent effects on plants and detrimental microbes.

7. Future Prospects and Challenges in Plant–Microbe Interactions

Most current and past studies have either selected one of more of the methods em-
ployed above to determine the soil microbial structure, density, and function. However,
while these techniques do provide some insight on the plant–microbial interactions, they
by no means provide a complete picture of the microbial interactions that occur in reality
between the plant and microbes in a variety of conditions. Further, rather than identifying
the microbes that are present in a particular environment, it would be beneficial for us to
know the roles that they play in the environment, singly and in combination with others.
Therefore, based on the above listed interactions, it is necessary to “put the pieces together”
based on: (1) The microbes present aboveground; (2) The microbes present belowground;
(3) How the belowground microbes affect the host and interaction aboveground; (4) The
processes and interactions between the host and microbe and root and root; (5) The ex-
udates produced by the plants, the microbes, and their functions; (6) How these affect a
plant’s gene expression and immune system; (7) How these microbes affect plant growth,
development, and immunity; and (8) Whether there are specific chemical compounds
involved in microbe recruitment (and many more).

The above-mentioned information is a consequence of direct or indirect effects of
microbes on the host. In recent decades, with the arrival of next generation sequencing
platforms, we were able to observe these interactions at the molecular level. The depth of
information made available from genomic, proteomics, transcriptomics, and metabolomics
has shed some light on the intricacies of the plant–microbe interaction, enabling us to un-
derstand the process of disease development, growth and development, immune response,
nutrient cycling and absorption, disease suppression, and others. Most of the studies
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have been directed towards identifying dominant taxa in a particular environment, the
effects of plants and microbe exudates on the recruitment of microbes, and the structural
architectures of the diversity and communities. There is still much that needs to be studied
on the mechanism of recruitment, on the communities influence the plants and each other.
Little is known on how the microbial factors influence root exudation and architecture. This
information may be manipulated to optimize the microbial communities in the soil and im-
prove overall performance of plants. The following are some applications of metagenome
studies conducted in plant–microbe interactions.

(1) Identified productive microbiomes by creating conducive environments for the rhizo-
sphere microbiome to communicate with the plant and surrounding environment.

(2) Applied comparative genomics and metabolomics studies to identify specific rhi-
zobacteria that were naturally selected based on root exudates; optimized utilization
of these cultures to increase growth and development.

(3) Identified microbes and their proteomes, able to trigger ISR and SAR across monocots
and dicots.

(4) Applied transcriptome profiling to identify defense-associated transcripts involved in
innate immunity and plant resistance scenarios.

(5) Identified microbes used in seeding of disease suppressive soil to enhance plant
fitness and productivity.

(6) Identified plant-associated microbiomes that influenced different plant traits including
abiotic stress tolerance, flowering, growth, and disease suppression. Host co-evolution
with the microbiome could be utilized in future crop breeding strategies for low-input
sustainable agriculture.

(7) Mapped microbiomes in the soil through all developmental stages, the differences in
the proteins exuded. This information may be used to generate microbial concoctions
for soil amendments to support growth and yield in all stages.

(8) Exploited beneficial microorganisms and identified emerging pathogens.

With further research and more information being provided from omics-based studies,
we expected that more clarity will be obtained concerning plant–microbe interactions.
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