
May 2018 | Volume 9 | Article 2981

Mini Review
published: 03 May 2018

doi: 10.3389/fneur.2018.00298

Frontiers in Neurology | www.frontiersin.org

Edited by: 
Timo Kirschstein,  

University of Rostock, Germany

Reviewed by: 
Luiz E. Mello,  

Federal University of  
São Paulo, Brazil  
Carola A. Haas,  

Albert Ludwigs Universität  
Freiburg, Germany

*Correspondence:
Steve C. Danzer  

steve.danzer@cchmc.org

Specialty section: 
This article was submitted  

to Epilepsy,  
a section of the journal  
Frontiers in Neurology

Received: 29 January 2018
Accepted: 17 April 2018
Published: 03 May 2018

Citation: 
Godale CM and Danzer SC (2018) 

Signaling Pathways and  
Cellular Mechanisms Regulating 

Mossy Fiber Sprouting in the 
Development of Epilepsy.  

Front. Neurol. 9:298.  
doi: 10.3389/fneur.2018.00298

Signaling Pathways and Cellular 
Mechanisms Regulating Mossy  
Fiber Sprouting in the Development 
of epilepsy
Christin M. Godale1,2 and Steve C. Danzer1,2,3,4*

1 Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States, 2 Neuroscience 
Graduate Program, University of Cincinnati, Cincinnati, OH, United States, 3 Department of Anesthesia, University of 
Cincinnati, Cincinnati, OH, United States, 4 Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States

The sprouting of hippocampal dentate granule cell axons, termed mossy fibers, into the 
dentate inner molecular layer is one of the most consistent findings in tissue from patients 
with mesial temporal lobe epilepsy. Decades of research in animal models have revealed 
that mossy fiber sprouting creates de novo recurrent excitatory connections in the hippo-
campus, fueling speculation that the pathology may drive temporal lobe epileptogenesis. 
Conducting definitive experiments to test this hypothesis, however, has been challenging 
due to the difficulty of dissociating this sprouting from the many other changes occur-
ring during epileptogenesis. The field has been largely driven, therefore, by correlative 
data. Recently, the development of powerful transgenic mouse technologies and the 
discovery of novel drug targets has provided new tools to assess the role of mossy fiber 
sprouting in epilepsy. We can now selectively manipulate hippocampal granule cells in 
rodent epilepsy models, providing new insights into the granule cell subpopulations that 
participate in mossy fiber sprouting. The cellular pathways regulating this sprouting are 
also coming to light, providing new targets for pharmacological intervention. Surprisingly, 
many investigators have found that blocking mossy fiber sprouting has no effect on 
seizure occurrence, while seizure frequency can be reduced by treatments that have 
no effect on this sprouting. These results raise new questions about the role of mossy 
fiber sprouting in epilepsy. Here, we will review these findings with particular regard to 
the contributions of new granule cells to mossy fiber sprouting and the regulation of this 
sprouting by the mTOR signaling pathway.

Keywords: mTOR, phosphatase and tensin homolog/Pi3K/Akt, adult neurogenesis, dentate granule cell, 
epileptogenesis

Granule cells of the hippocampal dentate gyrus possess unique axonal projections known as mossy 
fibers. In healthy animals, mossy fibers produce numerous collaterals in the dentate hilus, which 
innervate mossy cells and hilar interneurons before projecting into stratum lucidum of the CA3 
pyramidal cell layer, where they innervate interneurons (1) and the apical and basal dendrites of 
CA3 pyramidal cells (2). Recent work has also revealed that granule cells contact CA2 pyramidal 
cells, a population previously believed to be devoid of mossy fiber input (3–5). In laboratory animals 
modeling mesial temporal lobe epilepsy (mTLE), mossy fiber axon reorganization can occur in all 
of the hippocampal subfields normally targeted by granule cells (6–12). In addition to their normal 
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projections, however, granule cell axons add an additional target 
to their repertoire: the inner molecular layer of the dentate gyrus 
(13–18). The dentate molecular layer contains the apical den
drites of the granule cells and is subdivided into inner, middle, 
and outer regions. Portions of the dendritic tree in the middle 
and outer molecular layers (oml) are innervated by afferents from 
entorhinal cortex. Axons from lateral entorhinal cortex favor the 
oml, while medial entorhinal cortex favors the middle (19, 20). 
The inner molecular layer contains the proximalmost portion 
of the granule cell dendritic trees, which are innervated by hilar 
interneurons, mossy cells, and commissural fibers (21, 22).

In the hippocampus, granule cell mossy fiber axons sprout, 
projecting new collaterals to the inner molecular layer, where 
they form excitatory synaptic connections with the proximal 
portions of the granule cell dendritic trees (23, 24). Mossy fiber 
sprouting is not indiscriminate, however, as the granule cell 
axons form a dense plexus of fibers in the inner molecular layer, 
but often avoid immediately adjacent regions like the granule  
cell body layer and the middle molecular layer. Cooccurring 
granule cell dispersion, in which the granule cell bodies spread 
into the molecular layer, does reduce this specificity. When robust 
dispersion is present, sprouted mossy fibers also target granule 
cell somas (25–27). The mechanisms regulating the specificity  
of mossy fiber sprouting have yet to be elucidated.

FUnCTiOnAL SiGniFiCAnCe OF MOSSY 
FiBeR SPROUTinG in ePiLePSY

Epilepsy is hypothesized to occur as a consequence of persistent 
changes in brain structure and function that create a propensity 
for spontaneous recurrent seizures (28). A key goal of epilepsy 
research, therefore, is to identify and understand the specific 
brain changes responsible for the disease. Mossy fiber sprouting 
“rewires” the epileptic hippocampus, creating recurrent excita
tory circuits (24). The creation of this de novo proexcitatory 
circuit, combined with its consistent appearance in humans and 
laboratory animals with mTLE, has led to an intense field of 
study aimed at determining whether mossy fiber sprouting plays 
a causal role in the disease.

Although mossy fiber sprouting is one of the most frequently 
observed changes in mTLE, the degree of sprouting varies con
siderably among laboratory animals and humans, ranging from 
extensive to undetectable (29). Schmeiser et al. (30), for example, 
observed no sprouting in 18% of patients with mTLE. The epilep
sies include a complex array of dozens of identified disorders (31), 
so it is not a huge surprise that no single pathology is universally 
present, even within the subclassification of mTLE. Furthermore, 
the absence of sprouting in some patients with mTLE clearly dem
onstrates that, at best, mossy fiber sprouting can only be relevant 
to a subset of patients with the condition, and is not required for 
the development of the disorder. Use of animal models has made 
it possible delve deeper into the relationship between sprouting  
and epilepsy, with investigators asking whether a positive correla
tion exists between the degree of sprouting and epilepsy severity. 
While many studies have revealed positive correlations, others 
have not (24). The circumstantial evidence linking mossy fiber 

sprouting to epilepsy, therefore, is ambiguous. One possible rea
son for inconsistent results is that mossy fiber sprouting is just 
one of the many pathologies that contribute to epilepsy. Hester 
and Danzer (32), for example, found that sprouting did positively 
correlate with seizure frequency in the rodent pilocarpine model 
of epilepsy. They also found, however, that positive correlations 
were even stronger when multiple pathologies were considered. 
This finding favors an “a la carte” model of epileptogenesis,  
in which epilepsy can be produced through different combina
tions of pathologies. If correct, sprouting may play a critical role 
in one patient, but be absent from another—even though both 
exhibit similar seizure phenotypes.

COnTRiBUTiOnS OF newLY GeneRATeD 
AnD MATURe GRAnULe CeLLS TO 
MOSSY FiBeR SPROUTinG

Unlike the majority of neurons in the brain, dentate granule 
cells continue to proliferate throughout life in laboratory ani
mals (33). Adult neurogenesis also appears to occur in humans  
(34, 35), although this conclusion is controversial (36). If neuro
genesis does continue in adult humans, a population of neurons 
that differs considerably by age will result. These age differences 
are functionally significant, as young granule cells in rodents 
(4–6 weeks) exhibit morphological and physiological properties 
that are distinct from older cells (37–40). The impact of cellage 
differences is also evident in epilepsy, where newborn granule 
cells are more likely to exhibit epilepsyassociated pathologies— 
such as misplacement to ectopic locations or formation of aber
rant hilarprojecting basal dendrites—relative to adult granule 
cells (41–47). Notably, while discerning whether adult neuro
genesis occurs in adult humans will take time and additional 
studies to resolve, mossy fiber sprouting and other granule cell 
abnormalities are clearly present in people with mTLE. These 
pathologies, therefore, will remain relevant regardless of their 
cellular origins.

The relationship between granule cell age and whether or 
not the cell contributes to mossy fiber sprouting has taken 
considerable effort to decipher. Initial studies clearly revealed 
that newborn granule cells contribute to mossy fiber sprouting 
(41), but numerous followup studies were required to establish 
that their contribution follows a complex temporal dynamic 
(44, 48, 49). Specifically, while some granule cell abnormali
ties, such as basal dendrites and ectopic localization, become 
evident before the newborn cells reach maturity (50–55), mossy 
fiber sprouting does not appear until the cells are functionally 
mature: about four weeks of age. The age range of granule cells 
that can contribute to mossy fiber sprouting is also broader 
than the range for other abnormalities. While ectopic cells 
originate almost exclusively from cells born after the epilepto
genic insult, cells up to 7 weeks old at the time of the insult can 
contribute to mossy fiber sprouting (11). The broader age range 
of contributing cells, and the apparent requirement for cells 
to reach maturity before their axons begin to sprout, creates 
an agegradient among the cells that underlie sprouting. The 
oldest cells (7  weeks) contribute first, with axons from these 
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FiGURe 1 | Confocal maximum projections showing mossy fiber axons 
labeled with zinc transporter-3 (red). A control animal and two epileptic 
animals are shown. Tissue from epileptic animals was collected about 
5 months after pilocarpine-induced status epilepticus (SE). The epileptic 
animal shown in the middle panel received a control ablation treatment 
(SE-control), while newborn granule cells were ablated from the epileptic 
animal in the lower panel 1 month before tissue collection (SE-ablation). 
Regions highlighted in blue in each image are shown enlarged in the right 
panels. Both SE animals show mossy fiber sprouting in the inner molecular 
layer (iml), while the control animal did not. Newborn granule cell ablation 
reduced seizure frequency by about 50%, but had no effect on mossy fiber 
sprouting (61). Abbreviations: oml, outer molecular layer; mml, middle 
molecular layer. Scale bars = 200 µm (left) and 50 µm (right).
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neurons appearing in the inner molecular layer within 2 weeks 
of the insult, while the axons of younger cells do not appear until 
4 weeks after the insult.

The delayed development of mossy fiber sprouting by new
born granule cells is something of a surprise. This is because the 
delay does not reflect an inability of immature granule cells to 
produce an axon. Axogenesis begins within 4  days of granule 
cell birth (56), and axons reach stratum lucidum of CA3a—the 
distalmost region of CA3—by 12  days (57, 58). For a mossy 
fiber axon to reach CA3a, it must grow hundreds of microns 
further than would be needed to reach the inner molecular layer. 
Immature granule cells, therefore, are capable of extending axons 
significant distances, raising the question of why extension to 
the inner molecular layer is delayed till maturity. One plausible 
explanation is that immature cells are unresponsive to signals that 
induce mossy fiber sprouting among their more mature siblings. 
Examination of signaling molecules expressed at the transition 
from immature to mature stages could be a fruitful avenue for 
future studies.

iMPACT OF ABLATinG newBORn CeLLS 
On MOSSY FiBeR SPROUTinG

Advances in technology have made it possible to selectively 
manipulate newborn granule cells in the epileptic hippocampus 
to assess their role in epilepsy. In the first of these studies, Cho 
and colleagues (59) generated transgenic mice expressing the 
cellkilling gene thymidine kinase in granule cell progenitors. 
When they used these transgenic mice to block adult neuro
genesis in the mouse pilocarpine model it significantly redu ced 
spontaneous seizure frequency, but had no effect on the extent 
of mossy fiber sprouting. Similarly, Hosford and colleagues  
(60, 61) used a diphtheriatoxin receptor expression strategy to 
ablate newborn granule cells either days or months after pilocar
pine epileptogenesis. Treatments reduced seizure occurrence by 
about 50%, but neither reduced mossy fiber sprouting (Figure 1). 
This dissociation raises questions about whether mossy fiber 
sprouting plays an important role in regulating seizure occur
rence in epilepsy.

The absence of an effect of newborn cell ablation on the degree 
of mossy fiber sprouting was unexpected. The newborn gra
nule cells eliminated have been shown to contribute to sprou ting, 
so some reduction was predicted. Indeed, other measures of 
aber rant neurogenesis, like ectopic cell numbers, were reduced 
in all three studies (59–61). Explanations for the absence of an 
effect on sprouting include the possibility that the contribution 
of newborn cells is less than predicted, or that surviving cells 
compensate by increasing their level of sprouting. In the ablation 
experiments conducted to date, the interval between ablation and 
final analysis was several months, providing a window for com
pensatory cell growth to occur. Compensatory sprouting would 
also be consistent with the suggestion by Buckmaster (62) that 
homeostatic mechanisms act to maintain a target level of granule 
cell innervation in the brain, such that loss of recurrent input 
by ablation would induce surviving cells to replace that input.  
In either case, however, significant antiepileptogenic effects can 
be achieved in the absence of reduced mossy fiber sprouting.

ReGULATiOn OF MOSSY FiBeR 
SPROUTinG BY mTOR

The mechanistic (previously referred to as mammalian) target 
of rapamycin (mTOR) pathway has recently emerged as a pro
mising target for antiepileptogenesis therapies, and studies 
with mTOR antagonists provide some novel insights into the 
sig nificance of mossy fiber sprouting. The mTOR pathway regu
lates neuronal survival, growth, and plasticity. In addition, the 
pathway becomes hyperactive following epileptogenic brain 
injury in animal models and in humans with epilepsy (63–65). 
In addition, many investigators have found that inhibition of 
the pathway with mTOR antagonists can reduce the incidence 
of spontaneous seizures in epileptic animals (66–71), although 
others have found no effect (72–75). The effects outlast the 
periods of drug exposure, indicative of diseasemodifying, rather 
than acute anticonvulsant, properties (76). Evidence of disease 
modifying effects raised the possibility that mTOR antago
nism might mitigate pathological brain changes that mediate 
epileptogenesis, so naturally investigators assessed mossy fiber 
sprouting. Zeng and colleagues (66) observed reduced mossy 
fiber sprouting in the rodent kainic acid model of epilepsy when 
the animals were treated with the mTOR antagonist rapamycin; 
a finding replicated by numerous other groups using multiple 
epilepsy models (67–69, 71, 77–79). Direct infusion of rapa
mycin into the hippocampus also blocked sprouting locally 
around the infusion site (80). Notably, however, rapamycin 
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can reduce mossy fiber sprouting without impacting seizures. 
Systemic treatment with rapamycin in the pilocarpine model 
of epilepsy blocked mossy fiber sprouting, but had no effect on 
seizure frequency (72, 74) or interictal spikes (81). Rapamycin 
was also ineffective at blocking paroxysmal discharges in the 
intrahippocampal kainic acid model of epilepsy, but did block 
mossy fiber sprouting (75). These findings are reminiscent of 
work begun decades ago, when it was found that treatment with 
the protein synthesis inhibitor cycloheximide could block mossy 
fiber sprouting, but not seizures in the rodent kainic acid and 
pilocarpine models (82–84). Although the efficacy of cyclohex
imide is controversial (85, 86), the finding that seizures can be 
dissociated from mossy fiber sprouting is not. Zhu et al. (87), for 
example, used the antineurogenic agent methylazoxymethanol 
acetate to reduce sprouting in the rodent pilocarpine model,  
but this had no effect on behavioral seizure frequency. Viewed in 
toto, therefore, rapamycin has consistently been shown to block 
mossy fiber sprouting, strongly implicating excess mTOR signal
ing in the process. Correlated reductions in mossy fiber sprout
ing and seizure frequency, however, occur in some cases but not 
in others, suggesting that sprouting may be an epiphenomenon, 
rather than a cause of mTLE.

Analyses of transgenic animals with granule cellspecific 
hyperactivation of the mTOR pathway provide additional 
insights into the role of mTOR signaling in sprouting. Granule 
cellspecific hyperactivation of mTOR signaling has been 
achieved by deleting phosphatase and tensin homolog (PTEN) 
from granule cell progenitors and immature granule cells 
using tamoxifeninducible NestinCreERT2, Gli1CreERT2, and 
PomcCre transgenic mice (88–90). PTEN acts as a negative 
regulator of the mTOR pathway, while the different promotors 
can be used to target PTEN deletion to postnatally generated 
granule cells. Deletion of PTEN from 2 to 4weekold mice 
produces epilepsy in Nestin and Gli1Cre lines (88, 89). PTEN 
deletion leads to granule cell mossy fiber axon abnormalities, 
with evidence for increased axon collateralization in the hilus 

and stratum lucidum (91) and the development of recurrent 
excitation in acute hippocampal slices (92, 93). Epilepsy can 
develop in these animals, however, without robust mossy fiber 
sprouting (89). Sprouting does occur (Figure 2), but only in a 
subset of animals, demonstrating that sprouting is not essential 
for recurrent seizures in this model. Moreover, the degree of 
sprouting followed an “all or none” pattern, with some animals 
exhibiting extensive sprouting, and others essentially none (89). 
This result is interesting, because the percentage of granule 
cells lacking PTEN covered a broad range in this study: from 
1 to 25%. If PTEN loss—and subsequent mTOR hyperactiva
tion—leads to the direct, cellintrinsic, induction of mossy fiber 
sprouting, one would predict a graded effect, with the degree of 
sprouting increasing gradually with the percentage of knockout 
cells. The absence of a graded increase implies that hyperactiva
tion of the mTOR pathway is not sufficient to induce mossy 
fiber sprouting. Rather, the findings suggest some other factor 
is abruptly engaged once the animals reach deletion rates of 
about 15% (Figure 2). Whether this is the onset of spontaneous 
seizures or some other change remains to be determined.

THeRAPeUTiC iMPLiCATiOnS

Mossy fiber sprouting is one of the most consistent pathological 
findings of mTLE, and the recurrent excitatory circuits created 
by sprouted mossy fiber axons have long held appeal as a mecha
nism of epileptogenesis. Recent work has provided new insights 
into the cellular and molecular basis of the phenomenon. First, 
it is now clear that both developmentally generated and adult
generated granule cells contribute to mossy fiber sprouting. The 
specific temporal dynamics of whether, and under what con
ditions, different age cell populations contribute is still being 
worked out, but it seems reasonable to conclude that therapies 
designed to reduce sprouting will need to target granule cells 
produced from development to adulthood. Second, mTOR 
pathway activation has emerged as an essential requirement of 

FiGURe 2 | Confocal reconstructions of biocytin-filled hippocampal granule cells from a control (A) and a phosphatase and tensin homolog (PTEN) knockout  
(B) mouse. Labeled granule cells are shown in red, while the dentate granule cell body layer (dgc-l) borders are outlined in green. Note that the axons of the  
control cell are confined to the dentate hilus, while the PTEN knockout cell sends an axon collateral into the molecular layer (arrows). ml, dentate molecular layer. 
Scale bars = 100 µm. (C) Correlation between the degree of mossy fiber sprouting (mfs), assessed by ZnT3 immunoreactivity in the inner molecular layer (iml), and 
the percentage of PTEN KO granule cells. PTEN knockout cells and mossy fiber sprouting were absent from control animals (n = 9, black diamonds). Note the 
abrupt transition between animals with <15% PTEN knockout cells and no sprouting, and animals with deletion rates >15% and extensive sprouting. Figure 
reproduced in part from Pun et al. (89).
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of approaches have dissociated the degree of sprouting from sei
zure incidence. Epilepsy can occur in the absence of sprouting; 
sprouting can be reduced without impacting seizure incidence; 
and seizure incidence can be reduced without reducing sprout
ing. These negative findings, however, are not proof that mossy 
fiber sprouting is unimportant. Negative findings may reflect 
variable effects of sprouting in different epilepsy models, or 
even among patients. Sprouting may play a role in some cases 
and not others (32, 62). It is also possible that the relevance 
of mossy fiber sprouting is to epilepsy comorbidities rather 

than seizure incidence. People with mTLE and depression, 
for example, exhibit more sprouting that people with mTLE 
alone (94). The consistent, pronounced change in hippocampal  
wiring produced by mossy fiber sprouting almost certainly 
affects function, therefore, further study of the phenomenon is 
critical.
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