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Abstract: Supramolecular gels form a class of soft materials that has been heavily explored by
the chemical community in the past 20 years. While a multitude of experimental techniques has
demonstrated its usefulness when characterizing these materials, the potential value of computational
techniques has received much less attention. This review aims to provide a complete overview of
studies that employ computational tools to obtain a better fundamental understanding of the self-
assembly behavior of supramolecular gels or to accelerate their development by means of prediction.
As such, we hope to stimulate researchers to consider using computational tools when investigating
these intriguing materials. In the concluding remarks, we address future challenges faced by the field
and formulate our vision on how computational methods could help overcoming them.

Keywords: supramolecular gels; LMWG; computational chemistry; molecular dynamics; modeling;
self-assembly

1. Introduction

Supramolecular gels, often referred to as molecular gels or low molecular weight
gels (LMWGs), are a type of soft material that mostly consists of two constituents: a
solvent, which accounts for up to 99% of the material, and a small molecule termed a
gelator. Although only present in small amounts, the gelator provides the material with
the typical viscoelastic gel properties, by forming a self-assembled network that spans and
immobilizes the solvent [1–4]. While there is a large chemical diversity among reported
gelators, most of them rely on the ability to form intermolecular noncovalent interactions
in an anisotropic fashion. Hence the term supramolecular gels. In the past decade, the field
of supramolecular gels has reached its adolescent years, providing researchers with ample
well-established experimental techniques to characterize and investigate these materials,
amongst others rheological measurements, various microscopy imaging techniques, NMR
spectroscopy, UV-VIS spectroscopy, etc. [5–8]. Evidently, these experimental techniques
have played a critical part in establishing our current understanding and development of
supramolecular gels and will remain essential in the forthcoming years.

However, the macroscopic properties of these soft materials are governed by weak
noncovalent interactions. Gaining direct insights into these interactions via wet-lab experi-
ments is challenging. Fortunately, in the past, various computational methods and tools
have proven their usefulness when investigating noncovalent interactions in supramolec-
ular materials [9–11]. In this review, we set out to create awareness on the use of compu-
tational chemistry within the field of supramolecular gels. The first part discusses how
computational methods can help to improve our understanding of supramolecular gels,
often complementing the observations from experimental techniques. Next, several recent
computational studies aiming to accelerate the development of supramolecular gels by
a priori predictions are highlighted. In the concluding section, we look forward towards
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the opportunities and challenges that remain in the field of supramolecular gels where
computational methods can be of considerable value.

2. Rationalizing Supramolecular Gelation

Gaining a deeper understanding of supramolecular gels is not only useful for scientific
purposes, but it can also aid in their development and increase their applicability. To this
end, several computational techniques have been applied to acquire knowledge about the
conformational preference of gelators in a solvent environment, possible stacking modes
of the nano-architectures, the noncovalent interactions in and between gelator molecules
and additives, etc. Having said that, supramolecular gelation is a multiscale problem, with
interactions occurring at the atom scale governing macroscale material properties [2,12]. As
a result, different computational techniques with different levels of accuracy are required to
gain information at different scales (Figure 1). In this section, an overview of computational
methods employed to rationalize the gelation behavior is provided. While this section
is organized based on the scale and level of accuracy of the computational method, we
do mention that in order to obtain the most complete picture, a combination of these
techniques integrated in a multiscale approach is desirable [13–15].
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Figure 1. Computational methods with different levels of accuracy can provide information on the
supramolecular gelation behavior at different length and time scales.

2.1. Static Quantum Mechanical Calculations

Computations performed with techniques that rely on quantum mechanics, generally
yield highly accurate properties. Even within quantum mechanical methods, subdivisions
of techniques can be made based on the manner in which electron correlation effects
are taken into account [16]. This means, however, that they also require a significant
amount of computational power. Hence, quantum mechanical calculations in the field
of supramolecular gels are currently limited to static or short dynamic simulations of
single gelator molecules or systems of up to approximately 500 heavy atoms. Additionally,
solvent effects (if any) are included by implicit continuum models or explicitly by molecular
mechanics methods (QM/MM). Among the many quantum mechanical theories available,
density functional theory (DFT) has established itself as the primary quantum mechanical
workhorse to investigate supramolecular systems [17–19]. The popularity of DFT can be
attributed to its favorable balance between accuracy and computational cost, its flexibility
(i.e., a myriad of exchange correlation functionals are developed to address different
problems) and its ease of use (i.e., several user-friendly software packages exist, to set up a
DFT calculations in a matter of seconds). Nevertheless, it is well known that conventional
DFT functionals fail in describing long-range dispersion interactions, which are crucial to
accurately model the noncovalent interactions in a supramolecular gel [20–22]. Luckily,
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numerous methods to improve the description of long-range dispersion interactions have
been developed, including long-range corrected functionals [23,24], atom-pairwise additive
schemes [25], or non-local dispersion corrections [26,27]. It goes without saying that, when
studying supramolecular gels using DFT, attention must be paid to accurately describe
long-range dispersion effects in order to obtain meaningful results.

In 2008, Urbanová and co-workers were one of the first to obtain structural information
of a supramolecular gel from DFT calculations [28]. In their work, the structure of a guanine
derived supramolecular hydrogel was investigated by systematically computing stable
conformations of a simplified model of the gelator, ranging from dimers to tetramers. By
comparing the DFT calculated VCD and IR spectra with the corresponding experimental
spectra of the hydrogel, a plausible supramolecular stacking model was put forward. The
proposed stacking model relied on Hoogsteen base pairing hydrogen bonds between the
gelators [29]. Importantly, only a good agreement with the experimental spectra could
be obtained by adding a sodium ion to the structure. The researchers rationalized that
the presence of the sodium ion could stem from the pH-triggered gelation procedure
(Figure 2). Following this study, other groups relied on DFT calculations to suggest a
reasonable supramolecular stacking of gelators, from which both structural and electronic
information could be retrieved [30–34]. However, the computational requirements of the
quantum mechanical DFT calculations limit the size of the system that can be tackled.
Additionally, when the complexity of the molecular system increases, conformational space
increases as well. For this reason, it is recommended that such computational studies
consider only a simplified model of the gelator and are supported by experimental data.
Apart from FT-IR and VCD spectra, the experimental UV-VIS spectra can be compared
with the absorption spectra obtained from time-dependent DFT calculations (TD-DFT),
strengthening the validity of the proposed stacking model [35,36]. In a more recent example,
Zwijnenburg and co-workers relied on TD-DFT calculations to gain insight into the self-
assembly and gelation of an alanine functionalized perylene bisimide gelator [37]. First,
stable aggregates with different sizes (up to trimers) and protonation states were optimized
at the DFT level. Subsequently, they obtained the respective TD-DFT computed UV-VIS
spectra of the different structures. With these spectra, they were able to assign the changes
in the experimental UV-VIS spectra during the glucono-δ-lactone pH-triggered gelation to
a particular stacking of gelator molecules.
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Figure 2. (a) A guanine quartet structure optimized at the B3LYP/6-31G** DFT level. (b) When a
sodium ion is incorporated into the supramolecular stacking of the guanine derived hydrogelator
model, a good agreement between the computed and experimental VCD and IR spectra could be ob-
tained. Figure adapted with permission from ref. [28]. Copyright (2008) American Chemical Society.
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The accuracy that can be attained with DFT calculations goes hand in hand with
significant computational requirements and size limitations. However, it has been shown
that even calculations on a single gelator molecule, or a simplified model thereof, could
provide valuable insights into the self-assembly behavior [13,38–40]. In 2013, Xie and
co-workers were able to rationalize the gelation performance of a set of small pyridyl
urea-based gelators through DFT calculations at the single gelator level [41]. Owing to
the molecular simplicity of the gelator, they could perform a full conformational analysis
on these structures. Surprisingly, when the pyridyl ring of the gelator was substituted
in an ortho-fashion, conformations with an intramolecular hydrogen bond became ac-
cessible. These intramolecular interactions compete with the otherwise intermolecular
urea hydrogen bonding, which is crucial for the self-assembly process. They rational-
ized that these observations could explain the drastic decrease in gelation performance
when changing the substitution pattern of the pyridyl ring from para to ortho (Scheme 1).
In addition, Wezenberg et al. showed the importance of intramolecular interactions on
supramolecular gelation [42]. In their work, a photoswitchable urea-based gelator was
developed. Interestingly, irradiation of the gelator with UV-light induced a trans-to-cis or
cis-to-trans isomerization depending on the wavelength (Scheme 1). Furthermore, only
the trans-isomer acts as an efficient gelator, making this system an effective photoswitch-
able supramolecular gel. By studying the possible conformations of both the trans- and
cis-isomers via DFT calculations, they concluded that the absence of gelation characteristics
of the cis-isomer could be rationalized by the formation of an intramolecular hydrogen
bond. In previous examples, explicit intramolecular interactions disrupted gel formation.
However, we recently showed, through static DFT calculations, that, depending on the
molecular structure, intramolecular hydrogen bonding does not necessarily lead to the loss
of gelation characteristics [13].
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Apart from interactions in and between the gelator molecules, static QM calculations
can be used to gain information on the strength and nature of explicit interactions between
the gelator and an additive or the solvent [40,43]. In a collaborative effort of the Rai and
Kundu groups, a variety of structures of a solvent molecule and a di-Fmoc-L-lysine gelator
were optimized at the DFT level of theory [44]. A variety of combinations of the solvent
molecule and the gelator were built based on insights from the electrostatic potential maps
of the gelator and were able to elucidate different contributions to the gelator–solvent
interactions, such as explicit hydrogen bonding. In addition, these calculations allowed
to determine a pseudo cohesive energy density (PCED) of the gelator–solvent mixture
as a measure of the binding energy per unit volume. By normalizing this value with the
CED of the pure solvent, a parameter Λ is obtained which quantifies the strength of the
gelator–solvent interactions compared to the solvent–solvent interactions. Remarkably,
their study shows that the value of Λ has a qualitative correlation with the solubility
behavior of the gelator in different solvents.
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2.2. All-Atom Molecular Mechanics and Dynamic Simulations

Molecular mechanics (MM) calculations are based on classical mechanics laws, with
the relationship between the potential of a system and its topology described by a force
field [45]. Because of the simplicity of most force field expressions, the computational
workload of an MM calculation is significantly reduced, compared to a QM calculation on
the exact same system. As can be expected, the performance of an MM calculation is highly
dependent on the choice of force field, its parametrization and the accuracy thereof when
describing the molecular system of interest. The fact that a multitude of different types of
force fields exists, and more are constantly being developed, does not always make this
easy for the end-user [46–51]. In this regard, special care must be taken when performing
MM based calculations on supramolecular gels to ensure meaningful results. A proper
choice of the force field and accurate parametrization can be obtained by comparison with
experimental properties or computations performed at the QM level of theory.

Early research on supramolecular gels, in which MM computations were employed,
featured static calculations as described in the previous section, involving single gelator
molecules or small clusters to investigate possible stacking modes [52,53]. Nevertheless, as
computational power increased and software was developed to take advantage of GPU-
acceleration, molecular dynamic (MD) simulations of larger supramolecular aggregates
in explicit solvation became accessible [54–56]. For supramolecular gels, this specifically
means that, at the moment, nano- to microsecond simulations of an aggregate containing
hundreds of small gelator molecules are within reach with a modest GPU-based computing
cluster [57]. While this time and length scale are still far too small to simulate and unveil
the full self-assembly process taking place during gelation, two approaches currently exist
to study this process by means of MD simulations: a top-down or a bottom-up approach
(Figure 3) [15].
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Figure 3. Similar to supramolecular polymerization, molecular dynamics simulations to study
supramolecular gelation can either follow (a) a top-down scheme, in which the starting topology is a
well-defined supramolecular aggregate of gelators, or (b) a bottom-up scheme, in which the starting
topology consists of gelator molecules which are randomly dispersed in the simulation box.

In a top-down approach, the MD simulation starts from an organized supramolecular
aggregate, of which the stability is probed by analyzing the topological changes occurring
during the simulation. It is recommended that, instead of one, several properties are used
to quantify the topological changes, such as the root-mean-square displacement of all
atoms (RMSD), the solvent accessible surface area (SASA), the radius of gyration (Rg), or
other geometric parameters that might be unique for the aggregate [58]. If the proposed
structure is unstable, atoms will diverge from one another and a reorganization of the
structure will become apparent. On the other hand, if the proposed structure is stable,
the relative position of the atoms in the structure will have little displacement along the
trajectory and an equilibrated structure will be reached. Only supramolecular structures
with a certain degree of stability are then considered to analyze plausible stacking modes



Gels 2021, 7, 87 6 of 18

that might be important during gelation [59–67]. The topology of the initial proposed
structure is crucial to the value of this method. Moreover, while it can be challenging to
propose an adequate initial structure based on chemical intuition, experimental data on the
morphology of the gel network can help narrow down the possibilities and provide the
necessary empirical validation.

In recent research published by the Steed group, a top-down MD approach was
used to better understand how unique twisting ribbons were formed during the self-
assembly of a pentakis(urea) based supramolecular gelator [68]. From TEM imaging, it
was established that the gelator self-assembles into symmetrical twisted ribbons with a
width of approximately 16–18 nm. Based on this experimental observation, a stacking
model was constructed by having six 1-dimensional arrays of gelators with a helical pitch
of 40 nm. Crucially, this stacking model complied with the experimental morphological
observations. Next, fibrils with 2, 3 or 4 of these layers were simulated for 2.5 ns. From these
simulations it became clear that only a structure containing 4 layers would be sufficiently
stable during a 2.5 ns simulation (Figure 4). In this study, a conventional top-down MD
approach was employed. However, in other cases, the proposed structure undergoes a
significant reorganization. The same group used MD simulations in a previous study to
investigate the self-assembly of a bis-urea based gelator [69]. Starting from an organized
pre-stacked lamellar structure of the gelator, scrolling towards a cylindrical structure was
observed. In another example, the Pavan group in collaboration with the Meier group used
a top-down MD approach to elucidate the self-assembly of a 1,3,5-benzenetricarboxamide
(BTA) derivative in water towards a supramolecular fiber [70]. The proposed aggregate
for the simulation was built by sequential addition of pre-stacked structures that were
optimized using DFT calculations and consisted of 48 molecules. The resulting fiber was
placed in explicit water (TIP3P model) and underwent a dynamic simulation of 400 ns.
Notably, two folding stages were observed before an equilibrium structure was reached. In
a first stage, the side chains of the BTA cores collapse around the core of the fiber to reduce
the hydrophobic interactions between the fiber and the solvent, while in a second stage the
fiber itself begins to fold, further minimizing the hydrophobic interactions. Only after 300
ns, an equilibrium structure is reached, underlining the importance of an adequate total
simulation time when using a top-down MD approach.

In a bottom-up MD approach, the simulation starts from a random topology, preferably
with the gelator molecules dispersed across the entire solvent medium. While computa-
tional limitations currently render it unfeasible to reach an equilibrated state using this
approach, valuable insights can still be gained regarding the early self-assembly stage and
specific non-covalent interactions driving supramolecular gelation [13,71]. While fewer
of such studies exist, the Marlow and Zelzer group used a bottom-up MD approach to
investigate the initial self-assembly of a nucleoside based gel at two different concentra-
tions in an ethanol:water (20:80 v/v%) mixture (Figure 5) [72]. At lower concentrations,
smaller aggregates of the gelator were formed based on a parallel packing to maximize
π–π interactions. They also observed that the solvation around these aggregates was not
homogeneous with the aliphatic tails mainly solvated by ethanol molecules, while the
cytosine bases were mostly solvated by water. Prolongation of the simulation resulted in
the reordering of these aggregates into a single flexible aggregate. When the concentration
of the gelator was increased in the simulation box, similar results were obtained, although,
in this case, an aggregate was formed that stretched across the periodic boundary of the
box. In another study using a bottom-up MD approach, the Seddon and Adams groups
investigated the packing of a small peptide based gelator (NapFF) in water [73]. More
specifically, biased MD simulations starting from a dispersed state of NapFF molecules in
water resulted in the formation of a hollow tubular aggregate of gelators. In this study,
cylindrical restraints were introduced during the simulation to obtain an aggregate which
would be consistent with the experimental scattering data. Upon relieving the restraints,
the tubular structure did remain stable, due to the Na+ ions present in the simulation box
and hydrogen bonding within the structure.
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2.3. United-Atom and Coarse-Grained Simulations

The previously highlighted study showcases that geometrical constraints can be used
to speed-up the self-assembly process during a bottom-up MD simulation. It is important,
however, that these restraints are made based on a sound rationale. Another workaround
to deal with limited computational power during a simulation is simplifying the force
field that drives the dynamics. Indeed, the previously mentioned dynamic studies all
used an all-atom force field expression to describe the gelators, in which each atom is
explicitly parametrized. Simplified force field expressions can be obtained if multiple
atoms are combined and treated as a single interacting site. One of the most popular
methods that uses this approach is the united-atom potential, in which the hydrogen
and carbon atoms of methyl or methylene groups are combined [74–79]. In addition,
when describing supramolecular gels, a united-atom force field can be useful to increase
the size- and time-scale of the simulation [80]. In a recent example, the Rai group used
the transferable potentials for phase equilibria-united atom (TraPPE-UA) force field to
investigate the aggregation of 12-hydroxyoctadecanamide in octane [77,81]. Thanks to
the united-atom force field, they were able to run bottom-up MD simulations on 500–
1000 gelators in explicit octane (12.5 wt%) for 500 ns. With this time and length scale of
simulation, they were able to observe the initial stage of fiber branching and reveal the
importance of the hydroxyl group in the branching process.

More simplified potentials also exist, in which multiple atoms, depending on the
functional group, are combined to a single interacting site. These potentials are referred to
as coarse-grained (CG) force fields [82,83]. It is important to realize that the development
of these CG potentials requires extensive efforts to ensure an adequate accuracy when
describing the system, despite the significant loss of detail. In the case of supramolecular
gels and biomolecular systems, the MARTINI CG force field is widely used due to its
extensive development for the description of amino acids [84,85]. In 2012, the Schatz group
used the MARTINI force field to model the self-assembly of the Ile-Lys-Val-Ala-Val (IKVAV)
sequenced peptide amphiphile [86]. The CG MD simulations could reach up to several
microseconds, which allowed them to observe spontaneous cylindrical fiber formation
starting from a fully dispersed state of the peptides. Similarly, the Wei and Gazit groups
made use of the MARTINI force field to investigate the self-assembly of a small peptide-
based hydrogelator [87]. Similarly to the results obtained by Schatz and co-workers, the
microseconds-long CG MD simulations enabled them to observe the self-assembly towards
wormlike aggregates starting from a dispersed state. One obvious limitation to these
approaches, however, is that due to the loss of atomistic details, it is not possible to directly
correlate the self-assembly process to specific non-covalent interactions. To overcome this
limitation, Nguyen and co-workers developed ePRIME, a CG model with intermediate
resolution that combines enough detail to obtain insights into specific interactions, while
pertaining computational tractability for the simulation of large systems [88]. In 2013,
they used the ePRIME model to investigate the spontaneous self-assembly of peptide
amphiphiles and to successfully construct phase diagrams that delineate morphological
transitions triggered by external stimuli such as temperature [89]. Alternatively, one could
opt to perform hybrid-resolution simulations, in which part of the system is described by a
CG model, while other (more essential) parts are described by a united- or all-atom force
field [90]. Finally, we note that some methods have been developed to retrieve the atomistic
picture from the CG representation; however, they have yet to be tested in the field [91].

2.4. Other Methods

In addition to the archetypical static and dynamic computations mentioned above,
other less conventional computational methods can be employed to gain valuable in-
sights into the supramolecular gelation process. One such example is the Non-Covalent
Interactions index (NCI). Developed in 2010 by the Yang group, the NCI allows for a
3-dimensional visualization of all non-covalent interactions in a molecular system, together
with an indication of their strength [92–96]. While a full theoretical description of the NCI
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technique falls outside the scope of this review, it is important to recognize that the method
can pinpoint noncovalent interactions in supramolecular gels, revealing their importance
during gelation [13,97,98]. Briefly, the NCI method is based on the reduced density gra-
dient and allows for the characterization and visualization of noncovalent interactions in
real space. With current density functionals suffering from severe limitations in terms of
generality for describing different types of noncovalent interactions, the NCI is extremely
robust with respect to the computational method [99]. Indeed, some of the authors of this
work have proven that the NCI method outperforms conventional methods to establish
the hydrogen-bond network in proteins [100,101].

3. Predicting Supramolecular Gelation

From previous paragraphs, it became clear that computational tools can be used to
study the self-assembly process that occurs during supramolecular gelation. Besides ratio-
nalization, researchers have dedicated their attention towards accelerating the discovery of
novel supramolecular gels through computations. As a consequence, different methods
have been proposed to predict the gelation propensity of a molecule in a solvent. While
these methods differ in approach and applicability, they are all driven by computations and
realize a reduction of chemical space, hence simplifying the selection of potential molecules
that can gel a solvent.

3.1. Predicition through the Crystal Structure

In many ways, supramolecular gelation of a molecule in a solvent is related to its
crystallization. Both supramolecular gelation and crystallization are non-equilibrium self-
assembly processes that occur under supersaturated conditions and are characterized by
a nucleation and growth phase [102,103]. For this reason, many experimental studies on
supramolecular gels report powder X-ray diffraction data of the dried xerogel with the
aim of extracting useful information on the structure of the gel network [5,104,105]. From
the 1960s onwards, crystal structure prediction (CSP) has become a field on its own and
has experienced an enormous development of applicable techniques able to predict the
crystal morphology based on the molecular structure [106–110]. One strategy that has
been explored to accelerate the design of new supramolecular gels is based on predicting
the crystal structure of the gelator through a CSP method and, subsequently, analyzing if
properties found in the predicted crystal morphology correlate to the gelation propensity
of the molecule [111–115].

In 2016, the McNeil group successfully developed the first Pb-containing supramolec-
ular gelators based on a method exploiting CSP (Figure 6) [116]. Starting from all Pb-
containing crystals available in the Cambridge Structural Database (CSD), a set of rational
filters was applied to narrow down the scope to 352 structures. In the next step, molecular
mechanics driven geometry optimizations further reduced the possible candidates to 184,
which formed a set of workable size. Through generating a crystal graph for each com-
pound, describing the interaction energy between the center of mass of one molecule with
all other molecules in a preset sphere, the crystal morphology of all 184 compounds was
predicted using the Growth Morphology software within Materials Studio [117]. After this,
the aspect ratio was computed for all predicted crystal morphologies, by taking the ratio of
the longest distance within the crystal to the shortest distance. Finally, two compounds
were selected for derivatization and gel screening, by looking at the predicted crystal
structures with the highest aspect ratio (top 5%) and with ease of chemical synthesis in
mind. As a result of this approach, a first class of 6 Pb-containing supramolecular gelators
was designed, out of which one was explored for its ability to sense Pb2+ in paint.

While the work of the McNeil group showcases the potential of using CSP to accelerate
the development of supramolecular gelators, we do want to emphasize that one must be
critical when scrutinizing data related to the crystal structure to draw conclusions on the
corresponding supramolecular gelation process. Albeit the crystalline- and supramolecular
gelation process are related to some extent, it has been pointed out, on several occasions,
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that the crystal structure of a molecule can significantly differ from the stacking mode and
noncovalent interactions present in its gel phase [118–120].
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3.2. Solvent Parameters

In most supramolecular gels, the solvent makes up 99% of the material or even more.
Evidently, one can expect that the properties of the supramolecular gel are highly dependent
on the solvent. As a consequence, many groups have analyzed possible correlations
between gel propensity or properties of the gel phase and intrinsic parameters of the solvent,
such as the solvent dielectric constant, polarity parameter ET(30), the Kamlet–Taft solvent
parameters or the Hildebrand solubility parameter [121–127]. Over the years, the Hanssen
solubility parameters (HSPs) have proven to be highly useful when investigating complex
solvation effects or predicting gelable solvents [128–131]. Briefly, the HSPs are a result
from the decomposition of the Hildebrand solubility parameter into three contributing
molecular interactions: dispersive interactions (δd), polar interactions (δp) and hydrogen-
bonding interactions (δh) [132]. Originally intended for selecting solvents for polymeric
systems, the Bouteiller group was the first to successfully manipulate the HSPs to predict
gelable solvents for a specific supramolecular gelator [133–135]. In their approach, an
initial solubility dataset is constructed by testing the gelation behavior of a gelator in
various solvents. Results are classified into three categories: the molecule is soluble in
the solvent (S), gels the solvent (G), or forms a precipitate (P). Based on this dataset, a
solubility sphere and one or more gelation spheres are defined in the Hansen space. The
radius and center of these spheres are determined by an optimization which results in
having most S points inside the solubility sphere but outside the gelation sphere (s), most
G points inside the gelation sphere(s) but outside the solubility sphere and most P points
outside both the solubility and gelation spheres. In this manner, the solubility behavior
of the gelator in an untested solvent can be easily predicted based on the location of the
solvent in Hansen space.

Further investigations revealed that the method described above could be improved and
simplified by allowing a single solubility and gelation sphere to overlap (Figure 7) [129,136–138].
The Rogers group had a notable impact in further development of this methodology [139–141].
In a more recent work from the group, the values of the radius and center of the con-
structed gelation sphere were used to elucidate the ability and driving forces behind the
gelation of different peptide-based supramolecular gelators [142]. The gelation sphere ob-
tained for L-diphenylalanine (L-FF) was centered around the values of 2δd = 32.80 MPa1/2,
δp = 8.70 MPa1/2 and δh = 11.50 MPa1/2 and had a radius of 5.61 MPa1/2. On the other
hand, the gelation sphere for L-dityrosine (L-YY) was centered around 2δd = 31.39 MPa1/2,
δp = 15.75 MPa1/2 and δh = 14.65 MPa1/2 and had a radius of 18.50 MPa1/2. The increased
radius of the gelation sphere of L-YY in comparison to L-FF, highlights the greater gelation
capacity of L-YY. Moreover, the shift of the gelation sphere towards more polar and greater
hydrogen bonding solvents when going from L-FF to L-YY underlines the change in the
driving force behind gelation towards polar interactions and hydrogen bonding upon
including additional hydroxyl groups to the structure.
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3.3. Molecular Dynamics and Machine Learning

Whilst the value of the HSP method described above is obvious from the many studies
on supramolecular gels that rely on the technique, it does require extensive laborious
efforts, as a large collection of experimental gelation data needs to be gathered beforehand.
To further accelerate the discovery of new potential gelators, it would be beneficial to be
able to predict the gelation propensity of a molecule before stepping into the lab. In this
section, a number of strategies are highlighted that can evaluate the gelation propensity of
a molecule, solely based on the molecular structure of the gelator.

A significant contribution towards the prediction of supramolecular gelation was
made by the collaborative efforts from the Tuttle and Ulijn groups [143]. Already in 2011,
they proposed an aggregation propensity score (AP) able to quantify the aggregation
tendency of a given peptide [144]. More specifically, starting from a fully dispersed state,
coarse-grained simulations are performed to track the self-assembly behavior of a small
peptide. Next, the AP score is computed by taking the ratio of the solvent accessible surface
area (SASA) of the peptides at the initial topology to the SASA of the peptides at the end of
the simulation. An AP value greater than 2 is arbitrarily proposed as an indication of a high
degree of aggregation. Four years later, they reported a corrected AP score (APH), which
incorporates the hydrophilicity of the peptide by multiplying the original AP score with a
computed log P value [145]. Notably, they screened over 8000 tripeptides and successfully
showed that this hydrophilicity-corrected APH score can be used as a reliable descriptor to
create a set of design rules for the development of new peptide-based hydrogelators. We
believe the success of their approach can largely be attributed to the physical relevance of
the proposed descriptor towards describing the self-assembly process.

Another approach to predict supramolecular gelation relies on machine learning
schemes. Based on collected experimental data and a large descriptor set, the Adams
and Berry group were the first to successfully train a number of machine learning mod-
els able to accurately classify dipeptide systems into efficient hydrogelators and non-
hydrogelators [146]. Remarkably, the prediction is based on a variety of physicochemical
properties and molecular fingerprints that are generated based on the simplified molecular-
input line-entry specification (SMILES) representation of the gelator. This allowed for
a high-throughput prediction, as long as the SMILES code falls within the applicability
domain of the model. While chemical intuition does not initially link the descriptors used
to build the model to the gelation process, the work is an excellent example of how differ-
ent machine learning techniques can exploit large amounts of data and retrieve complex
relationships between them. In addition, the Fok and Li groups adapted a similar machine
learning approach to predict the gelation propensity of dipeptide hydrogelators [147].
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Recently, our group developed a set of descriptors, which can all be obtained from
all-atom molecular dynamics simulations [148]. The relative solvent accessible surface area
(rSASA) quantifies aggregation of the gelators, the relative end-to-end distance (rH) de-
scribes the flexibility and conformational preference of the gelators, the hydrogen bonding
percentage (HB%) measures the noncovalent linkage between gelator molecules through
hydrogen bonding and the shape factor (F) describes the aggregate’s shape. These de-
scriptors are of fundamental value to the gelation process, but more importantly they can
be used to optimize machine learning models that are able to classify combinations of a
urea-based gelator and a number of solvents into three categories. Either the gelator is
soluble in the solvent, forms a precipitate or gels the solvent (Figure 8). Notably, this is the
same classification that is obtained from the HSP method described earlier. Due to their
relevance in describing the self-assembly that occurs during the simulation, we anticipate
these descriptors to be valuable for different types of supramolecular gelators. One draw-
back to the method, however, is that extensive MD simulations need to be performed to
obtain the descriptor, limiting the throughput of prediction.

Gels 2021, 7, x FOR PEER REVIEW 12 of 19 
 

 

end of the simulation. An AP value greater than 2 is arbitrarily proposed as an indication 
of a high degree of aggregation. Four years later, they reported a corrected AP score (APH), 
which incorporates the hydrophilicity of the peptide by multiplying the original AP score 
with a computed log P value [145]. Notably, they screened over 8000 tripeptides and suc-
cessfully showed that this hydrophilicity-corrected APH score can be used as a reliable 
descriptor to create a set of design rules for the development of new peptide-based hy-
drogelators. We believe the success of their approach can largely be attributed to the phys-
ical relevance of the proposed descriptor towards describing the self-assembly process. 

Another approach to predict supramolecular gelation relies on machine learning 
schemes. Based on collected experimental data and a large descriptor set, the Adams and 
Berry group were the first to successfully train a number of machine learning models able 
to accurately classify dipeptide systems into efficient hydrogelators and non-hydrogela-
tors [146]. Remarkably, the prediction is based on a variety of physicochemical properties 
and molecular fingerprints that are generated based on the simplified molecular-input 
line-entry specification (SMILES) representation of the gelator. This allowed for a high-
throughput prediction, as long as the SMILES code falls within the applicability domain 
of the model. While chemical intuition does not initially link the descriptors used to build 
the model to the gelation process, the work is an excellent example of how different ma-
chine learning techniques can exploit large amounts of data and retrieve complex rela-
tionships between them. In addition, the Fok and Li groups adapted a similar machine 
learning approach to predict the gelation propensity of dipeptide hydrogelators [147]. 

Recently, our group developed a set of descriptors, which can all be obtained from 
all-atom molecular dynamics simulations [148]. The relative solvent accessible surface 
area (rSASA) quantifies aggregation of the gelators, the relative end-to-end distance (rH) 
describes the flexibility and conformational preference of the gelators, the hydrogen bond-
ing percentage (HB%) measures the noncovalent linkage between gelator molecules 
through hydrogen bonding and the shape factor (F) describes the aggregate’s shape. These 
descriptors are of fundamental value to the gelation process, but more importantly they 
can be used to optimize machine learning models that are able to classify combinations of 
a urea-based gelator and a number of solvents into three categories. Either the gelator is 
soluble in the solvent, forms a precipitate or gels the solvent (Figure 8). Notably, this is 
the same classification that is obtained from the HSP method described earlier. Due to 
their relevance in describing the self-assembly that occurs during the simulation, we an-
ticipate these descriptors to be valuable for different types of supramolecular gelators. 
One drawback to the method, however, is that extensive MD simulations need to be per-
formed to obtain the descriptor, limiting the throughput of prediction. 

 
Figure 8. Descriptors obtained from MD simulations can help analyze and predict the outcome of 
gelation test into three categories. Either the molecule is soluble in the solvent, gels the solvent or 
forms a precipitate. Reprinted with permission from ref. [144]. Copyright (2011) The Royal Society 
of Chemistry. 

4. Conclusions and Future Perspectives 

Figure 8. Descriptors obtained from MD simulations can help analyze and predict the outcome of
gelation test into three categories. Either the molecule is soluble in the solvent, gels the solvent or
forms a precipitate. Reprinted with permission from ref. [144]. Copyright (2011) The Royal Society
of Chemistry.

4. Conclusions and Future Perspectives

In this review, we discussed the potential of computational methods within the field
of supramolecular gels. A thorough examination of the studies performed on supramolec-
ular gels in the past two decades revealed that computational methods can improve our
fundamental understanding of the self-assembly behavior of supramolecular gels. Dif-
ferent computational techniques were introduced that can provide insights on different
time and length scales of the supramolecular gelation process. A combination of mul-
tiple computational methods integrated into a multiscale approach provides the most
complete picture, complementary to well-established wet-lab experiments. In addition to
rationalization, computational tools have shown the ability to accelerate the development
of supramolecular gels, by defining boundaries around a specific area of chemical space
and simplifying the selection of possible gelator candidates through various approaches.
This review attempts to create awareness on the added value of computational chemistry
when investigating supramolecular gels, as well as provide an overview of the current
possibilities and state-of-the-art.

As the field moves forward, we believe the use of computational methods will become
even more prominent when studying supramolecular gels. In the upcoming years, the
ever-increasing computing power will enable researchers to perform calculations with
an accuracy that was previously considered unattainable [149]. For supramolecular gels
specifically, this could mean investigating larger molecular events, such as fiber entan-
glement, with atomistic precision. Another challenge the field faces is creating a more
efficient discovery process for supramolecular gels with real-life use. A variety of potential
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applications are explored for these soft materials, with each application requiring specific
material properties. Obtaining a priori knowledge on the tunability of these material prop-
erties, would drastically change the development strategy of supramolecular gels and
could enable them to have a tangible impact on society. One approach, currently being
heavily explored for the directed design of other next generation materials, is establishing
quantitative structure–property relationships by means of machine learning [150–155].
In previous paragraphs, we already touched on the use of machine learning models to
facilitate the discovery of gelators [146–148]. In this regard, collecting material properties
of different supramolecular gels that are obtained through a consistent and unambiguous
manner in a central and open database would greatly expedite the search for quantitative
structure–property relationships through machine learning.
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