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Abstract

In the present study, we investigated the topographical distribution of ganglion cells and dis-
placed amacrine cells in the retina of the collared peccary (Pecari tajacu), a diurnal neotropi-
cal mammal of the suborder Suina (Order Artiodactyla) widely distributed across central and
mainly South America. Retinas were prepared and processed following the Nissl staining
method. The number and distribution of retinal ganglion cells and displaced amacrine cells
were determined in six flat-mounted retinas from three animals. The average density of gan-
glion cells was 351.822 + 31.434 GC/mmZ. The peccary shows a well-developed visual
streak. The average peak density was 6,767 GC/mm? and located within the visual range
and displaced temporally as an area temporalis. Displaced amacrine cells have an average
density of 300 DAC/mm?, but the density was not homogeneous along the retina, closer to
the center of the retina the number of cells decreases and when approaching the periphery
the density increases, in addition, amacrine cells do not form retinal specialization like gan-
glion cells. Outside the area temporalis, amacrine cells reach up to 80% in the ganglion cell
layer. However, in the region of the area temporalis, the proportion of amacrine cells drops
to 32%. Thus, three retinal specializations were found in peccary’s retina by ganglion cells:
visual streak, area temporalis and dorsotemporal extension. The topography of the ganglion
cells layer in the retina of the peccary resembles other species of Order Artiodactyla already
described and is directly related to its evolutionary history and ecology of the species.

Introduction

The Amazon rainforest is the most biodiverse biome of the planet. It is the home of many ani-
mal species, including mammals, thus being a significant source of data for comparative anat-
omy and physiology of tropical wildlife. Throughout the years, several studies have focused on
the visual system morphophysiological organization in rodents and primates [1-22].

PLOS ONE | https://doi.org/10.1371/journal.pone.0239719  October 1, 2020

1/17


http://orcid.org/0000-0002-6148-1050
https://doi.org/10.1371/journal.pone.0239719
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239719&domain=pdf&date_stamp=2020-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239719&domain=pdf&date_stamp=2020-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239719&domain=pdf&date_stamp=2020-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239719&domain=pdf&date_stamp=2020-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239719&domain=pdf&date_stamp=2020-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0239719&domain=pdf&date_stamp=2020-10-01
https://doi.org/10.1371/journal.pone.0239719
https://doi.org/10.1371/journal.pone.0239719
http://creativecommons.org/licenses/by/4.0/
http://cnpq.br/
http://cnpq.br/

PLOS ONE

Ganglion cells and displaced amacrine cells density in the retina of the collared peccary

data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

The Order Artiodactyla has been the target of many studies that aimed to characterize the
morphology and physiology of retinal cells. Methods that used morphological and electrophys-
iological analysis have shown a dichromatic vision supported by short and medium-wave-
length sensitive cone cells [23-29]. More specifically, in the ganglion cells layer, the
topography distribution was studied in species such as the domestic pig-Sus scrofa [30, 31],
the giraffe—Giraffa camelopardalis [32], Hippopotamus—Hippopotamus amphibius [33] goat
—Murciano-granadina breed [34], and the sheep—Owis aries [35]. These species presented
similar topographical ganglion cells distribution: the presence of a high cellular density region
elongated horizontally and situated above the optic disc, known as visual streak; a density peak
along the visual streak that is temporally dislocated and known as area temporalis [36]. This
spatial variation of the cell density was also observed for the photoreceptors cone type with
short and medium wavelengths in the retina of pigs [29].

The collared peccary (Pecari tajacu) is a neotropical mammal of the suborder Suina (Order
Artiodactyla), morphologically similar to the suidae of the Old World [37] The collared pec-
cary is widely distributed across central and mainly South America. They have a diurnal/cre-
puscular activity, feeding in the early to mid-morning and late afternoon to the early hours of
the night [38]. For peccary, Ahnelt et al., pointed out that peccaries and suits have similar pho-
toreceptor morphology with rods and cones area easily distinguishable [28]. Furthermore,
cones had a high concentration in temporal retina of which the S cones, were arranged in a
random mosaic and comprised 10% of the total cone cell population as it is observed for that
type of cone in other mammals [28]. Recently, Ezra-Alia et al., have reported more detailed
aspects of the peccary retina. They showed that the amount of M/L cones is greater than S
cones, and that the amplitude of the combined response of cones and rods is smaller compared
to domestic pigs, but very similar to minipigs [39].

The characterization of the ganglion cell distribution and density is still missing for the col-
lared peccary. Thus, in the present study, we aimed to fill this gap using whole-mounted reti-
nas and Nissl staining to investigate the ganglion cell topography of the collared peccary.

Materials and methods
Ethical aspects

Experiments were performed with three adults collared peccary (P. tacaju), all males. With the
weight between 15-22 kg and age about 2.5 years (+0.6). The animals were obtained from
Empresa Brasileira de Pesquisa Agropecuaria—Embrapa/Para. The maintenance and handling
procedures were reviewed and approved by the research ethics committee of the Universidade
Federal do Para (CEPAE, N° 034-2015).

Animals

The peccaries were euthanized with a 50 mg/kg lethal intraperitoneal injection of sodium thio-
pental (Thionembutal, Abbott, Sdo Paulo, Brazil) and later the eyes were removed for the pres-
ent research. The eyes were enucleated immediately after death, cornea and lens were
removed. Eyecups were fixed by immersion in 10% formaldehyde in 0.1 M phosphate buftfer,
pH 7.4. After fixation, whole mounts of the retina were prepared and processed following the
Nissl staining method [15, 32, 40]. For retinal orientation first the optic nerve was identified by
its conspicuous oval appearance and temporal displacement. Next, five cuts were performed as
follow, one cut at each nasal and temporal ends just below the optic nerve, one cut at the ven-
tral end and two cuts in the ends of the diagonal direction.

For the technique described above only six retinas from three animals (all male) were used,
firmly adhered to vitreal side up in gelatinized slice, was incubated in formaldehyde vapors for
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two hours at 60 °C. Next, the retina was washed in distilled water and stained with 0.5% cresyl
violet for 10 min and dehydrated in a series of graded ethanol concentrations, cleared in xylene
and coverslipped with Permount.

Imaging and analysis
The ganglion and amacrine cells were viewed and digitally documented using a microscope
Axion Scope Al (Carl Zeiss) with camera Axiocam HRc. The cell counting was made directly
in the microscope using square fields and an objective A-plan 100x/1.25 Oil (Carl Zeiss). The
cells were counting at 1 mm intervals along two meridians: (1) horizontal, in the naso-tempo-
ral axis along the visual streak; (2) vertical, dorsal-ventral axis, which crosses the horizontal
meridian and the optic disc perpendicularly. Counts were also made along the vertical merid-
ian from temporal to nasal border. For some special-target areas, as the visual streak or area
temporalis, the interval between the counting fields was 0.5 mm and 0.25 mm, respectively.
The ganglion and amacrine cell counts were converted to density in cells/mm?, and the esti-
mation of the isodensity lines was described in earlier studies of our group [15, 21]. Briefly, the
isodensity contours were plotted linking the points over an isodensity contour and the points
located between densities higher and lower than that corresponding to the isodensity contours.
The total number of ganglion cells (GC) and displaced amacrine cells were then obtained by a
simple measure of the area between two isodensity contours multiplying the area times the
mean density value of the two isodensity contours. The total number was then the sum of all
the resulting isodensity figures. To color the topographic maps the isodensity contours were
drawn and converted into color-coded isodensity lines using SigmaPlot™ for Windows™ Ver-
sion 12.5 software (Systat Software, Inc., Richmond, CA).

Statistical analysis

For descriptive statistics and plotting of Figs 5, 6, 7 and 9, we used the SigmaStat™ for Win-
dows™ Version 3.11 program (Systat Software, Inc., Richmond, CA).

Results

Gross anatomy, retinal area and identification of ganglion cells and
displaced amacrine cells

The peccary’s retina had a typical vascular pattern called holangiotic as early described [39],
the optic disc (OD) has an oval appearance. It is located just below the center of the retina and
temporally displaced (Fig 1). The retinal area comprised 837.8 + 56.5 mm” (N = 6) before the
histological procedure and 828.8 + 52.3 mm? after the histological procedure. The shrinkage
due to histological procedures was estimated and ranged from 0.40% to 1.87%, a compilation
of retinal area measurements performed before and after histology is showed on Table 1. The
shrunken area was restricted to the periphery. Thus, ganglion cell counting was completed
with no corrections for shrinkage.

We used morphological criteria to differentiate ganglion cells from neuroglial cells and dis-
placed amacrine cells according to Hughes [41] The same criteria was used in other studies for
artiodactyls species [32, 42, 43] and other species [17, 40, 44]. Briefly, ganglion cells have a
large soma with an oval pale nucleus and a prominent nucleolus with abundant Nissl substance
visible in the cytoplasm. On the other hand, displaced amacrine cells have small soma and
cytoplasm containing less Nissl (Fig 2).
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Fig 1. Wholemount retina of peccary. The retina was flattened on gelatin-coated slides right after the histological dissection. Blood
vessels can be seen converging to the optic disc to where the arrow is pointed.

https://doi.org/10.1371/journal.pone.0239719.g001

Total number and topography of ganglion cells

The total of the ganglion and displaced amacrine cells was estimated by the integration of iso-
density contours from the isodensity maps (Fig 3). The total number of ganglion cells for all
retinas was 1,029,498 (+121,060) (Table 1). Table 2 shows the descriptive statistic for the den-
sity of ganglion cells; the mean density for all retinas analyzed was 2254 GC/mm?” (+ 346.7).
The animal 03 showed the lower values, around 1,990 GC/mm® for both retinas. The density
peak also varied strongly, the highest value was 9,900 GC/mm?, and the lower value was 5,100
GC/mm?, with peak mean at 6,767 GC/mm? (£1,914).

When we analyzed the ganglion cell isodensity maps (Fig 3), it can be seen that the lower
cellular density occurred at the retinal periphery and was around 500 GC/mm?®. The density
increases concentrically towards the visual streak with density contours varying from around
2000 to 4000 GC/mm”. Besides, in visual streak, there was a temporarily dislocated circular
region with densities between 4000 and 5000 GC/mm?, inside this area it s located the peak
density (*), this area is called area temporalis [36]. Fig 4 shows the “average” isodensity map
for all retinas used in this study. For the “average” map, the isodensity contours were drawn
from mean density values of six retinas and plotted on the map of Animal 03 (left retina). Here
we analyzed the number of ganglion cells by region. Each region was defined for lines isoden-
sity contours. Thus, region A corresponded to the area between the wholemount border and
the 500 GC/mm? contour. The B region is the area between 500 and 1000 GC /mm?; C region
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Fig 2. Nissl-stained of the whole-mounted retina. Ganglion cells are indicated by filled arrows and displaced
amacrine cells by the empty arrow. Ganglion cells have a large soma with pale nucleus and nucleolus with abundant
Nissl substance. Displaced amacrine cells have small soma and cytoplasm containing less Nissl substance. Scale

bar = 1pm.

https://doi.org/10.1371/journal.pone.0239719.9002

was the area between 1000 and 2000 GC/mm?; D region was the area between 2000 and 3000
GC/mm% E region was the area between 3000 and 4000 GC/mm> F region was the area
between 4000 GC/mm” and density peak area represent by (*). In Fig 5 we presented a column
graphic compared to the number of ganglion cells by region identify in the “average” isoden-
sity map showed in Fig 4. Here we do not consider the density peak for this comparison. We
observed that the region with most ganglion cells was C, followed for the B and D region.

The Figs 6 and 7 show the ganglion cells density profile in the dorsal-ventral and temporal-
nasal axes, respectively. For the dorsal-ventral axis (Fig 6) the peak density was temporarily
located at a mean distance of 3.13 mm (+ 0.38) from the dorsal region to the optic nerve. The
peak density varied among retinas with values ranging from 5100 to 9900 GC/mm? (Table 2).
From the optic nerve, there is an abrupt decrease in cell density to values close to 1000 GC/
mm? in the dorsal and ventral. Similarly, in the dorsal and ventral periphery, especially
between the retinal border and first-line contour, the density falls to about 500 GC/mm?>.

For the temporal-nasal axis, along the visual streak (Fig 7), the density was around 4000
GC/mm? from nasal to central direction. The peak density was temporarily located at approxi-
mately 6.77 mm (+ 0.60) from the optic nerve.

Displaced amacrine cells

The topographical distribution of displaced amacrine cells (DAC) differs significantly from the
ganglion cells distribution in two critical aspects: First, there was no spatial arrangement such
as a visual streak; second, there was a significant decrement of displaced amacrine cells in the
area temporalis (Fig 8). The distribution of displaced amacrine cells is homogeneous in the
majority of the retina (Fig 8B) with a density of around 3000 DAC/mm?, and in the area tem-
poralis region (white stippled circle), there was a considerable decrease in the density of dis-
placed amacrine cells.

PLOS ONE | https://doi.org/10.1371/journal.pone.0239719  October 1, 2020 5/17


https://doi.org/10.1371/journal.pone.0239719.g002
https://doi.org/10.1371/journal.pone.0239719

PLOS ONE Ganglion cells and displaced amacrine cells density in the retina of the collared peccary

Right ~Animal 01  Lef

500
1000
500
1000 2000
2000 3000
3000 4000
5000
6000 5000
2
T

Right ~ Animal 02  Left

500
1000

2000
3000

5000

Right ~Animal 03  Left

500
500 1000
1000
2000 2000
3000 3000
4000
5000

A

Fig 3. Ganglion cell isodensity maps for peccary’s retina. The contours correspond to the isodensity lines. The visual streak is
visible by the horizontal elongation of the contours in the centro-dorsal retina. (*) Peak density local, () optic disc. Scale bar = 5
mm.

https://doi.org/10.1371/journal.pone.0239719.9003
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1000

Fig 4. Ganglion cell mean isodensity map of peccary’s retina. The contours correspond to the isodensity lines. The visual streak is visible by the horizontal elongation
of the contours in the centro-dorsal retina. Each letter represents a different region of cellular density, (A) corresponded to the area between the wholemount border and
the 500 GC/mm? contour. The (B) area between 500 and 1000 GC /mm?; (C) area between 1000 and 2000 GC/mm?; (D) region between 2000 and 3000 CG/mm? (E)
region between 3000 and 4000 GC/mm?, (F) region between 4000 GC/mm? and Peak density (*), (s) optic nerve. Scale bar = 5 mm.

https://doi.org/10.1371/journal.pone.0239719.g004

From the neurons in the ganglion cell layer the percentage of amacrine cells was always
larger (reaching up to 70%) than the percentage of ganglion cells except for the area temporalis
(Fig 9A). Notably, in the area temporalis, there was an inversion of the percentage of amacrine
and ganglion cells where the amacrine cells decreased to 30.52% =+ 3.91 on average against
69.48% +3.09 of ganglion cells (Fig 9B).

Discussion

In the present study, we have investigated the density distribution of ganglion and displaced
amacrine cells using six retinas from the collared peccary, a diurnal mammal found
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throughout all Amazon Rainforest. The ganglion cell layer showed three characteristic regions
with high cellular density: visual streak; area temporalis and a dorsotemporal extension named
anakatabatic area, the later also found in other animals such as giraffe [32]. We located the
visual streak above the optic nerve and the area temporalis superposed on the visual streak and
the dorso temporal extension forming a dorsal arch of increased number of ganglion cells.

These results suggested that despite the difference in mean density values as well as peak
density values, collared peccary and other species of the order Artiodactyla seem to share
essential characteristics like retinal organization in ganglion cells layer. For example, in pec-
cary, the mean cell density of ganglion cells in all retinas analyzed was 2253.5 GC/mm?, this
value is higher than was reported for the wild pig (Sus scrofa), whose mean density was about
1133 GC/mm? [31]. On the other hand, if we consider just the peak density value for collared
peccary, the average was 6767+1.94 GC/mm?, which is very close to what was found for wild
pig’s retina, that was 5735 + 1066 GC/mm?” [31]. Besides, the density peaks in both animals are
displaced temporally relative to the optic nerve inside the visual streak. When our results for
the collared peccary are compared to the retina topography analysis carried out in other spe-
cies from the Artiodactyla order, some similarities are also noticed. For the goat, Gonzales-Sor-
iano et al., reported a peak density of 3592 GC/mm” restricted to a circular area temporal to
the optic disc, besides the existence of a visual streak [34]. In another study, this time in adult
sheep retinas, the authors also found a visual streak formed by ganglion cells and area tempora-
lis with a peak density of 18,000 GC/mm? [35]. These visual specializations (visual streak and
area temporalis) were described in many artiodactyls such as giraffes [32], goats [41], cattle,
pigs, and sheep [32, 33], animals that inhabit a variety of environments, from the savannah to
dense rainforests. Whereas the dorsal extension was found in artiodactyls such as sheep [35],
giraffes [32], and the Nubian ibex [42].

Coimbra et al., [32] argued based on the theory of phylogenetic ancestry of Stone [45] that,
as the horizontal streak and area temporalis are frequent in retinas of artiodactyls, these
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Fig 8. Mean cell density in the peccary’s retina. The color scale on the right indicates density variation. (A) Ganglion
cell density, the visual streak can be easily seen as a horizontal narrowly band in the naso-temporal axis. (B) Displaced
amacrine cell density was approximately homogeneous overall retina surface. Interestingly, in the area temporalis,
there was an intense decrease in the density of displaced amacrine cells. For both retinas, the area temporalis and the
optic nerve is indicated by the white dotted circle and white disc, respectively. Scale bar = 5 mm.

https://doi.org/10.1371/journal.pone.0239719.9008

specializations are most likely plesiomorphic characters inherited from a common ancestor.
Thus, regardless of habitat or lifestyle, the visual streak and area temporalis are conserved traits
in the retina of the order [26, 31, 32, 34, 46]. Based on Hughes [47], Coimbra et al., [32] also
claim that the joint presence of these two conspicuous retinal characteristics certainly indicates
their relation with important behavioral marks like foraging and avoiding predators. The dorso-
temporal extension forms a dorsal arch of ganglion cells increase Some authors reported that
this specialization is closely related with demands required by the inferior visual field such as
spotting predators, orientation during foraging or ambulation [32]. It was also found in other
artiodactyl living in mountains and valleys [42], which points to a shared ecological niche.

Undoubtedly, independent of the topographical arrangement of retinal cells, the ubiquitous
presence of the visual streak, dorsotemporal extension and area temporalis provide a good
adaptation despite the variety of natural environments inhabited for these animals. In this
respect, we can conclude that the distribution of ganglion cells in the retina of the collared pec-
cary is not different from the distribution of ganglion cells observed in the retinas of other
diurnal artiodactyls. Interestingly, the collared peccary is found in a wide range of
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Fig 9. Stacked column graph of ganglion and amacrine cells for all six retinas studied. (A) Stacked column graph of percentage of amacrine and ganglion cells in the
whole retina, except area temporalis. Each column represents 100% of cells in ganglion cell layer per retina, the percentage of amacrine cells is represented by the gray
region and the percentage of ganglion cells is represented by white. It’s noticeable that amacrine cells are in higher percentage than ganglion cells, the percentage of
amacrine cells is around 70% and 30% for ganglion cells. (B) When just the area temporalis is considered, there was an inversion in the proportion of amacrine and
ganglion cells. Ganglion cells were in a higher percentage than amacrine cells.
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Table 1. Retinal area, shrinkage and total ganglion cells number.

Retina

Animal 01
Animal 01
Animal 02
Animal 02
Animal 03
Animal 03
Mean
Std. Deviation

https://doi.org/10.1371/journal.pone.0239719.t001

Eye

Right
Left
Right
Left
Right
Left

Area (mm?) Shrinkage Total ganglion cells
before After

752 749 0.40% 994,818

791 786 0.63% 907,666

854 838 1.87% 889,134

849 843 0.71% 1,154,780

906 890 1.77% 1,055,662

875 867 0.91% 1,174,927
837.8 828.8 1.05% 1,029,497

56.5 52.3 0.62% 121,060

environments such as desertic regions and tropical forests, suggesting again that the topo-
graphical map described for ganglion cells serves well for different habitats being important
for foraging and avoiding predators.

Displaced amacrine cells

The displaced amacrine cells have been reported in other species but with little emphasis on
their topographical distribution [48-54]. The topography of amacrine cells in the collared pec-
cary retina differs from ganglion cell distribution in some critical aspects related to the retina
specializations, visual steak, dorsotemporal extension and area temporalis.

The topography of the amacrine cells displaced in the peccary’s retina is almost homoge-
neous throughout its extension and does not form a retinal specialization. Except in the area
centralis, the proportion of displaced amacrine cells in the ganglion cell layer of the peccary
retina is higher than the proportion of ganglion cells. Likewise, displaced amacrine cells are
absent from the central area in the retina of the teleost thraira [52]. In addition, studies of a
variety of primate retinas have shown that the proportion of displaced amacrine cells in the
peripheral retina is significantly higher than that in central retina [14, 55, 56].

In the howler monkey (alouatta caraya), a diurnal primate, the proportion of amacrine
cells versus ganglion cells is like that found in the collared peccary. In the alouatta on the
periphery of the retina, amacrine cells represent about 67% to 84% of the total cells in the gan-
glion cell layer. In contrast, in the central retina (fovea) there is an inversion in the proportion
of amacrine and ganglion cells, and amacrine cells represent about 6% of the cells in that
region [14]. In aotus, a nocturnal primate, the proportion of amacrine and ganglion cells is

Table 2. Descriptive statistics of the ganglion cell density for all six retinas.

Ganglion cells density (GC/mm?)

https://doi.org/10.1371/journal.pone.0239719.t002

Animal 01 Animal 02 Animal 03
Right eye Left eye Right eye Left eye Right eye Left eye

Number of counting sites 331 318 372 318 433 437
Mean density 2634 2027 2276 2704 1890 1990
Std. Deviation 2154 1876 1436 1536 1296 1371
Std. Error of Mean 118.4 105.2 74.46 86.15 62.27 65.61

Minimum 75 100 75 200 250 37

25% Percentile 800 600 700 900 700 700
Median 1700 1100 2700 3150 1500 1600
75% Percentile 4200 3200 3400 3800 3100 3300
Maximum (Peak of density) 9900 8200 5700 6500 5100 5200
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similar in most of the retina, except for the central region where displaced amacrine cells also
decrease their percentage concerning ganglion cells [56].

The peculiarities and similarities found in the peccary’ retina concerning other species, rep-
resent essential features of the order Artiodactyla to which the P. tajacu is inserted. The pres-
ence of retinal specializations in the peccary’s retina, such as the visual streak, dorsotemporal
extension and the area temporalis, which are directly related to its evolutionary history and
ecology of the species, allow initiating morphophysiological comparisons of the retina of the
collared peccary with that of other animal species.
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