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Abstract
Despite all efforts made to develop predictive biomarkers for antiangiogenic therapies, no

unambiguous markers have been identified so far. This is due to among others the lack of

standardized tests. This study presents an improved microvessel density quantification

method in tumor tissue based on stereological principles and using whole-slide images.

Vessels in tissue sections of different cancer types were stained for CD31 by an automated

and validated immunohistochemical staining method. The stained slides were digitized with

a digital slide scanner. Systematic, uniform, random sampling of the regions of interest on

the whole-slide images was performed semi-automatically with the previously published

applications AutoTag and AutoSnap. Subsequently, an unbiased counting grid was com-

bined with the images generated with these scripts. Up to six independent observers

counted microvessels in up to four cancer types: colorectal carcinoma, glioblastoma multi-

forme, ovarian carcinoma and renal cell carcinoma. At first, inter-observer variability was

found to be unacceptable. However, after a series of consensus training sessions and

interim statistical analysis, counting rules were modified and inter-observer concordance

improved considerably. Every CD31-positive object was counted, with exclusion of sus-

pected CD31-positive monocytes, macrophages and tumor cells. Furthermore, if intercon-

nected, stained objects were considered a single vessel. Ten regions of interest were

sufficient for accurate microvessel density measurements. Intra-observer and inter-

observer variability were low (intraclass correlation coefficient > 0.7) if the observers were

adequately trained.
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Introduction
Tumor growth can only be achieved when sufficient blood vessels are present in the tissue. Two
major processes can be responsible for the blood supply: sprouting angiogenesis or, alterna-
tively, co-option of existing blood vessels of the host [1]. Angiogenesis is triggered by vascular
endothelial growth factor (VEGFA), which is produced in the tumor [2]. The molecular mecha-
nisms of vascular co-option, on the other hand, have not been fully elucidated yet. The most fre-
quently used technique to quantify the result of angiogenesis or vascular co-option in a tumor
section is based on measuring the microvessel density, i.e. counting the microvessels at a high
magnification (200x—400x) in a predefined number of fields [3–6]. In several cancer types,
microvessel density has been quantified (e.g. in colorectal carcinoma (CRC), glioblastoma multi-
forme (GBM), ovarian carcinoma (OC) and renal cell carcinoma (RCC) (Table 1)) and found to
be prognostic for survival [7]. However, not the same unit of measurement was used (e.g. micro-
vessels per mm2 and microvessels per 200x field), data were highly variable and therefore diffi-
cult to compare, as illustrated by mean microvessel density in CRC ranging from 6 to 351 across
several studies. In order to visualize microvessels, tumor sections have been stained immunohis-
tochemically for one or multiple pan-endothelial markers, such as CD31 [8–10], CD34 [10–12],
vonWillebrand factor [10,12,13], endoglin [10], and/or coagulation factor VIII [10]. Hitherto,
microvessel counting has mostly been performed in a fraction of the total tissue area determined
by a sampling method such as the vascular hotspot method (Weidner’s method). This method
involves the selection of one to five areas with the highest density of microvessels (hotspots) at
low magnification, and the counting of vessels in these areas at high magnification [14,15] by
computerized image analysis systems [16,17] or by applying a Chalkley grid [18]. In a previous
study, we used a systematic uniform random sampling (SURS) method to avoid observer-
dependent sampling variation and selected a limited number of at least five regions of interest
(ROIs) on each whole-slide image (WSI) [19]. In these ROIs two parameters were measured by
using an unbiased array of test points (grid) separated by constant distances: the number of ves-
sel profiles per area (QA or microvessel density) and the number of grid points overlapping with
vessels per area (AA) [20]. This sampling and counting method had previously been compared
with other schemes, such as the hotspot method [21]. At the intra-observer level, the methods
have variations of the same magnitude (coefficient of variation (CV) around 20%) [21]. At the
inter-observer level, the SURS estimate of QA from the whole tumor section and the Chalkley
method had the lowest variation (CV around 21%) with a small contribution by observers (CV
8% to 9%) [21]. Although the SURS estimate appeared the most reliable method to pick up
microvessel density differences between study subjects [21,22], a major drawback is that it is
labor- and time-intensive, limiting its use [21]. SURS has only been extensively studied in breast
cancer [10,21,23], without applying digital tools to automate the process and without a thorough
validation that is necessary for clinical use [5,24]. Accordingly, we developed and validated a
method to measure microvessel density by using computer-assisted manual SURS of WSIs of
cancer tissue, named AutoTag and AutoSnap, which reduces workload and guarantees full
traceability [19]. In the present study, we investigated the intra- and inter-observer variability of
this method in CD31-stained tissue sections of four different cancer types and in samples that
have different spatial distributions of blood vessels.

Materials and Methods

Materials
WSIs were made of existing sections stained for CD31 from our database for inclusion in this
study. Samples were coded to protect the privacy of patients. All samples were obtained in
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Table 1. Results of different vessel countingmethods in four cancer types. Studies differ in staining of the vessels, number of ROIs, magnification,
number of observers and study size.

Cancer Method Stain ROIs Magn Obs mean ± SD MVD med MVD n Ref

CRC C CD34 4 200 2 NA 4 30 [49]

CRC C CD34 3 200 1–2 NA 8 235 [50]

CRC R CD31 10 200 1 71 ± 22 NA 242 [51]

CRC R CD31 5 320 1 18 ± 12 15 106 [52]

CRC W CD31 3 200 2 114 ± 56 NA 210 [7]

CRC W CD31 3 200 1–2 115 ± 39 NA 178 [53]

CRC W VWF 5 200 2 21 ± 12 NA 132 [54]

CRC W CD34 3 200 1 76 NA 114 [55]

CRC W CD31 5 320 1 70 ± 40 59 106 [52]

CRC W CD31 3 400 2 19 ± 8 NA 87 [56]

CRC W CD34 3 400 1 32 ± 15 28 60 [57]

CRC W CD34 3 200 1–2 NA 28–33 56 [58]

CRC W CD31 5 100 1 35 ± 4 30 40 [59]

CRC W CD31 5 200 1 NA 75 116 [60]

CRC W+CIAS CD105 2 200 1 6± 5 5 15 [61]

CRC W+CIAS CD31 3–4 400 2 351 ± 40 NA 4 [16]

GBM C CD34 5 200 1 5 NA 62 [18]

GBM R CD34 5 200 1 NA 56 62 [18]

GBM W CD34 1 200 3 NA 77 97 [62]

GBM W CD34 1 200 1 NA 67 233 [62]

GBM W CD34 1 200 3 NA 84 114 [63]

GBM W VWF 3 200 2 33 ± 36 NA 55 [64]

GBM W CD34 3 200 1 84 NA 54 [65]

GBM W CD105 5 200 2 NA 31 40 [66]

GBM W collagen IV 1 250 1 200 NA 20 [67]

GBM W VWF 3 400 1 21 ± 12 NA 16 [68]

GBM W CD31 10 100 2 >100 NA 12 [69]

RCC R CD31/34 10 200 2–4 53 NA 70 [70]

RCC W CD31 2 250 1 NA 10 208 [9]

RCC W CD34 3 200 1 102 ± 23 NA 128 [71]

RCC W F8 1 400 1 741 ± 394 NA 97 [72]

RCC W CD34 5 400 2 98 ± 63 NA 70 [73]

RCC W CD31 8 400 1 NA 25 62 [74]

RCC W CD34 5 200 2 49 ± 20 NA 46 [75]

RCC W CD34 5 200 2 142 NA 36 [76]

RCC W+CIAS CD34 5 200 1 NA 124 87 [77]

RCC W+CIAS CD31 5 200 1 278 ± 62 NA 18 [17]

OC NA CD31 NA NA NA 14 ± 7 12 94 [78]

OC R+CIAS VWF max NA 1 NA 39 235 [79]

OC W CD31 3 200 1 21 NA 190 [80]

OC W CD34 4 200 1 NA 21 40 [81]

OC W CD34 6 200 2 NA 12 113 [82]

OC W CD34 5 200 1 62 ± 22 NA 62 [83]

OC W CD34 5 400 2 5 ± 1 NA 91 [84]

OC W CD34 3 200 2 NA 30 213 [85]

OC W CD31 3 400 1 NA 14 41 [86]

(Continued)
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accordance with the Helsinki Declaration of 1964 and the study was approved by the local eth-
ics committee (Ethisch Comité UZA/UA). For this type of study formal consent is not
required. The sections were already stained using the NCL-CD31-1A10 antibody (Leica Bio-
systems, Diegem, Belgium) on a Benchmark1 XT platform (Ventana, Basel, Schweiz). The
WSIs were created with a Pannoramic SCAN digital slide scanner (3DHISTECH, Budapest,
Hungary) using a Zeiss plan-apochromatic objective (magnification: 20x, numerical aperture:
0.8) and a Hitachi (HV-F22CL) 3CCD progressive scan color camera (resolution: 0.2325 μm/
pixel). JPEG image encoding with quality factor 80 and an interpolated focus distance of 15
with stitching in the scan options were chosen. For every slide a specific scan profile was con-
figured and holes in the scan area were filled to allow for correct detection of tissue and in-
focus images of the tissue. Scanned images were examined in Pannoramic Viewer (3DHIS-
TECH) to check for image quality and to confirm that the whole tissue section was captured.
The immunohistochemistry staining and imaging were carried out at HistoGeneX NV (Ant-
werp, Belgium), a Clinical Laboratory Improvement Amendments-certified laboratory that is
accredited by CAP and the Belgian Accreditation Organization (ISO 15189). Four types of
cancers were selected: CRC (19 patients), GBM (20 patients), OC (21 patients), and RCC (22
patients). Only samples with an area that could fit more than nine assessable ROIs were con-
sidered for selection. Finally, a set of samples was selected based on a representation of both
low and high microvessel density heterogeneity in the study group. Two observers (KM and
VC) trained and experienced in counting microvessels performed initial measurements. Four
extra observers (ES, PV, WW, YW), two of which did not have previous experience in vessel
counting (YW, WW) and two pathologists (PV, WW), were trained (30 minutes) and per-
formed follow-up measurements on the same set of samples to assess inter-observer variabil-
ity. SURS of 15 ROIs in the WSIs was done twice with Pannoramic Viewer (3DHISTECH,
Budapest, Hungary) by one observer (KM) using a 20x magnification (Fig 1) assisted by the
AutoTag and AutoSnap applications [19]. The second group of ROIs did not overlap with the
ROIs from the first group. The first group of ROIs was used for assessing the intra- and inter-
observer variability, while the second group was used for the inter-ROI variability. Guided by
a pathology report of the closest hematoxylin and eosin-stained section, regions were taken in
viable tumor tissue according to the SURS principle, but regions with abundant necrosis,
inflammation, or ulceration were discarded. All images were analyzed on identical, color-cali-
brated displays. To assess intra-observer variability, vessels were counted at two different time
points (with an interval period of one month) to allow washout of the visual memory [25]. A
web-based viewer (Pathomation BVBA, Antwerp, Belgium) was used to guarantee traceability
when analyzing the grid-combined images of the ROIs. Pathomation software allows combin-
ing data forms and WSI in the same viewport assuring that measurement results and the sam-
ple IDs stay unequivocally linked.

Table 1. (Continued)

Cancer Method Stain ROIs Magn Obs mean ± SD MVD med MVD n Ref

OC W+CIAS CD31 4 NA 1 35 ± 13 NA 46 [87]

OC W+CIAS VWF max NA 1 NA 88 235 [79]

CRC, colorectal cancer; GBM, glioblastoma multiforme; OC, ovarian cancer; RCC, renal cell cancer; C, Chalkley; CIAS, computer image analysis system; R,

Random; W, Weidner; CD, cluster of differentiation; F8, coagulation factor VIII; VWF, von Willebrand factor; max, maximum possible; NA, not available;

Magn, magnification used; Obs, number of observers; SD, standard deviation; MVD, microvessel density; med, median; Ref, reference number

doi:10.1371/journal.pone.0161496.t001
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Stereological point counting
All grid points overlapping with vessels (V) were counted, regardless of whether the microves-
sels crossed the left or bottom outer grid lines (Fig 1). A grid point, which was designated by
two perpendicular cross-lines, was regarded as overlapping a microvessel when it fell on an
endothelial cell or a vessel lumen (red arrows versus shaded red arrow in Fig 1). When, excep-
tionally, only a single endothelial cell of a larger vessel was stained, all other endothelial cells
that lined this vessel were nonetheless counted upon intersection. To establish a reference area,
all grid points intersecting with tissue (Vref) were counted. Small necrotic zones within tumor
structures or glandular lumens were considered as cancer tissue. Only if more than 75% of the
grid area (more than 60 out of the 81 grid points) covered tissue, the ROI was analyzed. The
unbiased estimation of the microvessel areal fraction was calculated for each sample according

to: AA ¼
P

i
ViP

i
Vi;ref

; with an i value from 1 to 15 ROIs, expressed as a percentage of microvessels

per area, with Vi the number of grid points overlapping with vessels in ROI i and Vi,ref the
number of grid points hitting tissue in ROI i [19].

Microvessel counting
Besides the stereological point counting, the microvessel density (QA) is captured by our
method. The outer borders of the superimposed grid (Fig 1) [19] delineated the counting

Fig 1. Example of a region of interest. It was captured in Pannoramic Viewer (3DHISTECH, Budapest,
Hungary) and combined with a digital 81-points grid in Adobe Photoshop CS4. CD31-stained vessel profiles
in the grid were counted as N (green arrow). Vessel profiles that cross the virtually extended left or lower line
of the grid were not counted (shaded green arrow). The grid points that hit a CD31-stained vascular profile
were counted as V (red arrow). Scale bar represents 100 μm.

doi:10.1371/journal.pone.0161496.g001
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chamber [20]. Vascular structures crossing the virtually extended left or bottom lines of the
grid were not counted. Regardless of staining, the others were counted (shaded green arrows in
Fig 1) [20]. The initial counting rules only took into account stained structures with a clear
lumen or without a lumen but larger than one tumor cell. Accordingly, very small cross-sec-
tioned capillaries without a clear lumen were not counted. CD31 staining of suspected myofi-
broblast-like cells or of cells not belonging to a blood vessel was also excluded for counting.
Because of high inter-observer variability using these counting rules, the following, adapted
counting rules were defined in which every CD31-positive object, no matter how small, should
be counted, except suspected CD31-positive monocytes, macrophages and tumor cells. Fur-
thermore, if CD31-positive objects were connected, they were considered a single object, while
absence of staining defined two or more separate objects. microvessel density was calculated

for each sample according to: QA ¼
P

i
NiP

i
Vi;ref

, with an i value from 1 to 15 ROIs, expressed as

number of microvessels per area, with Ni the number of counted vessels in ROI i and Vi,ref the
number of grid points hitting tissue in ROI i [19].

Statistical analysis
Heterogeneity of microvessel distribution was determined for every cancer type by calculating
the difference between the minimum and maximum number of counted microvessels per ROI
(N) in one sample. Heterogeneity was considered low or high when this difference was respec-
tively below or above the median of the calculated differences for all the samples in the database
of that cancer type. The average of two repeated measurements for each of the two observers
(KM, VC) was used for the calculation of inter-observer variability. A script was written in the
statistical package R (version 3.2) to perform the calculations and plotting [26]. The intraclass
correlation coefficient (ICC) was calculated by using the icc(ratings, . . .) function from the irr
package. A two-way model and type agreement was chosen. The unit of analysis for N and V
was ‘unit’, whereas for QA and AA it was ‘average’. The Kruskal-Wallis Rank Sum Test was car-
ried out with the kruskal.test(formula, data, . . .) function from the stats package. XY plots of
the counts with prediction intervals, Bland-Altman plots and Tukey boxplots were also con-
structed. Two-way ANOVA and paired Student t-test were performed in R. The minimum
number of ROIs required for analysis of microvessel density was calculated using random sam-
pling with replacement, also known as bootstrapping [19].

Results

Spatial Distribution of the Blood Vessels
The mean microvessel density (QA) and its standard deviation for the four cancer types was:
112 ± 50 (RCC), 76 ± 21 (CRC), 65 ± 30 (GBM), and 43 ± 13 (OC) vessels per mm2. The mean
areal fraction of the vessels (AA) and its standard deviation for the four cancer types was:
11.92% ± 6.74% (RCC), 3.87% ± 1.18% (CRC), 4.70% ± 2.38% (GBM), and 2.99% ± 1.84%
(OC). The median heterogeneity and its standard deviation for the four cancer types was:
31 ± 20 (RCC), 21 ± 8 (CRC), 22 ± 11 (GBM), 21 ± 6 (OC). The calculated heterogeneities of
the spatial distribution of the microvessels were also visible in the images of the tumor tissue
sections from the two groups (Fig 2). For example, in GBM, hotspots and/or ‘garlands’ could
be more readily recognized in strongly heterogeneous samples compared to weakly heteroge-
neous samples (Fig 2A–2D). In RCC, highly vascularized regions can be uniformly distributed
or are heterogeneously present across the tumor area (Fig 2E–2H).
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Fig 2. Histological heterogeneity of CD31-stained blood vessels in glioblastomamultiforme (a-d) and
renal cell carcinoma (e-h). (a-b) QA = 15 vessels per mm2, AA = 1.56%, (c-d) QA = 77 vessels per mm2, AA =
3.70%, (e-f) QA = 183 vessels per mm2, AA = 13.10%, (g-h) QA = 81 vessels per mm2, AA = 6.17%. Low (a, b,
e, f) heterogeneous samples showed a uniform distribution of vessel profiles as compared to high (c, d, g, h)
heterogeneous samples. In glioblastoma multiforme, hotspots and garlands (arrows) were more easily
recognized in heterogeneous than in homogeneous samples. Scale bar represents 500 μm (a, c, e, g) or
100 μm (b, d, f, h)

doi:10.1371/journal.pone.0161496.g002
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Inter-ROI variability
Comparing QA and AA for two groups of non-overlapping ROIs (n = 15) in the same sample
(n = 6) revealed that the choice of locations of the ROIs only affected AA. The calculated ICCs
for QA were always above or equal to 0.8 (CRC: 0.9, GBM: 1.0, OC: 1.0, and RCC: 0.8), whereas
the ICCs for AA were significantly lower (CRC: 0.6, GBM: 0.6, OC: 0.7, and RCC: 0.7)
(p = 0.01; paired Student t-test). The point-counting (AA) was sensitive to the choice of loca-
tions of the ROIs, whereas the profile-counting (QA) was more robust with regard to the choice
of locations.

Minimum number of ROIs for accurate microvessel density
measurements
A plot from a bootstrap analysis showed higher variation at lower number of ROIs compared
to higher number of ROIs (Fig 3) [19]. Creating these graphs for 19 colorectal carcinomas, 22
renal cell carcinomas, 21 glioblastomas, and 21 ovarian carcinomas, counting ten ROIs appear
to be sufficient for accurate microvessel density measurements [19]. Highly heterogeneous
samples require more ROIs compared to samples with low heterogeneity (Fig 4). A relationship
with heterogeneity was established by two-way ANOVA (CRC: p< 0.05; GBM: p< 0.001;
OC: p< 0.01; RCC: p< 0.001). Moreover, there was a relationship with the observer (CRC:
p< 0.001; GBM: p< 0.05; OC: p> 0.1; RCC: p< 0.05), implying that the required number of
ROIs can differ between observers. On average, the minimum number of ROIs required was 5
for OCs, 7 for CRC and GBM, and 9 for RCC.

Intra-observer variability
All ICC-values for the four parameters (N and QA, V and AA), in the four cancer types and for
both observers (KM, VC) were higher than 0.7 (Table 2), which is generally considered the
minimal acceptable reliability [27]. Importantly, 81% of ICC-values were higher than 0.9,
which is considered excellent concordance [27]. The ICC-values for CRC were lowest, those
for GBM highest. The parameters QA and AA showed lower intra-observer variability com-
pared to N and V (Fig 5).

Inter-observer variability
Inter-observer variability ICC-values for the four parameters (N and QA, V and AA) did not
exceed 0.7 in all four cancer types (Fig 5, Table 3). The variability of N, QA, and AA was large in
the CRC samples (Fig 6), which might be due to a large systematic bias between the observers.
Therefore, a third trained and experienced observer (ES) quantified the samples. The ICC-val-
ues for the variability between observer two and three were better (0.9, 0.8, 0.9, and 0.8 for
respectively N, QA, V, and AA), but this was not the case between observer one and two, and
observer one and three. Therefore, a series of consensus training sessions (two hours in total)
was held in which the most discrepant cases were discussed. Accordingly, the following new
counting rules were proposed: every CD31-positive object, no matter how small, should be
counted, except suspected CD31-positive monocytes, macrophages and tumor cells. Identifica-
tion of these cell types is not straightforward. For example, very dense inflammation prohibits
accurate counting. Furthermore, if CD31-positive objects were connected, they were consid-
ered a single object, while absence of staining defined two or more separate objects. Using these
new counting rules, three different observers (KM, PV, YW) recounted the CRC samples with
the strongly discrepant inter-observer counts when the initial counting rules were used and the
OC samples. A fourth observer (WW) counted only the OC samples. Both pathologists (PV,
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WW) recommended the exclusion of one sample from each set (OC1 and CRC7) as there were
too many CD31-positive inflammatory cells. The inter-observer variability ICC-values result-
ing from the new counting rules were all greater than 0.7. Importantly, more than half of ICC-
values exceeded 0.8 (Table 4). The parameters QA and AA showed lower inter-observer vari-
ability compared to N and V.

Discussion
Manual ROI sampling and blood vessel counting is a time consuming and labor intensive pro-
cess, partly due to the amount of effort required to find valid ROIs under the microscope.

Fig 3. Distribution of 1000 bootstrap results.Here the results for CRC sample 19 is displayed. These were calculated based
on the counting by the second observer during the second round of counting. Tukey boxplots were constructed for amounts of
regions of interest evaluated. Ten regions are sufficient for accurate microvessel density calculation.

doi:10.1371/journal.pone.0161496.g003

AMethod to Measure Microvessel Density in Whole-Slide Images of Cancer Tissue

PLOS ONE | DOI:10.1371/journal.pone.0161496 September 1, 2016 9 / 20



Although there are different methods for sampling and counting, the validation is usually lim-
ited to one specific cancer type. It is important to note that the sampling method chosen
depends on the research question, as the hotspot method (Weidner’s method) will quantify the
strongest angiogenic areas of a tumor and the SURS method provides global information. We
developed a novel ROI sampling and microvessel counting method that combines parts from
existing methods and adds stereological techniques to improve the validity of the results. Fur-
thermore, we used WSIs of CD31-stained tissue sections, allowing traceability and higher
throughput by providing ROI annotations on the images [19]. The level of consensus within
and between observers was evaluated by calculating the ICCs, which were higher than the gen-
erally accepted minimal reliability of 0.7 [27] and more than half of the results even exceeded
0.8. These results were only possible after consensus training with all observers and with the
new counting rules. Therefore, we strongly advise simplified counting rules and extensive con-
sensus training sessions with all observers involved. Most attention needs to be paid to the min-
imum size of a staining pattern that can be considered a vessel. Our newly proposed counting

Fig 4. Tukey boxplots illustrating the relationship between the meanminimum number of regions of interest (ROIs) and the
topological blood vessel heterogeneity. This was done for each sample and for every cancer type: colorectal carcinoma (CRC),
glioblastoma multiforme (GBM), ovarian carcinoma (OC), and renal cell carcinoma (RCC). If the topological blood vessel heterogeneity of
the samples increased (low < high), the minimum number of ROIs on average increased as well. ***p < 0.001, **p < 0.01, *p < 0.05.

doi:10.1371/journal.pone.0161496.g004
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rules include every CD31-positive object, no matter how small, and therefore also has the
advantage of including single endothelial venules, indicative of active angiogenesis [28].

We evaluated the effect of the location of ROIs on the variability of the microvessel density
and areal fraction of the blood vessels. No major effect was present if SURS is performed for
profile counting. However, for the areal fraction, ICC-values lower than 0.7 were obtained.
This is not unexpected, as the amount of overlapping structures with the grid will depend
heavily on these locations as only a small area is sampled by the grid intersections. In addition,
these ICCs can be regarded as too optimistic because only one observer assessed the ROIs.
Therefore, additional intra-observer variability could be taken into account. We limited our
investigation to the above-mentioned parameters, but it would be interesting to study the effect
of magnification, grid type or grid size in future research.

A limitation to our study is the relatively small sample size and therefore a follow-up study
with more samples is advised.

Several challenges are inherent to vessel counting independently of the method used: firstly,
tumors develop in different tissue types, which all have their own characteristic vessel network
architecture [29–32]. The distribution of microvessel sizes and growth patterns vary between,
but also within, a cancer type [29,32,33]. Starting from the first published milestone study by
Weidner N et al. [15] many published research studies have been conducted regarding the sig-
nificance of microvessel density in breast cancer patients. It is of great interest to evaluate our
method in a follow-up study with breast cancer samples. Secondly, the different cell types of
which microvessels are composed are another source of bias [34–38]. The proportions of the
different cell types in a vessel define the vessel type. The most important cell type is the endo-
thelial cell [39]. Peri-endothelial cells, such as pericytes and smooth muscle cells, strengthen
the vessel and expand its functionalities [34,40]. The importance of these different types of ves-
sels present in the growing tumor tissue seems to be prognostic [41,42] and even predictive of

Table 2. Intra-observer variability for the old counting rules. This was calculated by the intraclass correlation coefficients (ICC) between the counting of
round one and two of observers 1 and 2 (ICC1 and ICC2) for the four different cancer types and the four different parameters.

Cancer Parameter Samples ICC1 ICC2

CRC V 285 0.85 (0.78–0.89) 0.91 (0.86–0.94)

CRC N 285 0.93 (0.89–0.95) 0.94 (0.92–0.96)

CRC QA 19 0.92 (0.79–0.97) 0.98 (0.95–0.99)

CRC AA 19 0.87 (0.66–0.93) 0.96 (0.88–0.98)

GBM V 300 0.94 (0.92–0.95) 0.93 (0.90–0.94)

GBM N 300 0.92 (0.90–0.94) 0.97 (0.96–0.97)

GBM QA 20 0.98 (0.91–0.99) 0.99 (0.97–1.00)

GBM AA 20 0.98 (0.95–0.99) 0.98 (0.92–0.99)

OC V 315 0.90 (0.84–0.93) 0.92 (0.88–0.95)

OC N 315 0.89 (0.84–0.92) 0.91 (0.87–0.94)

OC QA 21 0.97 (0.94–0.99) 0.96 (0.91–0.98)

OC AA 21 0.97 (0.93–0.98) 0.98 (0.88–0.99)

RCC V 330 0.88 (0.84–0.92) 0.95 (0.94–0.97)

RCC N 330 0.87 (0.84–0.91) 0.92 (0.90–0.94)

RCC QA 22 0.95 (0.89–0.97) 0.96 (0.91–0.98)

RCC AA 22 0.97 (0.94–0.99) 0.99 (0.99–1.00)

CRC, colorectal cancer; GBM, glioblastoma multiforme; OC, ovarian cancer; RCC, renal cell cancer; V, the number of grid points overlapping with vessels in

one region of interest (ROI); N, the number of microvessel profiles in one ROI; QA, the microvessel density based on N in one sample (15 ROIs); AA, the

microvessel areal fraction based on V in one sample (15 ROIs); (LoCI—UpCI), the 95% lower and upper confidence intervals

doi:10.1371/journal.pone.0161496.t002
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Fig 5. Intra- (left) and inter-observer (right) variability for the old counting rules. This was calculated by the intraclass
correlation coefficients (ICC) for the four parameters (V, N, QA, AA). In the first row this is displayed for the number of vessel profiles
in a region of interest (N). In the second row this is displayed for the microvessel density (QA). In the third row this is displayed for the
number of points in the grid hitting a vessel profile in a region of interest (V). In the last row this is displayed for the areal fraction of
vessel profiles (AA). In addition are the ICCs in relation to the heterogeneity level (low or high) and the cancer type (colorectal
carcinoma (CRC), glioblastoma multiforme (GBM), ovarian carcinoma (OC), and renal cell carcinoma (RCC)) shown.

doi:10.1371/journal.pone.0161496.g005
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survival after therapy [24,43–45]. Developing an assay for the detection of these pericytes in
blood vessels would be of great interest, but is challenging. For example, alpha-smooth muscle
actin, which stains pericytes, also stains myofibroblasts hindering quantification. Future studies
will be needed to address the challenges imposed by such a strategy. Because the choice of vas-
cular cell type that is stained can lead to the selection of a specific type of vessel in terms of
functionality, this choice will also affect the number of the microvessels counted. Most micro-
vessels are stained in the tumor sections using pan-endothelial markers such as CD31. How-
ever, these proteins are not only expressed by endothelial cells, but also by other cells, such as
macrophages and platelets [12], which may result in an overestimation of the number of
microvessels. Thirdly, the counting method has sources of bias as well, because a decision has
to be made whether stained cells resemble endothelial cells in shape and size. Depending on
the orientation of the vessel and the direction of the sectioning, one vessel can appear as sepa-
rate shapes in the two-dimensional section. Finally, there are several challenges presented by
manual counting per se, such as searching and finding microvessels, counting and memorizing
the number of counts [46,47].

Nonetheless, the present investigation shows that it is possible to obtain an unbiased result
by our method. Moreover, the validity of the method described in the present study was shown
in the GOG-0218 trial [48], in which patients with epithelial ovarian cancer were treated with
carboplatin-paclitaxel with or without bevacizumab (manuscript in preparation). Higher
microvessel density values in the CD31-stained samples that were measured by our method
showed prognostic and potential predictive value for progression-free survival [48]. In conclu-
sion, the present microvessel counting method is reliable if observers are extensively trained.

Table 3. Inter-observer variability for the old counting rules. This was calculated by the intraclass corre-
lation coefficients (ICC) between the averaged counting of observer 1 (KM) and 2 (VC).

Cancer Parameter Samples ICC

CRC V 285 0.76 (0.65–0.83)

CRC N 285 0.54 (0.45–0.63)

CRC QA 19 0.24 (0.09–0.40)

CRC AA 19 0.38 (0.05–0.63)

GBM V 300 0.86 (0.83–0.89)

GBM N 300 0.73 (0.67–0.78)

GBM QA 20 0.60 (0.35–0.75)

GBM AA 20 0.80 (0.56–0.85)

OC V 315 0.85 (0.80–0.89)

OC N 315 0.70 (0.62–0.76)

OC QA 21 0.51 (0.33–0.63)

OC AA 21 0.74 (0.65–0.86)

RCC V 330 0.64 (0.58–0.71)

RCC N 330 0.73 (0.69–0.77)

RCC QA 22 0.70 (0.57–0.80)

RCC AA 22 0.58 (0.44–0.70)

CRC, colorectal cancer; GBM, glioblastoma multiforme; OC, ovarian cancer; RCC, renal cell cancer; V, the

number of grid points overlapping with vessels in one region of interest (ROI); N, the number of microvessel

profiles in one ROI; QA, the microvessel density based on N in one sample (15 ROIs); AA, the microvessel

areal fraction based on V in one sample (15 ROIs); (LoCI—UpCI), the 95% lower and upper confidence

intervals

doi:10.1371/journal.pone.0161496.t003
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Fig 6. Inter-observer variation for the old counting rules between observer 1 (KM) and 2 (VC) for
colorectal cancer samples. This was displayed by Bland-Altman (a, c, e, g) and prediction plots with
prediction intervals (two black lines) (b, d, f, h) for the number of vessel profiles (N) (a, b), the microvessel
density (QA) (c,d), the number of points in the grid hitting a vessel profile (V) (e, f) and the areal fraction of
vessel profiles (AA) (g, h). A systemic bias for N, QA, and AA was present as illustrated by the prediction plots
(large distance between the x = y line (black and dashed) and the linear regression line of the measurements
(red)).

doi:10.1371/journal.pone.0161496.g006
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Although the amount of ROIs needed depends on the cancer type, on average ten ROIs are suf-
ficient for accurate microvessel density measurements.

Supporting Information
S1 Dataset. Counting results. The results for the four parameters (N, MVD, V,AA) for the
samples from the four cancer types (CRC, GBM, OC, RCC) from all observers (1–6) obtained
with both versions of the counting rules are contained in these CSV-files.
(ZIP)
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