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Abstract

Non-steroidal anti-inflammatory drugs such as diclofenac exhibit potent anticancer effects. Up to now these effects were
mainly attributed to its classical role as COX-inhibitor. Here we show novel COX-independent effects of diclofenac.
Diclofenac significantly diminished MYC expression and modulated glucose metabolism resulting in impaired melanoma,
leukemia, and carcinoma cell line proliferation in vitro and reduced melanoma growth in vivo. In contrast, the non-selective
COX inhibitor aspirin and the COX-2 specific inhibitor NS-398 had no effect on MYC expression and glucose metabolism.
Diclofenac significantly decreased glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and monocarboxylate
transporter 1 (MCT1) gene expression in line with a decrease in glucose uptake and lactate secretion. A significant
intracellular accumulation of lactate by diclofenac preceded the observed effect on gene expression, suggesting a direct
inhibitory effect of diclofenac on lactate efflux. While intracellular lactate accumulation impairs cellular proliferation and
gene expression, it does not inhibit MYC expression as evidenced by the lack of MYC regulation by the MCT inhibitor a-
cyano-4-hydroxycinnamic acid. Finally, in a cell line with a tetracycline-regulated c-MYC gene, diclofenac decreased
proliferation both in the presence and absence of c-MYC. Thus, diclofenac targets tumor cell proliferation via two
mechanisms, that is inhibition of MYC and lactate transport. Based on these results, diclofenac holds potential as a clinically
applicable MYC and glycolysis inhibitor supporting established tumor therapies.
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Introduction

The transcription factor MYC plays a key role in the regulation

of cell growth, differentiation and apoptosis [1]. Normal cells are

characterized by low steady state levels of MYC expression. This

tight control is lost in many human malignancies leading to high

constitutive expression of MYC. The inactivation of MYC can

revert the neoplastic phenotype in tumor model [2]. Therefore,

MYC represents an attractive target for cancer therapy in humans

[3;4], but currently no MYC inhibitor other than dexamethasone

is clinically applicable.

Overexpression of MYC leads to the upregulation of glycolytic

enzymes such as glucose transporter-1 (GLUT1) and lactate

dehydrogenase-A (LDHA) [5;6]. High rates of glucose uptake and

glycolysis are characteristic for human cancers, a feature already

described by Otto Warburg almost a century ago [7–9]. High

lactate concentrations in the tumor correlate with malignancy [10]

and genetic downregulation of LDHA results in reduced tumor

growth in vivo [11;12]. Furthermore, pharmacological targeting of

glucose metabolism by 2-deoxyglucose (2-DG) and 3-bromopyr-

uvate (3-BrPA), both inhibitors of glycolysis, as well as dichlor-

oacetate (DCA), which targets the mitochondrial pyruvate

dehydrogenase kinase (PDK), has been shown to reduce tumor

growth in animal models [13–16]. In addition, silencing of the

lactate transporters (monocarboxylate transporter, MCT) by

shRNA in vitro and in vivo results in a reduction of cell viability

and tumor growth [17;18]. Lactate transport can also be blocked

by pharmacological means as non-steroidal anti-inflammatory

drugs (NSAIDs) have been shown to reduce the transport of lactate

in a human trophoblast cell line and chinese hamster ovary (CHO)

cells [19;20]. However, this effect of NSAIDs has never been

addressed with regard to inhibition of tumor growth, although

several epidemiological studies report that the use of NSAIDs is

linked to a lower risk of inflammation-associated tumors like colon,

oesophagus and breast cancer [21;22]. The relationship between

chronic inflammation and cancer has already been described by

Virchow in 1863 and is still accepted as an important component

of tumor development [23]. Anti-tumor effects of NSAIDs have

been attributed mainly to the inhibition of cyclooxygenase

(COX1/2) and their anti-inflammatory effects, albeit COX-
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independent inhibition of tumor cell proliferation and induction of

apoptosis have been also reported [24;25]. In addition, it has been

known for years, that NSAIDs affect mitochondrial activity and

function and this aspect has recently been linked to its anti-

proliferative effect on tumor cells [26;27].

Here, we show a novel COX-independent effect of the NSAID

diclofenac on human and murine tumor cells via reduction of

MYC, glucose uptake and lactate secretion. Since tumor cell

proliferation was diminished in vitro and growth of subcutaneous

tumors was impaired in vivo, diclofenac might be used as a novel

anti-cancer drug supporting established tumor therapies.

Materials and Methods

Chemicals and Drugs
All drugs were purchased from Sigma (Taufkirchen, Germany)

and dissolved in water, unless otherwise indicated. The sodium salt

of diclofenac, acetylsalicylic acid (aspirin, ASA) (both from Fagron,

Barsbüttel, Germany), NS-398, gemcitabine (Hospira, Munich,

Germany), and alpha-cyano-4-hydroxycinnamic acid (CHCA)

(Sigma) were dissolved in medium.

Cells and Cell Culture
The human melanoma cell line MelIm [28] was obtained from

Judith Johnson, Institute for Immunology, Munich, Germany, in

1993 and has been tested in the last 3 months for melanocyte

markers and melanoma markers by RT-PCR. B16 subclone of

B16F10 mouse melanoma [29]. The human histiocytic leukemia

cell line U937 was purchased from DSMZ (German Collection of

Microorganisms and Cell Cultures, Braunschweig, Germany). B16

and U937 were identified by DSMZ in May 2011. The prostate

carcinoma line PC3 and the T-cell leukemia cell line Jurkat were

purchased from ATCC. P493-6, a B cell line carrying a

conditional, tetracyclin-regulated MYC gene, was provided by

G. W. Bornkamm Munich, Germany [30]. All cell lines were

cultured in RPMI 1640, 10% fetal calf serum (both from PAN

Biotech, Germany), 2 mM glutamine, 50 U/mL penicillin/50 mg/
mL streptomycin (all from Gibco) at 5% CO2 and 37uC. For
suppression of MYC, P493-6 cells were treated with 1 mg/mL

tetracycline for 24 h before diclofenac treatment.

Monocytes were obtained by leukapheresis of healthy donors,

followed by density gradient centrifugation over Ficoll/Hypaque

and separation by countercurrent centrifugation (J6M-E centri-

fuge; Beckmann, Munich, Germany). Monocytes were cultured at

a concentration of 16106 cells/ml for 48 h in RPMI 1640, 10%

fetal calf serum (both from PAN Biotech, Germany), 2 mM

glutamine, 50 U/mL penicillin/50 mg/mL streptomycin (all from

Gibco) and 100 ng/ml LPS at 5% CO2 and 37uC in teflon bags

with or without the addition of diclofenac.

Determination of Cell Proliferation
36104 cells/0.2 mL medium were incubated for 22 h with

diclofenac, ASA or gemcitabine in 96-well plates. [3H]-thymidine

incorporation was determined 24 h after the addition of 0.5 mCi/
0.2 mL [3H]-thymidine (Amersham Pharmacia, Piscataway, NJ).

Determination of Apoptosis
For analysis of apoptosis, diclofenac treated cells were stained

with Annexin-V-FITC and 7-aminoactinomycin D (7-AAD) (both

from BD Biosciences, San Jose, CA) according to the manufac-

turer’s instructions. Flow cytometric analyses were performed on a

FACSCalibur (BD Biosciences) using BD CellQuestPro for data

acquisition and analysis.

Subcutaneous Tumor Mouse Model
Animal experiments were approved by the Institutional Animal

Care and Use Committee of the University of Regensburg and

regional authorities. In brief, 16105 cells of B16 were subcutane-

ously injected into the right flank of C57/BL6 mice (Charles

River, Sulzfeld, Germany). Mice were randomized and assigned to

treatment groups (n = 7/group). Once tumor volumes reached 50–

80 mm3 (day 14), mice received diclofenac (15 mg/kg) or saline

via intraperitoneal (i.p.) injection every other day until termination

of the experiment on day 23. 15 mg/kg diclofenac corresponds

approximately to 0.5 mM used for in vitro assays. Tumor

diameters were measured with calipers and tumor volumes were

calculated (width2 6 length 60.5).

Determination of Lactate in Tumor Cell Supernatants
Cells were seeded at a concentration of 26105 cells/2 mL

medium with or without diclofenac, ASA or gemcitabine. After

48 h, lactate levels in cell culture supernatants were determined by

means of an ADVIA1650 analyzer (Bayer, Tarrrytown, NY) using

reagents from Roche (Mannheim, Germany) at the Department of

Clinical Chemistry, University Clinic, Regensburg, Germany.

Western Blotting
2,56106 cells/4 mL medium were cultured in 6-well plates over

night. Whole cell lysates were prepared with RIPA-buffer and

samples (50 mg) were subjected to western blotting on a

denaturating 10% SDS-PAGE. Membranes were sequentially

probed with antibodies against MYC (#9402, Cell Signaling

Technologies, Beverly, MA), STAT3 (Cell Signaling Technolo-

gies, Beverly, MA), HIF-1a (sc-10790, Santa Cruz Biotechnolo-

gies, Santa Cruz, CA), HIF-2a (NB100-132, Novus Biologicals,

Littleton, CO) or b-Actin (Santa Cruz Biotechnologies, Santa

Cruz, CA) in dry milk (5%) and detection was performed by

chemoluminescence (ECL, Amersham Bioscience, Piscataway,

NJ). Densitometric analyses were performed by means of the

ChemiDoc MP Imaging System and the Image LabTM software

(Bio-Rad Laboratories, Hercules, CA).

Promoter Assay
The region upstream the transcription start site of human MYC

(2632bp, chr8:128746062-128748693) was amplified from geno-

mic DNA and cloned into the Luciferase Reporter Vector pGL4

(Promega). MelIm were cotransfected in 6-well-plates with the

luciferase construct or the empty pGL4 vector (Promega) and

cotransfected with an internal control vector (phRL-TK, Promega)

using LipofectamineTM 2000 (Invitrogen). Diclofenac was added

after 5 h at different concentrations. 24 h after transfection,

luciferase activity was determined in cell lysates using the Dual-

Luciferase-Reporter Assay System (Promega) according to the

manufacturer’s instructions. The activity was normalized by the

ratio of Firefly luciferase activity to Renilla luciferase activity

(internal control) and compared to pGL4 empty vector.

RNA Isolation and Quantification of mRNA Expression
2.56106 cells/4 mL medium were incubated for 24 h in 6-well

plates. Total RNA was isolated using the RNeasy Mini Kit

(Qiagen, Germany). After reverse transcription using M-MLV

reverse transcriptase (Promega, Germany), products were ana-

lyzed on a Mastercyler Ep Realplex (Eppendorf, Germany) using

the QuantiFast SYBR Green PCR Kit (Qiagen, Germany).

Expression data were normalized to the housekeeper 18S rRNA.

Primers used were 59-39:
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18S rRNA sense: ACCGATTGGATGGTTTAGTGAG; 18S

rRNA antisense: CCTACGGAAACCTTGTTACGAC; GLUT1

sense: AACTCTTCAGCCAGGGTCCAC; GLUT1 antisense:

CACAGTGAAGATGATGAAGACGTAGGG; LDHA sense:

GGTTGGTGCTGTTGGCATGG; LDHA antisense:

TGCCCCAGCCGTGATAATGA.

NMR Spectroscopy
For determination of glucose levels in cell culture supernatants,

cells were cultured at 26106 cells/4 mL medium with or without

diclofenac for 48 h. 1D and 2D NMR spectra of the filtered

supernatants were measured on a 600 MHz Bruker Avance III

spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) as

described previously [31].

Gas Chromatography – Mass Spectrometry (GC-MS)
U937 cell pellets, washed 3 times with PBS, were extracted

using 2 mL 80% methanol. MelIm cells were harvested by

directed scraping with 80% methanol as described before [32].

During extraction, samples were spiked with 10 mL of a surrogate

solution containing [U-13C]lactate (Euriso-top, Saint-Aubin Ce-

dex, France) and [2H4]diclofenac (CDN Isotopes Inc., Quebec,

Canada) at a concentration of 1 mM each.

Dried sample extracts were analyzed by GC-MS in full scan

mode [33]. Quantification of lactate was performed using

calibration curves and diclofenac by stable isotope dilution using

the mass trace of m/z 214 for diclofenac and m/z of 218 for

[2H4]diclofenac.

Respirometry
Activity of the respiratory system was analyzed in a two-channel

titration injection respirometer (Oxygraph-2k, Oroboros, In-

nsbruck, Austria) at 37uC. Cells were resuspended in fresh culture

medium and added to the chamber. After a stabilization phase of

15 to 20 min, ROUTINE respiration of intact cells was measured,

complex V was inhibited by oligomycin (2 mg/mL), and subse-

quently the capacity of the electron transfer system (ETS) was

determined after uncoupling with FCCP (2.5 mM). Residual

oxygen consumption was determined after addition of rotenone

(complex I inhibitor, 0.1 mM) and antimycin A (complex III

inhibitor 2.5 mM) and subtracted from all respiratory parameters.

Statistical Analysis
All results represent mean +/2 standard deviation (SD) of at

least three independent experiments. Statistical analysis was

performed with unpaired, two-tailed Student’s t-test,

***p,0.001; **p,0.01; *p,0.05. For western blots, one repre-

sentative experiment is shown.

Results

Diclofenac inhibits melanoma cell proliferation in vitro
The addition of diclofenac, which is a member of the arylacetic

acid group of NSAIDs, at clinically relevant concentrations (see

http://www.drugs.com/pro/diclofenac.html) led to significant

effects on several tumor cell lines starting at concentrations as

low as 0.1 mM. The proliferation of the human melanoma cell

line MelIm was inhibited significantly (p,0.001) at 0.4 mM

diclofenac (Fig. 1A) and reduction in proliferation was comparable

to that of the standard chemotherapeutic drug gemcitabine

(Fig. S1A In contrast, aspirin (ASA), a typical NSAID exerted

no impact on proliferation indicating a COX-independent effect

of diclofenac (Fig. 1B). Other NSAIDs like the COX-2 specific

inhibitor NS-398 (Fig. 1C), as well as 4-ASA and 5-ASA (data not

shown) also exerted no significant impact on tumor cell

proliferation. To clarify whether the effect of diclofenac on

proliferation is based on the induction of cell death, we analyzed

viable and apoptotic cells after incubation with diclofenac in

MelIm. Only 0.8 mM diclofenac exerted a slight but significant

effect on the number of dead cells after 24 h (Fig. 1D).

Diclofenac inhibits MYC expression in melanoma cells
It is well known, that tumor cell proliferation is associated with

an upregulation of oncogenes like MYC and that the inactivation

of MYC can revert the neoplastic phenotype and induce apoptosis

[2]. Therefore, we analyzed the expression of MYC protein under

the administration of diclofenac by western blot analysis. After 2 h

and 24 h, we observed a clear reduction in MYC protein level in

MelIm cells (Fig. 1E/F and Fig. S2A) which coincided with the

inhibition of proliferation. In contrast, ASA did not affect MYC

expression (Fig. 1G). The protein expression of other transcription

factors, namely STAT3, a known critical regulator of melanoma

development [34], and HIF-1a and HIF-2a, respectively, were not
influenced by diclofenac (Fig. 1F). As Zhu et al. had described

modulating, albeit stimulatory effects of indomethacin not only on

MYC protein but also on MYC gene expression [35], we

performed a MYC promoter assay. We cloned a region of about

2.6 kb upstream the transcription start site of human MYC into

the Luciferase Reporter Vector pGL4 and transfected the plasmid

into MelIm. As shown in Figure 1H, diclofenac suppressed MYC

promoter activity significantly.

Diclofenac inhibits MYC expression and proliferation in
leukemia and carcinoma cells
To confirm that the effect of diclofenac on proliferation and

MYC expression was not restricted to melanoma cells, we

analysed its impact on the human histiocytic lymphoma cell line

U937. Again, we found a significant inhibition of proliferation and

MYC expression by diclofenac (Fig. 2A/ 2B and Fig. S2A)

whereas aspirin (ASA) did not show an effect (Fig. 2C). Similar

results were obtained with other tumor cell lines such as the

prostate carcinoma cell line PC3 (Fig. 2A/B) and the T-cell

leukemia cell line Jurkat (data not shown). In the myeloid leukemia

cell line U937, diclofenac concentrations up to 0.4 mM only

slightly reduced the number of viable cells after 24 h (about 80%

viable cells left). This effect was more pronounced after 72 h

reducing the number of viable cells to 45% and 31% for 0.1 mM

and 0.2 mM, respectively (Fig. 2D). In contrast, the viability of

non-malignant blood monocytes was not impaired even after

prolonged incubation at these concentrations (Figure 2E).

Diclofenac inhibits tumor cell proliferation in vivo
To demonstrate an in vivo effect of diclofenac, we switched to the

mouse melanoma cell line B16. Diclofenac reduced proliferation

significantly at concentrations of 0.2 mM and higher (Fig. 3A).

Diclofenac also decreased MYC expression in a time- and dose-

dependent fashion. Densitometric analyzes revealed that MYC

protein was reduced starting at 0.2 mM diclofenac after 2 h

incubation. This effect was more pronounced after 24 h, however

a strong reduction was only detected at 0.4 mM and higher

(Fig. 3B and Fig. S2B). Next we analyzed the effect of diclofenac

on B16 tumor growth in vivo employing a syngeneic subcutaneous

mouse model. On day 14, after tumors had reached a volume of

50–80 mm3, diclofenac (15 mg/kg) or saline were injected

intraperitoneally every other day. Tumor growth was significantly

impaired already after 3 days of diclofenac treatment (Fig. 3C),

and so was the final tumor weight (Fig. 3D).

Diclofenac Inhibits MYC and Glucose Metabolism
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Diclofenac inhibits glucose uptake and lactate secretion
in tumor cells
Given the known promoting effect of MYC on glycolysis [5], we

analyzed glucose metabolism in different cell lines. First, we

analyzed glucose consumption in the presence of diclofenac. After

24 h and 48 h we found a significant inhibition of glucose uptake

in MelIm already at 0.1 mM diclofenac (Fig. 4A). In most tumor

cells, glucose is predominantly metabolized to lactate [8]. Lactate

has to be secreted to avoid intracellular accumulation and

acidification, which blocks ATP generation via glycolysis. We

determined lactate in the supernatant of diclofenac treated MelIm,

Figure 1. In vitro effects of diclofenac on proliferation and MYC expression in the human melanoma cell line MelIm. The human
melanoma cell line MelIm was incubated with different concentrations of diclofenac (A), aspirin (ASA, B), and NS-398 (C), respectively, and
proliferation was determined after 24 h. Results represent the mean +/2 standard deviation of 12 (diclofenac) and 3 (ASA, NS-398) independent
experiments, respectively. (D) MelIm were incubated for 24 h with or without diclofenac. Apoptotic cells were stained with Annexin-V-FITC/ 7-AAD
and analyzed by flow cytometry. Results represent the mean +/2 standard deviation of 3 independent experiments. (E-G) MYC, STAT3, HIF1a and
HIF2a protein expression were determined in cell lysates of MelIm incubated for 2 or 24 h with or without diclofenac (E,F) or ASA (G). The effect of
diclofenac on MYC promoter activity was determined by transient transfection of a 2632-bp MYC promoter fragment (H). MelIm were transfected in
6-well-plates and diclofenac was added after 5 h. Luciferase activity was determined 24 h after transfection. Results represent the mean +/2 standard
deviation of 3 independent experiments.
doi:10.1371/journal.pone.0066987.g001

Figure 2. Effects of diclofenac on different tumor cell lines. (A) U937 and PC3 were incubated with increasing concentrations of diclofenac
and proliferation was determined after 24 h. Results represent the mean +/2 standard deviation of at least 3 independent experiments (PC3: 0.8
n = 2). (B) MYC protein expression was analyzed by western blotting in cell lysates of U937 and PC3 after 24 h incubation with diclofenac. (C) U937
was incubated with increasing concentrations of aspirin (ASA) and proliferation was determined after 24 h. Results represent the mean +/2 standard
deviation of 3 independent experiments. (D) U937 were incubated for 24 h up to 72 h with or without diclofenac and stained with Annexin-V-FITC/7-
AAD. Results represent the mean +/2 standard deviation of percentage of viable cells (Annexin-V-FITC/7-AAD negative cells) of 3 independent
experiments. (E) Freshly isolated human monocytes were cultured for 48 h in the presence or absence of diclofenac, stained with Annexin-V-FITC/7-
AAD and analysed by flow cytometry. Results represent the mean +/2 standard deviation of percentage of viable cells (Annexin-V-FITC/7-AAD
negative cells) and dead cells (Annexin-V-FITC/7-AAD positive cells) of 3 independent experiments.
doi:10.1371/journal.pone.0066987.g002
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B16 and U937. Compared to control, significantly lower

extracellular lactate levels were observed for MelIm at diclofenac

concentrations as low as 0.1 mM at 24 h and 48 h, respectively

(Fig. 4B). In contrast, neither aspirin (ASA) nor NS-398 (Fig. 4C)

affected extracellular lactate levels. Accordingly, B16 and U937

also yielded lower levels of extracellular lactate (Fig. 4D and 4E).

The effect of diclofenac was not due to a reduction in cell number,

as the classical chemotherapeutic drug gemcitabine inhibited

proliferation but not lactate secretion (Fig. S1A/B).

Diclofenac diminished glucose uptake and thereby substrate

delivery for mitochondrial respiration. Moreover, it was shown

that diclofenac inhibits pyruvate uptake into mitochondria.

Therefore, we measured mitochondrial respiration by high-

resolution respirometry at diclofenac concentrations that sufficed

to diminish glucose uptake but did not exhibit effects on

proliferation proliferation Immediately after addition of diclofenac

we detected an increase in basal respiration (ROUTINE) in both

cell lines (MelIm 54%, U937 39%). In U937 the increase in

respiration was the result of decoupling (detected by an equally

increase in oligomycin inhibited respiration) and was reversible. In

MelIm elevated respiratory activity was a combination of

increased activity coupled to ATP production and decoupling.

After 24 h of diclofenac treatment ROUTINE respiration and

oligomycin inhibited respiration were significantly suppressed in

U937 at 0.1 mM diclofenac and in MelIm at 0.2 mM diclofenac

(p,0.05, Fig. 4F). The capacity of the electron transfer system

showed the same tendency, but was statistically not significant.

Diclofenac blocks lactate transport and leads to
intracellular lactate accumulation
Next, we analyzed the cause of reduced extracellular lactate

levels upon treatment with diclofenac. Lactate is transported out of

the cell by monocarboxylate transporters (MCTs) that rely on a

concentration gradient of lactate and protons between the

extracellular and the intracellular compartment [36]. NSAIDs

with monocarboxylic acid structures such as diclofenac have been

reported to inhibit MCTs [19;37;38]. Quantitative RT-PCR

analysis revealed a constitutive expression of MCT1, glucose

transporter-1 (GLUT1) and lactate dehydrogenase A (LDHA) in

MelIm. The expression was upregulated after 24 h, which was

significantly prevented by diclofenac treatment (Fig. S3A-C). We

hypothesized, that diclofenac blocked efflux of lactate. Indeed, gas

chromatography-mass spectrometry analysis revealed that starting

from 0.1 mM, diclofenac is significantly taken up by MelIm and

U937 after 1 h (Fig. 5A and S4A), which was paralleled by a

marked intracellular accumulation of lactate (Fig. 5B and S4B).

MCT inhibition blocks lactate transport but has no effect
on MYC expression
The small-molecule competitive inhibitor of MCT, a-cyano-4-

hydroxycinnamic acid (CHCA), showed effects comparable to

diclofenac. As expected, the inhibitor blocked lactate transport as

shown by lowered extracellular levels of lactate upon incubation of

MelIm with CHCA (Fig. 5C) and led to an intracellular

accumulation of lactate (Fig. 5D). Concomitantly, glucose uptake

was inhibited (Fig. 5E). In addition, comparable to diclofenac,

Figure 3. In vitro and in vivo effects of diclofenac on proliferation of B16 murine melanoma cells. (A) Proliferation of B16 cells was
determined in the presence or absence of diclofenac after 24 h incubation. Results represent the mean +/2 standard deviation of 4 independent
experiments. (B) MYC expression was determined in B16 after incubation with diclofenac for 2 h and 24 h by western blotting. (C/D) For the analysis
of in vivo effects of diclofenac on tumor growth, 16105 B16 cells were injected subcutaneously into C57/BL6 mice. At a tumor volume of 50–80 mm3

(day 14), mice received diclofenac (15 mg/kg, n = 7) or saline (control, n = 7) via intraperitoneal injection every other day. The tumor weight was
determined on day 23 after termination of the experiment (D). Statistical analysis was performed with unpaired, two-tailed Student’s t-test,
***p,0.001; **p,0.01; *p,0.05.
doi:10.1371/journal.pone.0066987.g003
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administration of CHCA at 6 mM and higher caused a strong

inhibition of tumor cell proliferation (Fig. 5F). To test whether the

inhibition of MCTs and the resulting accumulation of lactate were

responsible for the regulation of MYC, we analysed MYC

expression after incubation of MelIm with CHCA. In contrast to

diclofenac, CHCA did not inhibit MYC expression (Fig 5G).

Diclofenac blocks tumor cell proliferation via MYC-
dependent and -independent mechanisms
Our data indicate two independent effects of diclofenac on

tumor cells that result in the inhibition of proliferation. To

distinguish the relevance of MYC suppression and block of lactate

transport on proliferation, we used human P493-6 B-cells, which

are derived from human peripheral blood B cells immortalized by

an Epstein–Barr viral (EBV) genome that is complemented with

an EBV nuclear antigen-estrogen receptor (EBNA2-ER) fusion

protein and a tetracycline-repressible MYC transgene [30]. In the

absence of tetracycline and estradiol, ectopic MYC is induced at

high levels, whereas with tetracycline only very low levels of MYC

are expressed [39]. Concordingly, in the presence of tetracycline

proliferation was about 2.5-fold lower than in its absence (Fig. 6A).

Upon addition of increasing concentrations of diclofenac, prolif-

eration decreased increasingly, albeit much more significantly in

MYC overexpressing cells. In the absence of detectable MYC

expression, lactate secretion was about 4-fold lower than in MYC

overexpressing cells (Fig. 6B). Increasing concentrations of

diclofenac inhibited significantly lactate secretion in MYC

overexpressing cells, with extracellular levels of lactate approach-

Figure 4. Diclofenac decreases glucose consumption and modulates lactate accumulation. (A) Glucose levels were determined in MelIm
supernatants after 24 h and 48 h of incubation with diclofenac. ‘‘Medium’’ represents the glucose concentration in the culture medium without cells.
Lactate was determined in cell culture supernatants of MelIm after 24 h and 48 h with or without diclofenac,(B) ASA or NS-398 (C). Lactate was
determined in cell culture supernatants of B16 after 48 h (D). Lactate levels were determined in supernatants of U937 (E) after incubation with
increasing concentrations of diclofenac for 48 h. Results represent the mean +/2 standard deviation of 3 independent samples. Diclofenac reduced
mitochondrial activity in both cell lines after 24 h (F). A reduction of about 40% was observed in MelIm at a concentration of 0.2 mM and in U937 at a
concentration of 0.1 mM. Basal mitochondrial activity (ROUTINE), oligomycin inhibited respiration and capacity of electron transfer system (complex I
to IV) were diminished by diclofenac. Results represent the mean+/2SD of 3 and 5 independent experiments, respectively, for MelIm and U937.
doi:10.1371/journal.pone.0066987.g004
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ing those observed in cells treated with tetracycline. As observed

for MelIm, B16, and U937 cells, diclofenac reduced MYC protein

levels in MYC overexpressing P493-6 cells after 2 h and 24 h

(Fig. 6C). Further investigations will clarify whether this effect is

based on modulation of protein stability or transcriptional

regulation. These experiments confirm the ability of diclofenac

to inhibit lactate secretion and MYC expression at concentrations

of 0.1 mM and about 0.4 mM, respectively, with both effects

contributing to reduced proliferation.

Discussion

A hallmark of many cancer cells is an increased reliance on

glycolytic metabolism and the production of large amounts of

lactate regardless of the availability of oxygen. This so-called

Figure 5. Blocking lactate transport by CHCA inhibits proliferation and lactate secretion in MelIm, but has no effect on MYC
expression. The intracellular concentration of diclofenac in the cell lysates was determined after 1 h incubation (A). Intracellular lactate levels were
determined in cell lysates of MelIm after 1 h incubation with or without diclofenac (B). Results represent the mean +/2 standard deviation of 3
independent samples. Lactate was determined in cell culture supernatants of MelIm treated for 48 h with CHCA or diclofenac (C). Results represent
the mean +/2 standard deviation of 4 independent samples. Intracellular lactate levels were determined in cell lysates of MelIm after 1-h incubation
with CHCA (D). Glucose levels were determined in MelIm supernatants after 24 h incubation with CHCA (E). Proliferation of MelIm was determined
after 24 h in the presence or absence of CHCA (F). Results represent the mean +/2 standard deviation of 4 independent samples. MYC protein
expression was analyzed in cell lysates of MelIm after 24 h incubation with CHCA by western blotting (G). One representative blot is shown.
doi:10.1371/journal.pone.0066987.g005
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‘‘Warburg effect’’ can be the result of biochemical and genetic

alterations [40] such as HIF1 stabilization [41], loss of p53 [42] or

a target gene of p53 [43], mutation of KRAS/BRAF [44] or

overexpression of MYC [5]. Drugs targeting key control points of

glycolysis are subject of intense research as promising anticancer

agents. However, no drugs other than DCA and the synthetic

glucocorticoids dexamethasone and prednisolone are available as

glycolytic inhibitors for clinical use. Glucocorticoids are also potent

MYC inhibitors, but a plethora of deleterious side effects impede

their prolonged use. NSAIDs represent the most commonly used

class of medication worldwide. In the light of our findings,

diclofenac may represent an attractive novel inhibitor of glycolysis

and MYC, which could easily be integrated in clinical trials with

likely important implications in cancer therapy. However, NSAID

use can be associated with adverse side effects, e.g. liver and kidney

injury as well as gastrointestinal bleeding. Although the incidence

is low, it will be important to determine the risk of diclofenac

treatment in relation to its possible benefit [45–47].

It is well-known that NSAIDs affect tumor cell proliferation in

COX-dependent and independent ways. However, little is known

about their effect on glucose metabolism. We found a significant

decrease in glucose consumption and lactate secretion in different

tumor cell lines upon treatment with diclofenac. However, these

effects seemed not to be related to the classical COX inhibition, as

ASA had no impact on glucose metabolism and proliferation.

Others reported a reduction in lactate secretion in MCF-7 breast

cancer cells by ASA, albeit at a ten-fold higher concentration [48].

The anti-proliferative effect, however, was not responsible for the

decreased glucose consumption and lactate secretion, as the

classical chemotherapeutic drug gemcitabine strongly decreased

proliferation without any effect on lactate secretion.

Besides the in vitro effects on melanoma and histiocytic

lymphoma cell lines, we also observed a significant reduction in

tumor growth in a syngeneic melanoma mouse model. Effects of

diclofenac on tumor growth had been described before in a

murine fibrosarcoma model, two xenograft models with human

neuroblastoma cells and lung carcinoma cells, and in a rat model

of early colon carcinogenesis [49–52]. However, the authors

attributed the effect of diclofenac primarily to the regulation of

lipid metabolism and COX inhibition. In the light of our results,

diclofenac does not only target lipid metabolism but also glucose

metabolism in tumor cells leading to reduced tumor growth as

demonstrated recently in a mouse glioma model [53]. In this

model, diclofenac had a significant effect not only on tumor cells,

but also on tumor stromal cells, e.g. myeloid and lymphoid cells.

This is in line with reports by Mayorek et al. who studied the effect

of diclofenac in a murine model of pancreatic cancer. Here, the

effect on tumor growth was linked to downregulation of VEGF

and angiogenesis in the tumor [54]. As lactate is known to

stimulate VEGF production in macrophages, a reduction of

intratumoral lactate levels by diclofenac could contribute to the

diminished VEGF production and angiogenesis in this model

[54;55]. Furthermore, tumor-derived lactate is not only a

modulator of stromal cells in the tumor environment, but it can

also serve as a carbon source for fibroblasts and aerobic tumor

cells [56;57]. Therefore, intratumoral lactate levels influence

tumor growth via several pathways [58].

We identified two potential mechanisms underlying the

suppression of proliferation and glucose metabolism by diclofenac.

First, diclofenac inhibited lactate efflux and, consequently, caused

an intracellular accumulation of lactate. Lactate is transported via

proton-coupled monocarboxylate transporters (MCTs), that form

Figure 6. Contribution of MYC to suppression of proliferation by diclofenac. P493-6 cells were incubated first for 24 h in the presence of
tetracycline to suppress MYC expression. Cells were then treated with diclofenac for 24 h. Proliferation (A) was determined by 3[H]-thymidine
incorporation, while lactate (B) was determined in cell culture supernatants. Results represent the mean +/2 standard deviation of 3 independent
experiments. MYC protein expression was analyzed in cell lysates of P493-6 with or without tetracycline treatment for 24 h (C). Cells were then
treated with diclofenac for an additional 2 h and 24 h, respectively, and MYC expression was determined in cell lysates by western blotting. One
representative western blot is shown.
doi:10.1371/journal.pone.0066987.g006
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heterodimeric complexes with the glycoprotein CD147 [36;59].

Our data suggest, that diclofenac may target this transport system.

This is in line with reports from Emoto and Vellonen on NSAID-

mediated inhibition of lactate transport in a trophoblast cell line

and corneal epithelial cell lines [19;38]. Accordingly, application

of the competitive MCT inhibitor CHCA could reproduce the

effect of diclofenac, inhibiting both lactate secretion and prolifer-

ation. It is known, that CHCA not only targets MCT in the

plasma membrane but also in the mitochondrial membrane with

possible implications on mitochondrial functions [60]. In line with

these findings, we also detected a transient increased respiration

mainly due to uncoupling after short-term incubation with

diclofenac followed by a decreased respiration after 24 h.

Aspirin/ASA and other NSAIDs are known to uncouple

mitochondrial energy metabolism [26]. However, as diclofenac

and ASA both target mitochondria in a similar fashion but only

diclofenac affected MYC expression, we assume that the

regulation of oxidative metabolism had no impact on MYC

expression in our model system. However, the reduction in

mitochondrial activity might contribute to the anti-proliferative

effect of diclofenac on tumor cells and support the induction of

apoptosis as has been shown for T-cell lymphoma cells [27;61].

Interestingly, Pouysségur and coworkers recently showed, that

combined silencing of MTC1 and MCT4 significantly reduced

glycolytic flux and tumor growth in vivo [18]. These results clearly

show that lactate efflux, glycolysis and tumor growth are closely

related. Similar results were described by Mathupala et al., who

showed that downregulation of MCTs by small hairpin RNA

inhibited glycolysis and induced cell death in a glioma cell line

[17]. In addition, silencing of CD147, an accessory subunit of

MCT1/4, also inhibited malignant melanoma growth [62].

Besides the rapid block of lactate transport, we found a lack of

upregulation of MCT1 mRNA that might have contributed to the

described effect. But changes in gene transcription often do not

correlate with changes in protein levels or enzyme activity and we

cannot exclude that despite a significant downregulation of MCT1

mRNA levels, protein levels are not altered. Furthermore,

expression of GLUT1 and LDHA was significantly decreased by

diclofenac in a concentration-dependent manner indicating that

diclofenac not only targeted lactate transport but also exerted a

more global effect on glycolysis. This effect was already detectable

at very low concentrations of about 0.1 mM diclofenac. However,

in MelIm MYC expression was significantly decreased only at

higher concentrations of about 0.8 mM diclofenac. Therefore,

additional factors might be involved in the transcriptional

regulation of LDHA and GLUT1 (summarized in Table 1). High

concentrations of diclofenac strongly suppressed MYC protein

expression and promoter activity. This effect was not due to COX

inhibition, as aspirin did not suppress MYC expression. Further-

more, the inhibition of lactate transport seems not to be involved

in MYC regulation because CHCA did not change MYC

expression. In addition, intracellular lactate accumulation was

comparable for 0.2 mM and 0.8 mM diclofenac but MYC

regulation was significantly different. Downregulation of MYC

by diclofenac correlated with tumor cell proliferation. However,

induction of cell death was only detected at 0.8 mM diclofenac, a

level that completely suppressed MYC. At this high concentration,

diclofenac also completely suppressed MYC in the MYC

overexpressing cell line P493-6 indicating not only a transcrip-

tional effect but also an impact on protein stability. As inhibition of

proliferation was found in MYC overexpressing and non-

expressing P493-6, we concluded that diclofenac targeted prolif-

eration via both MYC-dependent and independent mechanisms.

MYC overexpressing P493-6 showed higher lactate secretion than

MYC non-expressing P493-6 and lactate levels were decreased in

both cell lines. This again indicated two independent mechanisms

of diclofenac.

Alterations in tumor energy metabolism exert significant effects

on tumor growth and metastasis and the use of glycolysis inhibitors

alone or in combination with chemotherapeutic drugs has been

suggested [63]. Furthermore, the rationale of targeting MYC has

been clearly demonstrated by Savino and Soucek [64;65], who

demonstrated that systemic Myc inhibition by Omomyc, a

dominant negative form of Myc, leads to a rapid regression of

established tumors [64]. Our findings, that diclofenac inhibits both

glucose metabolism and MYC expression, make this well

established drug an attractive candidate for inclusion in clinical

trials with likely important implications for cancer therapy.
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Figure S1 Gemcitabine inhibits proliferation and lac-
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expression as a function of diclofenac concentration in
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(TIF)

Figre S3 Diclofenac inhibits MCT1, GLUT1 and LDHA
mRNA expression in Mellm.
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Glucose
consumption

n.s. n.s. Q***/** (0.1)Q** (0.1)
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Q*** (0.4)

MYC protein Q*(0.8) n.d. Q*(0.8) Q*(0.4)

Cell death n.d. n.d. q*(0.8) q*/** (0.1)
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