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Integrated analysis of lncRNA, miRNA 
and mRNA profiles reveals potential lncRNA 
functions during early HIV infection
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Abstract 

Background:  Long noncoding RNAs (lncRNAs) can regulate gene expression in a cis-regulatory fashion or as “micro-
RNA sponges”. However, the expression and functions of lncRNAs during early human immunodeficiency virus (HIV) 
infection (EHI) remain unclear.

Methods:  3 HAART-naive EHI patients and 3 healthy controls (HCs) were recruited in this study to perform RNA 
sequencing and microRNA (miRNA) sequencing. The expression profiles of lncRNAs, mRNAs and miRNAs were 
obtained, and the potential roles of lncRNAs were analysed based on discovering lncRNA cis-regulatory target mRNAs 
and constructing lncRNA–miRNA–mRNA competing endogenous RNA (ceRNA) networks. Then, Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on 175 
lncRNA-associated differentially expressed (DE) mRNAs to investigate the potential functions of DE lncRNAs in ceRNA 
networks.

Results:  A total of 242 lncRNAs, 1240 mRNAs and 21 mature known miRNAs were determined as differentially 
expressed genes in HAART-naive EHI patients compared to HCs. Among DE lncRNAs, 44 lncRNAs were predicted to 
overlap with 41 target mRNAs, and 107 lncRNAs might regulate their nearby DE mRNAs. Two DE lncRNAs might regu-
late their cis-regulatory target mRNAs BTLA and ZAP70, respectively, which were associated with immune activation. In 
addition, the ceRNA networks comprised 160 DE lncRNAs, 21 DE miRNAs and 175 DE mRNAs. Seventeen DE lncRNAs 
were predicted to regulate HIF1A and TCF7L2, which are involved in the process of HIV-1 replication. Twenty DE lncR-
NAs might share miRNA response elements (MREs) with FOS, FOSB and JUN, which are associated with both immune 
activation and HIV-1 replication.

Conclusions:  This study revealed that lncRNAs might play a critical role in HIV-1 replication and immune activation 
during EHI. These novel findings are helpful for understanding of the pathogenesis of HIV infection and provide new 
insights into antiviral therapy.
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Introduction
Early human immunodeficiency virus infection (EHI) 
reflects the period following viral entry during which 
viremia bursts occur until decreasing to a stable viral 
load level approximately 6 months post infection [1–5]. 
During EHI, viremia increases exponentially, while 
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proinflammatory cytokines are produced by innate 
immune cells and coincide with mounting adaptive 
immune responses. Meanwhile, the viral reservoir is 
formed early in infection. It has been reported that the 
events occurring during EHI are critical in determining 
the transmission rates, the course of disease progression, 
and HIV-related morbidity and mortality [6]. To date, the 
pathogenesis of EHI remains unclear. Therefore, explor-
ing the mechanism of HIV pathogenesis during EHI is 
helpful for the design of therapeutic strategies and vac-
cine development.

Long noncoding RNAs (lncRNAs), which are longer 
than 200 nt and do not encode proteins, have attracted 
much attention in recent years [7, 8]. LncRNAs can act 
as guides, scaffolds, decoys, signalling molecules or via 
genomic targeting, acting as cis-or trans-regulatory ele-
ments or through antisense interference to play vital 
roles in a number of biological processes [9–12]. More-
over, lncRNAs bind to specific miRNAs and regulate 
their functions by acting as “miRNA sponges”, which are 
known as competing endogenous RNAs (ceRNAs) [13, 
14]. For example, lncRNA MT1JP regulates the expres-
sion of FBXW7 by competitively binding to miR-92a-3p, 
which in turn affects the progression of gastric cancer 
[15]. Therefore, it will be of interest to explore the func-
tional roles of lncRNAs in different research fields.

Several HIV-related transcriptome analyses have 
focused on the potential functions of lncRNAs, such as 
the differential expression of lncRNAs during HIV-1 and 
HIV-2 infection [16], the impact of lncRNAs on HIV 
replication [17], the roles of lncRNAs in the establish-
ment and reversal of latent HIV infection [18, 19] and 
the relationships between lncRNAs and disease progres-
sion [20]. For example, lnc-RNF125-1, lnc-TRAF5-1 and 
lnc-TRDMT1-1 might control HIV replication by regu-
lating the expression and function of nearby mRNAs in 
a cis-regulatory fashion [17]. Furthermore, 3 lncRNAs, 
PVT1, RP11347C18.3, and RP11-539 L10.2, are dys-
regulated genes in HIV latency and might be targets for 
HIV latency reversal [19]. However, the potential roles 
of lncRNAs during EHI have not been systematically 
investigated.

In this study, we analysed the lncRNA, miRNA, 
and mRNA expression profiles from 3 HAART-naive 
EHI patients and 3 healthy controls (HCs) using RNA 
sequencing (RNA-Seq) and microRNA (miRNA) 
sequencing (miRNA-Seq). The potential roles of lncR-
NAs were analysed based on the prediction of lncRNA 
cis-regulatory target mRNAs and by constructing 
lncRNA–miRNA–mRNA ceRNA networks. We found 
several DE lncRNAs might  involve in HIV-1 replication 
and immune activation during EHI. Our novel findings 
will benefit further exploration of the pathogenesis of 

HIV and propose new potential targets for therapeutic 
strategies.

Materials and methods
Ethics
This study was approved by the Medical Research Eth-
ics Committee of the First Affiliated Hospital of China 
Medical University (Shenyang, China). All participants 
provided written informed consent for participation in 
this study.

Patients
The HAART-naive EHI patients in our study were 
recruited from a large-scale, prospective high-risk men 
who had sex with men (MSM) cohort in Liaoning, China. 
In this cohort, HIV-1-negative MSM were followed 
up every 8  weeks. A fourth-generation enzyme-linked 
immunosorbent assay (ELISA) was used to detect HIV-1 
infection status, and western blotting was applied for 
further validation. HIV-1 RNA amplification testing was 
performed on ELISA-negative samples. HIV infection 
time was estimated as the previous 14 days from the date 
on which the sample testing result was RNA-positive and 
ELISA-negative or the midpoint between the last nega-
tive and first positive results of the ELISA screening tests 
[21]. The stage within 180  days post HIV infection was 
defined as EHI.

Three HAART-naive EHI patients and 3 HCs were 
enrolled for RNA-seq and miRNA-seq. For the 3 EHI 
patients, the level of CD4+ T cell counts and viral loads 
(VLs) were similar. The 3 EHI patients and 3 HCs were 
recruited from the same high-risk MSM cohort men-
tioned above and all participants were males with similar 
ages and none of them were infected by herpes simplex 
virus (HSV), syphilis, hepatitis B virus (HBV) or hepatitis 
C virus (HCV). Also, none of them were  in use of alco-
hol, recreational drugs or nicotine products. The clinical 
characteristics of subjects were listed in Additional file 1: 
Table  S1. In addition, we performed RT-qPCR valida-
tion on 10 EHI patients and 7 HCs, whom were recruited 
from the same cohort as mentioned above. The age, life-
style and co-morbidities status were no statistically dif-
ferent between EHI patients and HCs (Additional file 1: 
Table S1).

Peripheral blood mononuclear cells (PBMCs) from 
EHI patients and HCs were isolated by density gradient 
centrifugation with Ficoll–Hypaque (GE Healthcare), 
cryopreserved in foetal calf serum (Gibco) supplemented 
with 10% DMSO (Sigma) and stored in liquid nitrogen.

Laboratory testing
Anticoagulated whole blood of HIV-1 infected patients 
was collected at each follow-up visit after they were 
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diagnosed as HIV-1 infection. The CD4+T cell count 
was determined using FACS Calibur™ flow cytometer 
(Becton–Dickinson) and plasma viral load (VL) was 
detected by the COBAS AmpliPrep/COBAS TaqMan 
HIV-1 test (Roche). A Syphilis screening serologi-
cal test was performed with the Rapid Plasma Reagin 
(RPR) test (Shanghai Kehua Bio-engineering Co). The 
Treponema Pallidum particle (TPPA) assay (Serodia 
TPPA) was used to confirm the positive RPR results. 
Subjects with both the TPPA and RPR plasma positive 
were considered as current infection. Herpes simplex 
virus type 2 (HSV-2)-specific immunoglobulin G (IgG) 
antibody testing was performed to detect HSV-2 infec-
tion using ELISA methods (HerpeSelect-2 ELISA IgG; 
Focus Diagnostics). Wondfo HIV-HCV-TP-HBsAg 
Multi-Test Kits (Colloidal Gold) were used to detect 
HBV and HCV infection.

RNA isolation and quality control
Total RNA was isolated from PBMCs of 3 HAART-
naive EHI patients and 3 HCs using TRIzol reagent 
(Life Technologies). TurboDnase (Life Technologies) 
was used to eliminate DNA. RNA concentrations were 
measured with a NanoDrop ND-2000 instrument 
(Thermo Fisher Scientific), and RNA quality was esti-
mated by denaturing agarose gel electrophoresis for 
subsequent sequencing. A NanoDrop ND-1000 instru-
ment (Thermo Fisher Scientific) was to ensure quality 
control of miRNA concentrations.

RNA sequencing
Ribo-Zero rRNA removal kits (Illumina) were used 
to exclude ribosomal RNA molecules (rRNA). RNA 
sequencing libraries were constructed with the TruSeq 
Stranded Total RNA Library Prep Kit (Illumina) fol-
lowing the manufacturer’s instructions, and the quality 
was evaluated by a Bioanalyser 2100 system (Agilent 
Technologies). Then, single-stranded DNA molecules 
were clustered and sequenced for 150 cycles on an 
Illumina HiSeq 2500 sequencing system (Illumina). 
Finally, paired-end reads were acquired from the Illu-
mina HiSeq sequencer, and quality control was per-
formed with Q30. Removal of 3′ adaptor‐trimming and 
low‐quality reads was conducted on Cutadapt software 
(v1.9.3). Alignment of the high-quality clean reads 
with the human reference genome (UCSC hg19) was 
performed on hisat2 (v2.0.4) software (http://​ccb.​jhu.​
edu/​softw​are/​hisat2/​index.​shtml).

Additionally, cuffdiff software (part of cufflinks) 
was used to determine the FPKM (fragments per kilo-
base of exon per million fragments mapped) as the 

expression profiles of mRNAs and lncRNAs with the 
guidance of the gtf gene annotation file.

MiRNA sequencing
NEB Next Multiplex Small RNA Library Prep Set for Illu-
mina (New England Biolabs) was performed to construct 
miRNA sequencing libraries. The quality of the librar-
ies was evaluated by a Bioanalyser 2100 system (Agilent 
Technologies). Then, the single-stranded DNA molecules 
from denatured libraries were captured on Illumina 
flow cells and amplified in situ as clusters. A HiSeq 4000 
sequencing system (Illumina) was used for sequencing 
for 50 cycles according to the manufacturer’s instruc-
tions. Cutadapt software (v1.9.3) was used to trim the 
adaptor sequences from the sequencing data and retain 
the adaptor-trimmed reads (> = 15 nt). The trimmed 
reads were merged and used to predict novel miRNAs 
with miRDeep2 software (v2.0.0.5) [22]. The alignment of 
the trimmed reads was used both miRBase (http://​www.​
mirba​se.​org) to obtain known pre-miRNAs and Novoa-
lign software (v3.02.12) (http://​www.​novoc​raft.​com/​
main/​index.​php) for newly predicted pre-miRNAs. The 
primal expression levels of the miRNA were determined 
via the numbers of tags on each mature miRNA. The 
TPM (tag counts per million aligned miRNAs) method 
was used for the standardization of read counts.

Analysis of DE lncRNA cis‑regulatory target mRNAs
The LncRNA Disease database (http://​www.​cuilab.​cn/​
lncrn​adise​ase) [23] was used to identify overlapping 
mRNAs of non-intergenic DE lncRNAs, which includ-
ing bidirectional, exon sense-overlapping, intron sense-
overlapping, intronic antisense and natural antisense 
category DE lncRNAs. Cis-regulatory target mRNAs that 
were involved in HIV infection were determined by the 
HIV Interaction Database (https://​www.​ncbi.​nlm.​nih.​
gov/​genome/​virus​es/​retro​virus​es/​hiv-1/​inter​actio​ns/), 
[24] LncRNA Disease database and Genecard database 
(https://​www.​genec​ards.​org/). Moreover, the neighbour-
ing DE mRNAs were screened within a genomic distance 
of 300 kb upstream or downstream of each DE lncRNA 
transcription start and stop site.

Construction of ceRNA networks
LncLocator [25] and iLoc-LncRNA [26] were used to 
screen cytoplasmic lncRNAs because only cytoplasmic 
lncRNAs can function as ceRNAs. Therefore, lncRNAs 
that were predicted to be located in the nucleus by these 
two software programs were excluded from analysis. In 
addition, DE miRNAs that had records in miRbase were 
screened to construct the ceRNA networks. DE miRNAs 
that were potential targets of DE lncRNAs were identified 
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in DIANA tools-LncBasev.2 [27]. Notably, the target 
miRNAs of some DE lncRNAs that were not recorded in 
DIANA tools-LncBasev.2 were predicted in miRDB data-
bases [28]. Subsequently, DE mRNAs that were potential 
targets of DE miRNAs were predicted using TargetScan 
[29] and miRDB databases. CeRNA networks were con-
structed according to the above analysis and visualized 
using Cytoscape software (v3.6.0) [30]. Furthermore, 
some experimentally validated miRNA-mRNAs were 
queried in the miRTarBase database [31].

Gene Ontology (GO) annotations and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) enrichment
GO and KEGG pathway enrichment analyses were per-
formed on the target mRNAs involved in the ceRNA 
networks using the Database for Annotation, Visualiza-
tion and Integrated Discovery (DAVID, Version 6.8 Beta) 
(http://​david.​abcc.​ncifc​rf.​gov/) [32] online functional 
annotation tool. GO analysis included three categories: 
biological process (BP), molecular function (MF), and 
cellular component (CC). The p-value < 0.05 indicated 
statistically significant enrichment.

Real‑time quantitative PCR validation
Total RNA was isolated with the miRNeasy Mini Kit 
(Qiagen). The RNAs was reverse transcribed with the 
PrimpScript ®RT reagent Kit (TAKARA) for validation 
of lncRNAs and mRNAs and with the Mir-X™ miRNA 
First-Strand Synthesis Kit (TAKARA) for validation of 
miRNAs. TB Green® Premix Ex Taq™ II (TAKARA) was 
used for RT-qPCR. GAPDH and U6 were employed as 
endogenous controls for lncRNA/mRNA RT-qPCR and 
miRNA RT-qPCR, respectively. The relative expression 
of lncRNAs, mRNAs and miRNAs was calculated by the 
2−△△Ct method.

Statistical analysis
A nonparametric Mann–Whitney U test was performed 
to investigate differentially expressed genes. Data were 
analysed, and graphs were created using GraphPad Prism 
v8.0. Two-tailed p-value of less than 0.05 was considered 
statistically significant.

Results
Identification of differentially expressed lncRNAs, mRNAs 
and miRNAs between HAART‑naive EHI patients and HCs
A total of 17,235 lncRNAs were detected (Additional 
file 2: Table S2). Overall, 2619 lncRNAs were only identi-
fied in the HC group, 1379 lncRNAs were only identified 
in the EHI patients, and 13,237 lncRNAs were identified 
in both groups (Fig.  1a). Thirty-six upregulated lncR-
NAs and 206 downregulated lncRNAs were differentially 
expressed (p < 0.05, fold change ≥ 2) (Fig.  1b and c). For 

mRNAs, a total of 16,410 mRNAs were detected (Addi-
tional file 3: Table S3). 752 mRNAs were identified only 
in the HC group, 406 mRNAs were identified only in the 
EHI patients, and 15,252 mRNAs were identified in both 
groups (Fig. 1d). A total of 344 upregulated mRNAs and 
896 downregulated mRNAs were differentially expressed 
(p < 0.05, fold change ≥ 2) (Fig.  1e and f ). Finally, a total 
of 1090 mature miRNAs were obtained via miRNA-Seq 
(Additional file 4: Table S4). Among these miRNAs, 269 
miRNAs were identified only in the HC group, 170 miR-
NAs were identified only in the EHI patients, and 651 
miRNAs were detected in both groups (Fig. 1g). Twenty-
one DE miRNAs, including 7 significantly upregulated 
miRNAs and 14 significantly downregulated miRNAs 
(p < 0.05, fold change ≥ 1.5), were identified from 691 
known miRNAs recorded in miRbase (Fig. 1h and i).

Features of DE lncRNAs expression profiling
We further characterized the expression profiling of 242 
DE lncRNAs. First, DE lncRNAs were categorized into 
six groups based on the chromosomal position relation-
ship of the associated coding genes, namely, bidirectional, 
exon sense-overlapping, intergenic, intron sense-overlap-
ping, intronic antisense, and natural antisense, with con-
stituent ratios of 8.68% (21/242), 6.61% (16/242), 73.55% 
(178/242), 2.48% (6/242), 4.13% (10/242) and 4.55% 
(11/242), respectively (Fig. 2a). Second, the length range 
of lncRNAs was from 131 nt to over 6000 nt. The major-
ity of the DE lncRNAs were distributed in 3 intervals: 
501–1000, 1001–2000 and 2001–3000 (Fig.  2b). Third, 
DE lncRNAs were located on 22 autosomes and the X 
chromosome (Fig. 2c). A higher number of DE lncRNAs 
were located on chromosomes 1, 8, 11, and 16. Further-
more, expression levels of most DE lncRNAs were low.

Exploration of the potential roles of lncRNAs 
through cis‑regulatory mechanisms
LncRNAs regulate the expression of nearby protein-
coding genes in a cis-regulatory fashion. First, we inves-
tigated non-intergenic lncRNAs that overlapped with 
mRNAs. Forty-four lncRNAs were predicted to overlap 
with 41 cis-regulatory target mRNAs (Additional file  5: 
Table  S5). Among these target mRNAs, 6 mRNAs were 
differentially expressed and might be targets of 6 DE 
lncRNAs. These 6 lncRNA-mRNA pairs were all consist-
ently regulated, including 3 pairs up and 3 pairs down 
(Additional file 5: Table S5). Furthermore, 4 DE mRNAs 
that were possibly involved in HIV infection exhibited 
the same regulatory direction as 4 lncRNAs. Specifically, 
FCAR​ and HIST1H2BJ overlapped with 2 exon sense-
overlapping lncRNAs, and CYB5R3 and AP3M2 over-
lapped with 2 bidirectional lncRNAs (Table 1).

http://david.abcc.ncifcrf.gov/
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Second, we predicted the potential target  mRNAs 
nearby DE lncRNAs. We found 21 lncRNA-mRNA 
pairs from 36 upregulated lncRNAs and 86 lncRNA-
mRNA pairs from 206 downregulated lncRNAs 
(Additional file  5: Table  S5). Among these lncRNA-
mRNA pairs, 18 pairs were inversely regulated. Three 
upregulated intergenic lncRNAs (ENST00000364880, 

ENST00000571722 and ENST00000577988) were 
predicted to target the downregulated mRNA 
GRAP (Table  1). Four downregulated lncR-
NAs (ENST00000456129, ENST00000566814, 
ENST00000423278 and ENST00000430080) were 
predicted to target the downregulated mRNA  SEZ6L 
(Table  1). In addition, the downregulated intergenic 
lncRNAs ENST00000492960 and TCONS_00006930 

Fig. 1  Expression profile of lncRNAs, mRNAs and miRNAs. Venn diagrams, volcano plots and heatmaps of lncRNAs (a–c), mRNAs (d–f) and miRNAs 
(g–i) are shown. Venn diagrams show the common and specific lncRNAs, mRNAs and miRNAs in HAART‑naive EHI patients and HC groups. 
Volcano plots show upregulated (red) and downregulated (blue) DE lncRNAs (with p < 0.05 and fold change ≥ 2), DE mRNAs (with p < 0.05 and fold 
change ≥ 2) and DE miRNAs (with p < 0.05 and fold change ≥ 1.5). Heatmaps show hierarchical clustering of DE lncRNAs, DE mRNAs and DE miRNAs
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Fig. 2  Profiling and characteristics of DE lncRNAs. a Category distribution of DE lncRNAs. b Length distribution of DE lncRNAs. c Circos plot shows 
distribution of DE lncRNAs corresponding to human chromosomes. The outermost layer is a chromosome map of the human genome. White and 
black bands represent chromosome cytobands, while red bands represent centromeres. The top 30 significantly upregulated DE lncRNAs and top 
30 significantly downregulated DE lncRNAs are shown in the second layer. The third heatmap layer shows the expression level of all DE lncRNAs. 
Red represents a high level of expression, and blue represents a low level of expression. The innermost histogram layer shows the fold change of all 
DE lncRNAs

Table 1  Several potential cis-regulatory DE lncRNA-mRNA pairs

a  The chromosomal position relationship of lncRNAs and associated coding genes

The source database of lncRNAs is bEnsembl cUCSC_knowngene dTCONS

Categorya lncRNA Log2 (fold change) P value mRNA Log2 (fold change) P value

Exon sense-overlapping ENST00000594721b 1.264 0.003 FCAR​ 1.259  < 0.001

Exon sense-overlapping uc003niu.1c 1.061 0.021 HIST1H2BJ 1.350 0.001

Bidirectional ENST00000602478b 2.878  < 0.001 CYB5R3 1.128 0.011

Bidirectional ENST00000564481b − 1.533 0.015 AP3M2 − 1.212 0.002

Bidirectional ENST00000566814b − 1.444 0.013 SEZ6L − 1.288 0.010

Intergenic ENST00000456129b − 1.721 0.002 SEZ6L − 1.288 0.010

Intergenic ENST00000423278b − 1.416  < 0.001 SEZ6L − 1.288 0.010

Intergenic ENST00000430080b − 1.392 0.010 SEZ6L − 1.288 0.010

Intergenic ENST00000364880b 3.576 0.036 GRAP − 1.276  < 0.001

Intergenic ENST00000571722b 2.358 0.001 GRAP − 1.276  < 0.001

Intergenic ENST00000577988b 2.376 0.023 GRAP − 1.276  < 0.001

Intergenic ENST00000492960b − 2.152  < 0.001 ZAP70 − 1.275  < 0.001

Intergenic TCONS_00006930d − 1.030 0.010 BTLA − 1.209 0.007
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were predicted to target the downregulated mRNAs 
ZAP70 and BTLA, respectively, which were associated 
with T-cell activation and HIV-1 replication in HIV 
infection (Table 1).

Exploration of the potential roles of lncRNAs 
through ceRNA networks
To further elucidate the potential interactions of 
DE lncRNAs, miRNAs and mRNAs involved in EHI 
patients, lncRNA-miRNA-mRNA networks were 
constructed. A total of 160 DE lncRNAs, 21 DE miR-
NAs and 175 DE mRNAs were selected to construct 2 
ceRNA networks: one contained 136 downregulated 
lncRNAs, 7 upregulated miRNAs and 97 downregulated 
mRNAs, and the other contained 24 upregulated lncR-
NAs, 14 downregulated miRNAs and 78 upregulated 
mRNAs (Fig.  3). We found that most lncRNAs shared 
miRNA response elements  (MREs) of multiple miR-
NAs, and most miRNAs regulated multiple mRNAs. 
For example, 88 downregulated lncRNAs might func-
tion as ceRNAs of the upregulated hsa-miR-484 tar-
geting 14 downregulated mRNAs (Fig.  3a). Seventeen 
upregulated lncRNAs might share MREs of the down-
regulated hsa-miR-548ah-3p with 37 upregulated 
mRNAs (Fig.  3b). Three lncRNAs, ENST00000504409, 
TCONS_00006930 and NR_024368, were predicted to 
have MRE binding sites for all 7 upregulated miRNAs 

(Fig. 3a). Furthermore, lncRNA ENST00000564287 was 
predicted to share MREs of 13 downregulated miR-
NAs (Fig.  3b). Moreover, 31 experimentally validated 
miRNA-mRNA interactions were found in the ceRNA 
networks and might be related to 134 DE lncRNAs 
(Additional file 6: Table S6).

GO and KEGG enrichment analysis of lncRNA‑associated 
mRNAs in ceRNA networks
To explore the potential roles of lncRNAs in lncRNA-
associated ceRNA networks, 175 DE mRNAs involved 
in the ceRNA networks were selected for GO and KEGG 
enrichment analysis (Additional file  7: Table  S7). The 
top 5 GO terms were transcription factor activity, RNA 
polymerase II core promoter proximal region sequence-
specific binding (GO: 0000982), transcription factor 
activity, sequence-specific DNA binding (GO: 0003700), 
sequence-specific DNA binding (GO: 0043565), tran-
scription factor binding (GO: 0008134), and transcrip-
tion factor complex (GO: 0005667) in ascending order 
of p-values (Fig.  4a). Five upregulated mRNAs, HIF1A, 
TCF7L2, FOS, FOSB and JUN occurred in several GO 
terms. Seventeen DE lncRNAs were predicted to share 
the MRE with hsa-miR-548ah-3p and in turn regulate 
expression of HIF1A and TCF7L2, which were reported 
to impact HIV-1 replication (Fig. 5). 
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In addition, 5 KEGG pathways were identified among 
the DE mRNAs involved in the lncRNA-associated 
ceRNA networks (Fig.  4b). We observed that 5 genes, 

JUN, PLCG1, ICOS, FOS and CD28, were enriched in the 
T cell receptor signalling pathway (hsa04660). Among 
these mRNAs, the proteins encoded by the FOS, JUN and 
FOSB genes are the main subunits of activating protein 1 
(AP-1), a vital transcription factor in HIV replication and 
the immune response. Four DE miRNAs, miR-101-3p, 
miR-139-5p, miR-548ah-3p and miR-27b-3p, were found 
to target the above 3 mRNAs. In addition, a total of 20 
DE lncRNAs were predicted to share MREs with FOS, 
JUN and FOSB and might regulate AP-1 as ceRNAs 
(Fig.  5). Note that hsa-miR-101-3p/FOS and hsa-miR-
139-5p/FOS/JUN in ceRNA networks were experimen-
tally validated (Additional file  6: Table  S6). Therefore, 
these results provide reliable evidence for further explor-
ing the functions of lncRNAs in EHI.

Real‑time quantitative PCR validation
The lncRNAs, miRNAs and mRNAs mentioned above, 
which were predicted to play important roles during 
early HIV infection, were validated by RT-qPCR. A total 
of 15 DE RNA transcripts were validated, including 6 
mRNAs, 5 lncRNAs, and 4 miRNAs. The results of 12 
(80%, 12/15) RNA transcriptions were consistent with 
the sequencing data (p < 0.05) (Fig. 6), except for lncRNA 
ENST00000364880, ENST00000492960 and miRNA 
miR-101-3p (data not shown).

Fig. 4  GO and KEGG pathway analysis of DE lncRNA-targeted mRNAs in ceRNA networks. a The top 10 enriched GO terms of lncRNA-targeted 
mRNAs, including biological process (BP), cellular component (CC) and molecular function (MF). b Enriched KEGG pathways of lncRNA-targeted 
mRNAs. p < 0.05 was defined as the threshold for the enrichment analysis

Fig. 5  LncRNA-associated ceRNA networks might be involved 
in HIV-1 replication and immune activation during EHI. Strong 
(solid lines) evidence of experimentally validated interactions and 
predictive interactions (dashed lines) between lncRNAs (squares), 
miRNAs (circles) and mRNAs (triangles) are shown. Red and green 
represent upregulated and downregulated genes, respectively
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Discussion
In this study, we analysed lncRNA, miRNA and mRNA 
profiles and explored the potential functions of lncRNAs 
during EHI. A total of 1240 mRNAs, 242 lncRNAs and 21 
known miRNAs were identified as differentially expressed 
during EHI. We found that several lncRNAs might regu-
late ZAP70, BTLA and GRAP in a cis-regulatory fashion. 

Some lncRNAs were predicted to act as ceRNAs to regu-
late expression of HIF1A, TCF7L2, FOS, FOSB and JUN. 
Some target mRNAs here found regulated directly or 
indirectly by lncRNAs have been previously reported to 
impact HIV replication and immune activation. There-
fore, our findings may provide new ideas for further 
study to explore the roles of lncRNAs during EHI and 
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help to understand the interactions between the host and 
HIV virus.

LncRNAs are considered to be lower expressed com-
pared to protein coding mRNAs, and the expression of 
lncRNAs is spatiotemporal, and tissue-and cell-specific 
[33–36]. Dysregulated lncRNAs have been found to play 
important roles in various diseases [37, 38], including 
HIV infection[39]. Several lncRNAs have been found 
to impact HIV-1 viral replication, the establishment of 
latency and the HIV-associated immune response [39]. 
For instance, lncRNA MALAT1 (metastasis-associated 
lung adenocarcinoma transcript 1) [40], uc002yug.2 [41] 
and HEAL (HIV-1-enhanced lncRNA) [42] were reported 
to activate HIV transcription, while NRON (noncoding 
repressor of nuclear factor of activated T cells) [43, 44], 
NEAT1 (nuclear paraspeckle assembly transcript 1) [45, 
46] and AK130181 [47] were found to repress HIV tran-
scription. In addition, LINC00173 was shown to regulate 
the cytokine secretion of T cells and further affect HIV-
associated immune responses [48]. However, the func-
tions of lncRNAs during EHI have not been reported 
thus far. In this study, we predicted that some lncRNAs 
might play important roles in HIV-1 replication and 
immune activation during EHI.

In this study, we speculated that some lncRNAs might 
regulate genes in a cis-regulatory fashion during EHI. For 
example, lncRNA TCONS_00006930, which was identi-
fied as a cell cycle‑associated lncRNA in endometriosis 
[49] was downregulated in EHI patients and may regu-
late the expression of BTLA. BTLA and ZAP70 have been 
found to regulate T cell activation during HIV infection 
[50–52]. In addition, ZAP-70 is required for efficient cell 
to cell HIV transmission and for the formation of viro-
logical synapses that promote HIV replication [53]. In 
our study, we predicted that lncRNA ENST00000492960 
might regulate the expression of ZAP-70 and in turn 
control HIV-1 replication and impact T-cell activation. 
Furthermore, 3 lncRNAs were predicted to regulate the 
expression of GRAP. GRAP plays a negative regulatory 
role in lymphocyte proliferation induced by T-cell recep-
tor, interleukin-2 production and c-fos induction [54]. 
These 3 lncRNAs might belong to the small nucleolar 
RNA (snoRNA)-ended lncRNAs (sno-lncRNAs) family. 
It has been reported that sno-lncRNAs may play impor-
tant regulatory roles in RNA splicing and ribosomal RNA 
(rRNA) biogenesis [55–57]. However, the potential regu-
latory relationships between the 3 lncRNAs and GRAP 
need further investigation.

LncRNAs can act as ceRNAs or “miRNA sponges”, 
for example, lncRNA GAS5 acts on miR-873, result-
ing in the suppression of HIV replication [58]. In our 
study, we found that 20 lncRNAs might regulate the 
expression of FOS, JUN, FOSB, HIF1A and TCF7L2 

mRNAs as ceRNAs and then affect HIV replication and 
immune activation during EHI. FOS, JUN and FOSB 
code the common protein components (c-Fos, c-Jun 
and FosB) of activating protein 1 (AP-1) and they are 
strong activators of AP-1 [59]. It has been reported 
that HIV gp120 induces endogenous c-fos and c-jun 
expression to enhance the function of AP-1 [60]. AP-1 
performs vital functions in T-cell activation, Th dif-
ferentiation, T-cell anergy and exhaustion [61–63], 
affecting the establishment of HIV viral latency [64]. 
In addition, several studies found that c-FOS was con-
ducive to HIV-1 replication [65], while FosB reduced 
the promoter activity of the HIV long terminal repeat 
(LTR) [66]. Interestingly, HIF1A also can promotes HIV 
replication in CD4+ T cells [67] and the HIV-1 acces-
sory protein Vpr was shown to activate the LTR in an 
HIF1A-dependent manner in human microglial cells 
[68, 69]. However, TCF7L2 (TCF-4) can repress HIV 
replication in multiple cell types [70–73]. In astrocytes, 
TCF-4 was reported to interact with β-catenin and 
SMAR1 and then bind to LTR to decrease basal HIV 
transcription [72], and TCF-4 also decreases Sp-1-me-
diated transcription of the HIV promotor [73]. Taken 
together, our findings revealed that lncRNAs may act as 
ceRNAs to impact HIV-1 replication and the host viral 
immune response during EHI.

In our study, 19 lncRNA/miR-101-3p/miR-139-5p/
miR-548ah-3p/FOS, 6 lncRNA/miR-139-5p/JUN, 8 
lncRNA/miR-27b-3p/FOSB and 17 lncRNA/miR-
548ah-3p/HIF1A/ TCF7L2 were listed in the ceRNA 
networks. Among these 20 DE lncRNAs, lncRNA 
ENST00000602461 and ENST00000602507 were differ-
ent transcriptions of lncRNA MIR222HG (Lnc-Ang362) 
which is the host transcript for miR-221 and miR-222. 
LncRNA MIR222HG were reported to mediate the pro-
liferation of vascular smooth muscle cells [74] and facil-
itate the development of castration-resistant prostate 
cancer [75]. In addition, lncRNA ENST00000602478, 
ENST00000488545 and ENST00000587762 were dif-
ferentially expressed in coxsackievirus A16 (CVA16) 
infection, human gastric cancer and astrocytoma, 
respectively [76–78]. These lncRNAs may be new tar-
gets for the diagnosis and treatment. However, the 
functions of these 20 lncRNAs in HIV-1 infection were 
not reported previously and the mechanisms need to be 
further studied.

However, our study has several limitations. First, RNA-
seq and miRNA-seq were performed on total PBMCs 
that contain multiple cell types; thus, these results rep-
resent the most prominent or common biological pro-
cesses during EHI. Further studies are needed to identify 
the roles of lncRNAs in specialized cell types. Second, 
we predicted the potential roles of lncRNAs during EHI 
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by bioinformatics analysis. Although some experimen-
tally validated gene regulatory networks appeared in 
our analysis, it is still necessary to validate these results 
with related experiments. Third, the sample size is small 
because RNA samples from HAART-naive EHI patients 
are difficult to collect. A larger sample size is needed to 
verify our results.

Conclusions
For the first time, our study identified a lncRNA profile 
and predicted several lncRNAs that might play a role in 
HIV-1 replication and immune activation during EHI. 
These novel findings contribute to our understanding 
of the pathogenesis of HIV infection during EHI and 
provide new insights into antiviral therapy and vaccine 
development.
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