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Phenotypes associated with genes encoding drug
targets are predictive of clinical trial side effects

Phuong A. Nguyen1, David A. Born!, Aimee M. Deaton® ', Paul Nioi'? & Lucas D. Ward® 2

Only a small fraction of early drug programs progress to the market, due to safety and
efficacy failures, despite extensive efforts to predict safety. Characterizing the effect of
natural variation in the genes encoding drug targets should present a powerful approach to
predict side effects arising from drugging particular proteins. In this retrospective analysis, we
report a correlation between the organ systems affected by genetic variation in drug targets
and the organ systems in which side effects are observed. Across 1819 drugs and 21
phenotype categories analyzed, drug side effects are more likely to occur in organ systems
where there is genetic evidence of a link between the drug target and a phenotype involving
that organ system, compared to when there is no such genetic evidence (30.0 vs 19.2%;
OR =1.80). This result suggests that human genetic data should be used to predict safety
issues associated with drug targets.
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pproximately 90% of drug candidates fail to progress

through clinical trials because of issues with safety or

efficacy!~* and this problem is magnified for novel tar-
gets®~/. Safety is an especially big hurdle for drug development
because molecules’ safety must be tested in preclinical species
before reaching humans, and an unacceptable side-effect profile
may not become apparent until clinical testing because of the
poor translatability from animal studies®®. As a result, it has been
estimated that although the median cost of developing a new drug
from Phase I to approval is around $250 million, the total R&D
cost per new drug is over $2.5 billion!0. Therefore it is critical to
develop better preclinical assessments for choosing only the safest
drug targets and ideal molecules for clinical testing, and even
modest improvements in preclinical predictions of toxicity can be
massively valuable to drug development success’.

There are many factors that contribute towards the safety and
efficacy profile of a drug, and many of these have been studied
through retrospective analyses to improve drug design. These
factors include chemical properties of the drug that affect its
pharmacokinetics and pharmacodynamics, biological properties
of the target such as its expression pattern, the activity profile of
the drug against off-target proteins, and genetic differences
between patients that modulate inter-individual differences in
response! =23, While all of these factors can contribute to the
safety profile of a drug, the physiological role of the intended
target is the most obvious and unavoidable consideration. While
some drug targets have very narrow and specific roles in certain
diseases, others can have broader biological roles—meaning that
when they are drugged, there can be numerous unintended
effects. One way of understanding biological roles of the target
has been though human genetics, with the idea that phenotypes
arising from natural variation in the gene encoding a protein will
predict the phenotypes that would result from drugging that
protein. Family studies of rare Mendelian syndromes or genome-
wide association studies (GWAS) of common diseases can both
serve as natural experiments that point to new targets to pursue
(with PCSK9 being a celebrated example)*24-26, Retrospective
analysis has shown that this genetic validation method results in
finding efficacious targets and indications that are more likely to
succeed through development and reach patients?’. However, no
such retrospective analysis has been published linking the genetic
phenotypes of drug targets—which may include additional,
pleiotropic phenotypes besides the therapeutic indication—to
corresponding unintended side effects.

In this study to explore this relationship between drug targets’
genetic associations and drugs’ side effects, we compile a set of
drugs for which data are available for both (a) the drugs’ intended
human target proteins and (b) the side effects observed during
clinical trials of that drug. We then compare those side effects to
the phenotypes associated with mutations in the genes encoding
those target proteins. Thus, we investigate the ability of human
genetics to predict the adverse events and side effects that will
arise when drugging given target proteins.

Results

Enrichment analysis. We merged data from several databases to
compare genetic phenotypes with side effects (Fig. 1). To
examine the ability of genetics to predict drug treatment-related
side effects we first needed a large set of standardized side effect
information. We obtained drug, indication, and side effect
information from the Cortellis Clinical API and Cortellis Drug
Design API (Clarivate Analytics, Inc.) for 31,194 clinical trials, all
of which had at least one clinical side effect recorded in a con-
trolled vocabulary of phenotype terms. We excluded oncology
trials because of cancer drugs’ inherent cytotoxicity and

difference in acceptable side effect profiles28, we excluded com-
bination therapies to reduce complexity in our analysis, and we
limited our analysis to small molecule and biologic drugs. We
also excluded very commonly-observed side effects such as
headache (see Methods) to increase the sensitivity of our ana-
lysis. We then identified the accepted human protein targets of
these drugs using the union of three databases: Drugbank29-33,
Pharmaprojects (Informa PLC), and a recently published curated
map of drugs’ molecular efficacy targets33. A total of 1819 of the
drugs had at least one target annotated by one of these databases,
and there were 1046 unique targets pursued. For the genes
encoding these drug targets, we obtained associated phenotypes
from two sources: information from genome-wide association
studies (GWAS) collated by the STOPGAP database4, which
uses coding and noncoding variant annotations to assign target
genes to GWAS SNPs; and Mendelian information collated by
the Human Phenotype Ontology (HPO)3?, specifically the subset
of HPO phenotypes from Online Mendelian Inheritance in Man
(OMIM)3¢ which is mapped to controlled phenotype terms. A
total of 1394 of the 1819 drugs had at least one target with
genetic phenotype information; 641 of 1046 unique targets
pursued had genetic phenotype information. All of the 1819
drugs and 1046 targets were retained in our analysis, in order to
study the correlates of the presence or absence of genetic
information for a target.

In order to examine whether the genetic phenotypes of these
drug targets matched the drug’s side effects for each drug, we
mapped its indication(s), side effect(s), and targets’ genetic
associations to 21 phenotype categories using the MedDRA
ontology at the system organ class (SOC) level. We classified each
of these drug-organ system pairs as (a) whether the drug has ever
been pursued for a therapeutic indication involving that organ
system, (b) whether that drug has ever elicited a clinical side effect
involving that organ system, and (c) whether that drug's targets
have genetic phenotype associations involving that organ system
(Fig. 1; see Supplementary Data 1 for full dataset).

We found a striking relationship between drug target genetics
and the organ systems in which side effects were observed (Fig. 2,
Supplementary Table 1, Supplementary Table 2). Across all
38,199 drug-side effect combinations, the existence of a genetic
association between a drug’s target(s) and phenotypes in a given
organ system increases the probability that a side effect will be
observed in that organ system during clinical trials from 19.2 to
30.0% (OR =1.80; 95% CI =1.71-1.90, Fisher’s exact P =1.7 x
10794). This association could be largely driven by the
correspondence between genetics and drug indications; side
effects may tend to occur or be monitored more closely in the
organ system of drug action, or side effects may be exaggerated
pharmacology effects directly related to the therapeutic effect. To
exclude this confounding effect, we performed the same
enrichment test while removing from our analysis 4710 drug-
organ system pairs, where the organ is the intended site of
therapeutic efficacy for one of the drug’s pursued indications,
and found that genetic associations increase the probability of a
side effect in the corresponding off-indication organ system from
15.6 to 22.4% (OR =1.55; 95% CI = 1.45-1.66; Fisher’s exact
P=1.70 x 1073%). This decreased off-indication effect confirms
that some, but not all, of the genetics-side effect relationship is
driven either by aspects of the intended therapeutic biology of
the drug, or by other effects in the same organ system. To
investigate potential biases in the composition of our dataset we
performed separate permutation analyses of the target genetics
and drug side effects (Supplementary Table 2; Supplementary
Figure 5). In each analysis, there was indeed residual overlap of
genetic and pharmacological phenotypes; however, neither the
randomization of genetics nor the randomization of side effects
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Fig. 2 Rate of side effect (SE) manifestation across drug-SE combinations classified by genetic support. OR, odds ratio; P, P-value from Fisher's exact test
(two-tailed). The left panel shows analyses based on all 38,199 drug-SE combinations; the right panel shows analyses based on 33,489 “off-indication”
drug-SE combinations. Error bars represent the 95% confidence interval of the reported proportions. Source data and confidence intervals for the OR
values are shown in Supplementary Table 1. Similar analyses for Mendelian and GWAS genetics separately are shown in Supplementary Figure 4

approached the effect size seen when including true target
genetics and drug side effects, confirming the contribution of
genetic information to the enrichment, relative to confounding
biases (Monte Carlo empirical P<0.001 for each analysis;

Supplementary Table 2 and Supplementary Figure 5). We also
found that our results were insensitive to whether each of the
drug target databases was used individually rather than being
combined (Supplementary Table 2).
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Table 1 Analysis of enrichment between genetic phenotypes and side effects in individual organ systems
Phenotype Drugs with Drugs with Drugs with no Drugs with no Rate of side effect Rate of side effect OR P
category genetics and  genetics and  genetics and  genetics and  when genetic when genetic

side effect no side effect side effect no side effect association exists association does

not exist

Blood 96 269 234 1220 26.3% 16.1% 1.86 1.34E-05
Heart 145 176 451 1047 45.2% 30.1% 191 3.92E-07
Congenital 17 572 22 1208 2.9% 1.8% 1.63 0.165
Ear 5 112 74 1628 4.3% 4.3% 0.98 1.00
Endocrine 97 252 177 1293 27.8% 12.0% 281 3.71E-12
Eye 56 256 193 1314 17.9% 12.8% 149 0.0186
Gastrointestinal 155 276 497 891 36.0% 35.8% 1.01 0.954
Hepatobiliary 20 153 160 1486 11.6% 9.7% 121 0.423
Immune n3 335 251 120 25.2% 18.3% 151 1.76E-03
Infection 64 104 536 1115 38.1% 32.5% 1.28 0.144
Metabolism 228 400 280 9 36.3% 23.5% 1.85 1.34E-08
Musculoskeletal 217 435 322 845 33.3% 27.6% 131 0.0118
Neoplasm 48 305 122 1344 13.6% 8.3% 173 3.10E-03
Nervous 343 421 401 654 44.9% 38.0% 133 3.73E-03
Pregnancy 7 268 35 1509 2.5% 23% 113 0.827
Mental 208 350 255 1006 37.3% 20.2% 234 516E-14
Urologic 75 245 220 1279 23.4% 14.7% 178 2.20E-04
Reproductive 75 199 186 1359 27.4% 12.0% 275 5.75E-10
Respiratory 140 Al 464 1004 39.9% 31.6% 144 3.68E—03
Skin 122 224 113 1060 35.3% 28.0% 140 8.75E-03
Vascular 281 299 436 803 48.4% 35.2% 1.73 8.31E-08
Total 2512 5862 5729 24,096 30.0% 19.2% 1.80 1.73E-94
P-value is from Fisher's exact test (two-sided). Source data and confidence intervals are provided in Supplementary Table 2
OR odds ratio

Looking at individual organ systems (Table 1 and Supple-
mentary Table 2), we see that all statistically-significant effects
are in the direction of enrichment, and that the strength of the
enrichment detected is highly variable; for example, while
gastrointestinal and cardiac side effects are assigned to a similar
number of drugs and genes across our dataset, we find a strong
signal of enriched off-indication cardiac side effects with target
genetics (OR=2.18, Fisher’s exact P=1.7x10"%%) and no
significant enrichment for gastrointestinal side effects (OR =
1.12, Fisher’s exact P =0.37). These differences may be due to
the relative contribution of on- and off-target effects to these
organ systems, or to the importance of modality to these organ
systems; gastrointestinal side effects, for example, may be more
often mediated by the absorption of a drug than its effect on its
target.

We then explored whether there was any predictive value in
the lack of a genetic association. When the gene encoding a drug
target does not correlate with a specific phenotype, this could be
for two reasons: either perturbing the gene causes exclusively
other phenotypes, or there is no information relating to
perturbation of the gene (which could be due to a lack of
variation, or due to a lack of detectable effects when the gene is
mutated.) We were interested in the difference between these two
scenarios: if a drug target gene has been correlated with some
phenotypes but not others, should drug developers accept this as
evidence that those non-associated phenotypes are indeed less
likely to manifest when the gene product is drugged? To test this
difference, we compared drug-side effect combinations where
there was no genetic support, and split these into two sets: those
for which there was some genetic information for all of the targets
of the drug and those for which there were targets with no genetic
associations and potentially missing information. As expected, a
drug’s targets having genetic support for other phenotypes—but
not the phenotype being interrogated—is associated with a lower
rate of side effects being observed in the interrogated phenotype,

compared with a situation where there is a lack of genetic
information for some or all of a drug’s targets (OR=0.91,
Fisher’s exact P = 0.0016; Fig. 2), suggesting that human genetics
provides evidence that can be used to de-risk targets.

Regression modeling. While a causal link between target genetics
and side effects is biologically plausible—genetic and pharmaco-
logical perturbation of a protein should lead to similar pheno-
types, and this logic is the basis of genetic validation of drug
targets?>20—there are many potential confounders that could
instead be explaining the enrichment we observe. For example,
certain kinds of side effects may be correlated with certain drug
indications simply because of the patient population treated, and
indications will correlate with target genetics due to rational drug
discovery and known biology. Indeed, we see that this is a strong
correlation within our dataset (Supplementary Figure 1); e.g.,
drugs with blood-related indications are nearly ten times more
likely to have targets with Mendelian genetic syndromes involving
blood. Other confounders include variables that have been pre-
viously linked to side effects: properties of the protein such as its
cross-tissue expression patternls, properties of the gene such as
evolutionary constraint’” and corresponding intolerance of
population genetic variation?’, or properties of the drug such as
modality or delivery route. To explore the relationship of genetics
and side effects with these potential confounders, we gathered
additional drug and gene information and built a dataset for
regression modeling, to predict side effects in each organ system
as dependent variables. For independent variables, in addition to
the target genetic phenotypes, indications, and modality used for
the enrichment analysis, we obtained drug delivery route infor-
mation, expression breadth information, and population genetic
constraint. We encoded all independent and dependent variables
as binary values (Supplementary Data 1) and built a logistic
regression model for each of 18 side effect classes. Models used all
the independent variables described above including the source of
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genetic support (GWAS or Mendelian) for the side effect, to
predict the presence or absence of the side effect class for each
drug. We took two approaches for each side effect model: a
multivariate logistic regression model that included all variables,
and a machine learning logistic regression model with feature
selection. We also ran these models two ways: using the complete
dataset and using a dataset that excluded on-indication side
effects, as in the previous enrichment analysis.

Strikingly we found consistent, positive coefficients for genetics
in models where genetics is significant in predicting drug side
effects (Fig. 3; Supplementary Table 3; Supplementary Figures 2—
3). This was true even when modeling other predictive variables
and excluding potential exaggerated pharmacology (i.e., on-
indication side effects). Mendelian and/or GWAS genetics was a
significant predictor in the overall analysis for six of the side effect
regression models, with four of these (metabolism, heart,
endocrine, and reproductive) surpassing a conservative threshold
corrected for the number of side effect classes tested (P of
coefficient in regression model < 0.05/18). We also found that
regression coefficients were similar if expression was included in
the model as a matrix of continuous values for each organ instead
of as a categorical variable of expression breadth (Supplementary
Figure 6 and Supplementary Table 9).

Splitting genetic data into Mendelian and GWAS evidence
reduced our power to detect a joint effect on predictive power, but
allowed us to ask about their individual contribution. We find
that the only side effect classes for which GWAS was
independently predictive (heart, mental, and reproductive) were
also predictable from Mendelian genetics. However, the raw
enrichment results are similar (Supplementary Table 1, Supple-
mentary Figure 4), suggesting that the difference in power is due
to a smaller sample size of drugs whose targets have GWAS
information compared with Mendelian information. The simi-
larity in effect size between Mendelian and GWAS evidence is

Model coefficient

consistent with a previous study of genetic support for drug

indications?’.

Cross validation. Although the machine learning models per-
form cross-validation to ensure that the features selected add
significant predictive power, there are two potential drawbacks
that could lead to inaccurate effect and significance estimates.
First, the substantial collinearity between our predictors (e.g., the
confounding of indication with genetic phenotypes) may have led
to genetics being selected as a predictor even though the causal
factor was in fact indication. Second, different drugs in the model
often share target genes, resulting in shared genetic information
between the training and test sets while the machine learning
models are testing new features to add to the model. To address
both of these concerns, we implemented a custom leave-one-
target-set-out cross-validation procedure to explicitly test the
predictive power of genetics (measured as the area under the
receiver operating characteristic curve, AUC) in side effect
models, when the model has been trained on all other available
variables and when the tested genetic data has never been seen in
the training set. We use this cross-validation procedure to test the
contribution of genetics to off-indication side effect prediction
(measured as cross-validation AUC) relative to two baselines: the
AUC of a model including no genetic information, and the AUC
distribution of models with simulated data with permuted
gene—phenotype relationships. We applied these tests to the six
side effect models where either GWAS or Mendelian genetics was
found to be significant (at P < 0.05). Genetics improved the cross-
validation AUC (relative to simulated genetics and relative to no
genetics) in five of the six models (Fig. 4; Supplementary Table 4).
The absolute increase in AUC is slight but statistically significant,
indicating that many of the confounding factors are predictive of
side effects, either because they are causal or because they are
correlated with genetics. For example, the cross-validation AUC
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of the full model predicting off-indication cardiac side effects is
0.70; this drops to 0.68 when omitting genetics and never sur-
passes 0.70 in 1000 simulations using permuted genetics, evidence
that genetics is indeed adding predictive information. The one
model of the six tested that did not cross-validate (the model
predicting mental side effects) could have failed for several rea-
sons. It could be that in this subset of the data, side effects are
more often modulated by off-target effects; the set of drugged
targets may be so small and redundant that the effective sample
size of independent observations is too small and the analysis
breaks down on cross validation; or this class of side effects could
be so reliably predicted from other properties in the model that
genetics does not contribute additional data, even though genetics
may be predictive and correlated with these other drug and target
properties.

Replication using adverse event data. In order to test whether
the relationship between drug target genetics and pharmacolo-
gical phenotypes replicates in an independent dataset, we used the
OFFSIDES database of post-marketing adverse event reports that
are inferred to be drug-related3®. These data are ascertained
entirely independently of clinical trial side effects; rather than
being reported by clinicians in the context of a clinical trial,
they are reported to regulatory authorities by patients and phy-
sicians in the context of real-world drug administration. We
analyzed a total of 263 non-oncology drugs with at least one
human target (Supplementary Data 2), and found that among all
5523 drug-SE combinations, having genetic evidence raised the
likelihood of a post-marketing adverse event report from 74.0
to 79.1% (OR=1.32; 95% CI=1.14-1.52; Fisher’s exact P=
0.00011); this relationship also held true among 4998 oft-
indication drug-SE combinations, where genetic evidence raised
the likelihood of a post-marketing adverse event report from 72.6

to 76.0% (OR=1.20; 95% CI=1.03-1.39; Fisher’s exact P =
0.016) (Supplementary Table 2).

Contribution of placebo-associated side effects. The Cortellis
Clinical API attempts to report only drug-related side effects.
However, to directly investigate the difference between placebo-
and drug-associated side effects, clinical trial data from the
aggregate analysis of ClinicalTrials.gov (AACT) was used. Fol-
lowing a processing pipeline in which clinical trials were filtered
for confident assignment of drug and placebo trial arms, 229
drugs with at least one human target were used in our analysis.
Significantly drug-associated off-indication side effects (Fisher’s
exact one-tailed P < 0.05) were used to compile a dataset of 4275
drug-SE combinations (Supplementary Data 3-5). Among this
set, having genetic evidence raised the likelihood of having a
drug-associated adverse event from 11.6 to 19.9% (OR = 1.90;
95% CI=1.56-2.30; Fisher’s exact P=1.1x10719). Without
controlling for placebo-associated adverse events, genetic evi-
dence raised the likelihood of an adverse event in the drug
treatment arm from 28.6 to 30.6% (OR=1.61; 95% CI=
1.38-1.88; Fisher’s exact P=7.3x10719). Considering only
adverse events reported in the placebo arm, genetic evidence
raised the likelihood of an adverse event in the placebo arm from
29.2 t0 35.9% (OR = 1.36; 95% CI = 1.16-1.59; Fisher’s exact P =
1.3 x 10~%). When these analyses were performed including on-
indication drug-SE combinations, results were similar (Supple-
mentary Table 2).

Discussion

In this study we show that human genetic studies of drug target
proteins can predict not only therapeutic efficacy of drugs, but
also can provide evidence about the likelihood of side effects.
Although this approach has been proposed and used to make
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predictions about individual drug targets3®, it had not been sys-
tematically validated. This finding has a number of applications
for drug discovery and could ultimately be used to help make
safer therapeutics.

First, examining the human genetic associations of potential
drug targets early in the drug discovery process could help us
more fully understand target biology and select safer targets.
Choosing the safest targets at the beginning of drug development
should help to make the process more efficient and reduce safety
failures that could have been predicted. Previous retrospective
analyses of drug development have focused on the relationship
between drugs’ chemical properties and safety and efficacy!®20,
Another class of methods attempts to predict the set of off-target
proteins that interact with a drug and the resulting side effects!!.
However, such a focus on drug properties and interactions may
not help to improve safety if drug developers are not pursuing
safe targets. Altogether, our results suggest a practical framework
for evaluating a new drug target and for understanding the effects
that are seen during clinical development. When making the
decision to pursue a novel target, Mendelian syndromes, GWAS
associations, and PheWAS databases should be consulted to
interrogate the gene(s) encoding the target. If a novel target has
been reported as a Mendelian disease gene, all aspects of that
disease should be investigated, and researchers should seek to
understand whether the genetic disease has aspects unrelated to
the intended therapeutic action of the drug. If so, these should be
investigated as potential liabilities for the drug; if not, the lack of
concerning phenotypes can be used as evidence in favor of target
safety. Searching GWAS and PheWAS associations is complicated
by the problem of interpreting variants; however, if a variant in
a novel drug target gene has an association with the intended
therapeutic effect, then this variant can be presumed as functional
(in light of other supporting functional genomics evidence) and
examined for pleiotropic, non-therapeutic associations. These
can then be considered potential target liabilities. The large
differences in the nature of genetic and pharmacological pertur-
bation make it difficult to directly translate these phenotypes,
their severity, and their clinical relevance. However, targets
associated with phenotypes in some of the most critical organ
systems (cardiovascular, respiratory, and central nervous system,
per international regulatory guidance for safety pharmacology®)
could prompt critical experimental investigation of these targets’
role in those systems.

Second, the genetics of drug targets can continue to inform
drug development even after the decision has been made to
pursue a target. As drug experiments in preclinical animals and
clinical trials in humans proceed, human genetic information can
guide researchers to monitor and design assays to test for side
effects of most. When side effects do manifest in preclinical
species or in clinical trial participants, human genetics of the
target can be used to build hypotheses of whether the side effects
are target-mediated phenotypes intrinsic to the therapeutic
mechanism, or off-target effects that could be engineered out of
the drug.

Although the predictive value of genetic target assessment is
modest, for some phenotypes the power is similar to the
nonclinical-to-clinical power of widely-used animal experiments.
An industry-wide analysis of preclinical assays by the IQ Con-
sortium*! calculated sensitivity, specificity, and likelihood ratios
of human translation of positive findings (LR+) and negative
findings (iLR—) for phenotypes in various species and organ
systems, values we also calculate for target genetic data in Sup-
plementary Table 2. Of the 36 organ system-species combina-
tions analyzed, the majority of positive and negative animal
findings lie in the likelihood ratio range that is considered pre-
dictive in the sense of increasing the post hoc probability (LR >1),

but not in the sense of being diagnostic (LR >10); the same is true
for the use of genetic data (Supplementary Table 8). The animal
experiments were found to have a sensitivity of 48% and speci-
ficity of 84%, while we find that genetic data have a sensitivity of
30% and a specificity of 80%. Despite modest translatability,
animal toxicology experiments are nevertheless immensely useful
to the drug development process, especially when compared
across species and combined with other biological knowledge. We
propose that target genetic data should also be incorporated into
this wider body of evidence when predicting effects in humans.

Our analysis revealed several examples where side effects would
have been suggested as potential issues through examination of
target genetics. The first example involves basiliximab, IL2RA,
and diabetes. New-onset diabetes after transplantation (NODAT)
has been noted as a side effect in trials of basiliximab, an IL-2
receptor antibody indicated to prevent transplant rejection; this
effect has been confirmed in an observational trial*? and mouse
studies*3. The IL2RA gene is implicated in Type 1 diabetes by
GWAS*, and heterozygous truncating mutations in the IL2RA
gene cause a Mendelian immunodeficiency syndrome sometimes
associated with diabetes?®. IL2RA, encoding the IL-2Ra (CD25)
subunit of the trimeric IL-2 receptor, is responsible for high
affinity of the receptor for IL-2, and is expressed on activated T
lymphocytes including the chronically activated regulatory T (T
reg) subset. Imbalance between T reg cells and T effector cells in
the pancreatic islet has been implicated in breakdown of self-
tolerance and development of type 1 diabetes in a mouse model;
IL-2 administration is protective in this model by promoting T
reg survival4o,

A second example involves AChE inhibitors, ACHE, and bra-
dycardia. Heart rate dysregulation manifesting as bradycardia has
been noted in several trials of acetylcholinesterase (AchE) inhi-
bitors for Alzheimer’s disease, and this observation has been
discussed in pharmacovigilance reports#”43; the gene encoding
AchE, ACHE, has been linked to tachycardia by GWAS#%->0.
Acetylcholine is an important neurotransmitter in the para-
sympathetic nervous system, which has a cardioinhibitory effect
on heartbeat via cardiac M2 muscarinic receptors. AchE inhibi-
tion results in the neurotransmitter persisting at the synapse,
prolonging the cardioinhibitory effect>!.

The third example involves esreboxetine, SLC6A2, and tachy-
cardia. In trials of esreboxetine, a norepinephrine reuptake inhi-
bitor being pursued for fibromyalgia, an increased heart rate has
been noted in the treatment arm>2->4, Esreboxetine acts on the
norepinephrine transporter, encoded by the SLC6A2 gene. Loss-
of-function mutation in SLC6A2 causes a Mendelian syndrome
characterized by orthostatic intolerance with tachycardia, result-
ing from decreased reuptake of norepinephrine and higher
plasma concentrations®>>°. Norepinephrine has a wide range of
effects in the sympathetic nervous system through signaling to
adrenergic receptors throughout the body, such as increasing
heart rate and blood pressure, but reuptake inhibition has been
proposed to particularly influence its effect in the heart, because
clearance in the narrower synaptic clefts in the heart is far more
dependent on reuptake than enzymatic breakdown. This differ-
ence is reflected in the fact that SLC6A2 loss of function affects
heart rate disproportionately relative to blood pressure>.

There are some limitations to our study. The major one is that
we are limited by small and biased sample size, both in terms of
genetic knowledge and drug trials. Clinical trial side effects are
frequently not reported, and our drug trial information is limited
to the subset (~12% of trials in the Cortellis Clinical database)
that have both outcome data and controlled-vocabulary side
effect annotations. We attempt to control for this uncertainty by
discarding frequently-noted side effects and by modeling the
indication (which will correlate with phenotypes characteristic of
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a patient segment). However, individual drug-side effect obser-
vations have not been formally adjudicated and may not be
treatment related, and conclusions should only be drawn from
global patterns. Placebo-controlled analysis of AACT-derived
trial data suggests that controlling for placebo-associated side
effects improves the predictive power of target genetics by
reducing noise due to spurious side effects. The controlled AACT
dataset is quite small compared with our Cortellis dataset and as
such is not directly comparable. Our sample only includes trials
with at least one recorded side effect, which may have biased the
analysis toward larger trials. By necessity, our phenotype
matching is coarse-grained because of the small sample size and
will introduce false positive matches. We anticipate that cleaner,
larger sets of clinical trial data would improve our analysis. In
addition, there is a paucity of genetic information for some genes
either because they are highly constrained or lack common SNPs
interrogated in GWAS. Here we do not estimate the direction of
genetic effect (e.g., gain- or loss-of function) because this data is
not available for the majority of our genetic signals; with better
estimates it would be fruitful to compare to the direction of
pharmacological modulation. We also lack quantitative infor-
mation about the magnitude of the genetic and pharmacological
effects we consider, and we expect both of these effects to be dose
dependent. Different drugs may share the same therapeutic target
but have very different side-effect profiles in the clinic due to
properties of the drugs, patients, or off-targets; we deal with this
by using drugs as the unit of analysis rather than targets, in
contrast to the method of Nelson et al.?”. There is also inherent
uncertainty in assigning GWAS signals, the majority of which are
noncoding common SNPs, to causal genes; the confidence of this
gene-phenotype assignment is limited by the current state of
functional genomics data, and adds unavoidable noise to our
analysis. We have also made the choice to limit our analysis to
targets with known pharmacological action, which means that we
end up correlating phenotypes which may, in fact, be driven by
off-target interactions with the genetics of known targets. Finally,
there are confounding factors that make it impossible to accu-
rately determine the effect of genetics independently of other
factors such as indication and delivery route. The raw enrich-
ments are likely overestimates, while the results of the multi-
variate regression may be over- or underestimates. The results
from the cross-validation procedure are likely to be under-
estimates, since this procedure controls for all other potential
covariates before adding genetics to the model; therefore it is
these cross-validation results that give us confidence that genetics
indeed adds predictive value.

We have demonstrated that the natural experiments afforded
by human genetics can be helpful for anticipating the full spec-
trum of phenotypes elicited by modulating a target pharmaco-
logically—not only the therapeutic effect, but also side effects and
adverse events mediated by pleiotropic biological roles of the
target. An extension of our work is to understand how the
genetics of a drug’s off-target proteins also contribute to its side
effect profile. Human genetics data are becoming increasingly
rich, especially with comprehensive efforts to deep-phenotype
complete human knockouts®’~>° and to perform phenome-wide
association studies (PheWAS) across electronic medical records
to detect pleiotropic effects of genes3*%0, This analysis under-
scores the importance of comprehensively characterizing human
knockouts and people affected by Mendelian syndromes, because
in some cases their biology can help anticipate drug safety issues
before they occur, while in other cases their lack of concerning
phenotypes can help build conviction that certain proteins are
intrinsically safe to drug. Our analysis suggests that this growing
body of knowledge will aid in selecting not only more effective
targets but also developing safer drugs at lower cost.

Methods

Drug databases. The following pharmacology databases were used: DrugBank?9-32
(v5.0.6, r2017-04-01), STITCHC! (v5.0, r2016-06-27), Citeline Pharmaprojects
(Pharma Intelligence, Informa PLC., d2016-11-22), Cortellis Clinical API (Clarivate
Analytics, Inc., d2017-03-31), Cortellis Drug Design API (Clarivate Analytics, Inc.,
d2017-04-03; filtered for drugs that have been tested in humans, i.e., with highest
phase of Phase 0 or higher), and aggregate analysis of ClinicalTrails.gov (AACT)
(Clinical Trials Transformation Initiative, d2018-10-18)62.

To consolidate information about each drug to enter into our model, drugs
from DrugBank, Cortellis Drug Design and Citeline Pharmaprojects were merged
using an approach combining drug names and aliases/synonyms and CAS numbers
(either original active ingredient or its various salt forms). Stereoisomers were also
merged (e.g., baclofen and arbaclogen, tretinoin and isotretinoin). This process
resulted in unique drug units that aimed to distinguish only active ingredients
(but not different formulations or products from different companies; or different
cellular expression system for protein-based therapeutics). Drug mixtures, i.e.,
those with more than one active ingredient, were removed from the analysis for
simplicity. To each unique drug unit, intended targets were obtained from the
union of DrugBank (targets annotated as having known pharmacological action),
Citeline Pharmaprojects annotations, and a recent curated database of therapeutic
efficacy targets of a subset of marketed drugs3. Target annotations from each
database were also separately assessed individually to confirm that the result was
not sensitive to the inclusion of any particular database in the union.

Adverse events reported from clinical trials were obtained from Cortellis
Clinical APL Of a total of 264,735 trials on record, 92,397 trials had outcomes
available. A subset of those trials (31,194) had adverse event terms extracted in
computer-readable lists. We limited our analysis to this subset of trials and the
corresponding drugs. Trials of combination therapies, oncology indications, and
therapeutics that were not small molecules or proteins were also removed. Note
that since we could not distinguish between lack of adverse events listed due to
complete absence of adverse events or missing data, our dataset only included trials
that had at least one adverse event listed as being higher than placebo. We found
the frequency distribution of adverse events to be skewed toward a small number of
side effects that were very common across different drugs (e.g., headache for 55% of
drugs). Because these very common side effects may be less likely to reflect target-
mediated effects, and in order to prevent them from overwhelming and biasing the
downstream analysis, we excluded 27 of the most common side effects (defined as
observed with at least 10% of drugs; Supplementary Table 5), after which 1179 side
effect types remained.

For the replication analysis, drug-related adverse events were obtained from
OFFSIDES?8. Drug-phenotype pairs were filtered to control the false discovery rate
(FDR) to 5% by implementing a P-value threshold of P<2.7 x 1077; 184,284
drug-phenotype pairs remained. Drug-phenotype pairs were filtered to retain only
those with a reporting ratio (RR) of 2 or greater, a threshold used in the OFFSIDES
analysis as a high association score$. Common adverse events noted for at least
10% of the drugs were removed. Drugs with oncology indications were excluded.
The final validation dataset consisted of phenotypes (genetic and adverse event)
for 263 drugs.

Data from AACT were processed to evaluate the contribution of placebo-
associated side effects in our analysis. Clinical trials were passed through a filtering
pipeline yielding confident assignment of trial arms as either drug treatment or
placebo. Only trials assessing a single non-placebo drug were considered. The
number of adverse events from the treatment arm(s) of each trial were compared
with the placebo arm(s) using Fisher’s exact test (one-tailed). Adverse events more
common in the treatment arm with P <0.05 were considered drug-related. The
final placebo-controlled adverse event dataset contained data on 250 drugs from
488 trials. Adverse events from placebo arms and drug treatment arms were
assessed separately as controls.

Drug modality information was obtained from the ‘TrialCategories’ field of the
Cortellis Clinical trial records (either “Biological” or “Small molecule”). Drug
administration routes were obtained from the ‘DevelopmentStatusSummary’ field
of the Cortellis Drug Design drug records, and were grouped into four categories:
enteral, parenteral, topical, and other (Supplementary Table 6). Drug disease
indications were obtained from the Cortellis Clinical trial records and mapped
to MedDRA SOC terms as described below.

Genetics databases. Genes involved in Mendelian traits were derived from the
Human Phenotype Ontology (HPO)%3 (r2017-04-13). In total, 3404 genes were
associated with 4390 OMIM syndromes, each of which was described with a list
of HPO phenotype terms.

Following the method of Nelson et al.?7, genome-wide association studies
(GWAS) associated with each gene were obtained from STOPGAP34, a database
that systematically links published GWAS SNPs results to putative causal genes
using a combination of linkage disequilibrium, functional genomics annotations,
and variant effect predictions. Only the top-ranked gene (or genes, if tied for top
rank) for each GWAS SNP was retained as a gene—phenotype association. Only
associations with a genome-wide significant P <5 x 108 were retained, and only
associations derived from a publication in the EBI-NHGRI GWAS Catalog were
retained. The final GWAS dataset consisted of 4265 genes associated with 431
Medical Subject Headings (MeSH) terms.
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Phenotype mapping. To allow comparison between all phenotype databases
(pharmacology and genetics), we used the Unified Medical Language System
(UMLS) Metathesaurus (2015AB release), the MetaMap natural language proces-
sing (NLP) tool (MetaMap2016, r2016-01), and the UMLS-Interface software® to
map phenotypes to the terms found in the Medical Dictionary for Regulatory
Activities terminology (MedDRA). All phenotype terms were mapped to the most
specific MedDRA term within the UMLS, which was in turn mapped to 26
MedDRA System Organ Class (SOC) terms (Supplementary Table 7). When a
single phenotype term was mapped to multiple SOC terms (e.g., ‘kidney cancer’ is
mapped to both ‘Neoplasm NOS’ and ‘Diseases, Urologic’), all SOC terms were
retained. All mappings to the SOC terms ‘Social circumstances’ and ‘Surgical and
medical procedures’ were excluded from analysis. All mappings to ‘General dis-
orders and administration site conditions’, ‘Injury, poisoning and procedural
complications’, and ‘Investigation NOS’ were further mapped to other, more organ
system related, SOCs using the MedDRA terms one level below the SOCs (‘High
Level Group Terms’).

Tissue expression and mutational constraint of targets. Motivated by the
observation of Gayvert et al.!> and others that the general target tissue expression
profile is associated with specific toxicities, we used expression breadth annotations
from a cross-tissue analysis of the Human Protein Atlas®. Following this anno-
tation, genes were put into four categories: all (corresponding to “expressed in all
high” or “expressed in all low”), mixed (corresponding to “mixed high” and “mixed
low”), enriched (corresponding to “tissue specific”, “tissue enriched”, or “group
enriched), and none detected. As an alternative to expression breadth, we also
incorporated data on tissue-specific expression profiles for each of the drug targets
in our analysis to test whether quantitative tissue-specific expression changes the
model relative to using a categorical expression breadth predictor. A separate
regression analysis was performed with quantitative tissue-specific gene expression
values from the Human Protein Atlas®. For each drug, the expression values of the
drug’s targets were converted to the log, of transcripts per million (TPM) and then
averaged. The 37 tissue-specific expression values were used as covariates in the
regression modeling following an identical procedure as described below, with
the addition of expression value predictors in place of the expression breadth
predictors. Motivated by the previous observation?” that mutational constraint
of targets is associated with drug success, we incorporated the annotation of Lek
et al.%7 of Exome Aggregation Consortium variation data to define genes as
constrained or unconstrained with a probability of loss-of-function intolerance
(pLI) score threshold of 0.9.

Multivariate regression and feature selection. To assess the correlation between
the genetics of intended targets and the adverse event/side effect profile of a drug,
we performed multivariate logistic regressions, both without feature selection
(using the “glm” R package) and with feature selection (using the lasso penalized
maximum likelihood technique using the “glmnet” R package®®9%) (v2.0-10). Out
of the 21 MedDRA SOC adverse event phenotype groups, we focused only on
modeling phenotypes in the 18 groups with a sample size of at least 100 (~5%)
drugs eliciting an adverse event in that phenotype group (AE). For each of these 18
phenotype groups, we built a logistic regression model with glm and glmnet using
the following predictors: disease indications (20 MedDRA SOCs, excluding “neo-
plasm”), drug modality (“biological” or “small molecule”, with the latter as the
baseline), delivery routes from Cortellis Drug Design API, and genetic phenotypes
of the drug’s targets, encoded as follows: Mendelian genetics for each drug in each
side effect model has three possible values: having genetic phenotypes matching the
side effect, having genetic phenotypes mismatched to the side effect (there is a
syndrome with phenotypes unrelated to the side effect), and having no Mendelian
genetic information; and GWAS genetics for each drug in each side effect model
has three possible values: having GWAS associations matching the AE, having
GWAS associations mismatched to the AE, and having no GWAS hits linked to the
target gene(s).

To choose the lambda parameter for the glmnet feature selection procedure, for
each model, 10-fold cross-validation was run 100 times, and the final optimal
lambda was selected as the average of mean lambda.min (i.e., lambda that resulted
in the highest AUC) and the mean lamda.lse (i.e., largest lambda that resulted in
an AUC one standard error away from the maximum AUC). The final model
coefficients were derived from running ‘glmnet’ on the whole dataset (1819 drugs)
with the optimal lambda.

Cross-validation procedure. To assess the predictive power of including genetics
in a given side effect model, we performed a custom cross-validation procedure as
follows: (1) Each unique target set (combination of target proteins for a given drug)
among the list of drugs in the model was enumerated. (2) For each target set, the
drugs sharing this target set were held out as tests. (3) The training set was all other
drugs, excluding any drug that shared in its target set any of the targets contained
in the test set, to avoid any sharing of genetic information between training and test
set. (4) Logistic regression (without feature selection) was performed on the
training set. (5) Side effect probabilities (the output of the model) were calculated
for the drugs in the test set using the coefficients learned on the training set.

A cross-validation receiver operating characteristic (ROC) curve was generated
and its area under the curve (AUC) was calculated using the complete set of test
predictions. For the side effect models tested, the cross-validation AUC was
calculated: (1) With all predictors included in the model; (2) with genetics excluded
from the model; and (3) with genetics randomized, such that within the set of drug
targets, the assignment of genes to phenotype sets was permuted, maintaining the
same fraction of genes with no genetic information and preserving the correlation
between genetic phenotypes. This simulation was performed 1000 times to generate
a distribution of AUCs.

URLs. DrugBank: http://www.drugbank.ca; STITCH: http://stitch.embl.de; Cortellis
Clinical APL https://www.cortellislabs.com/page/?api=api-CLI and Drug Design
API: https://www.cortellislabs.com/page/?api=api-DD (Note: Information repor-
ted in this article is derived from Cortellis for Clinical Trials Intelligence database
and Drug Design APIs, which are produced and owned by Clarivate Analytics.
Clarivate Analytics will not be liable for any inaccuracy in the information pro-
vided in this article or the way in which it is used by any reader in this article.)
HPO: http://human-phenotype-ontology.github.io; UMLS and related software:
https://www.nlm.nih.gov/research/umls/ (Note: MedDRA® is the international
medical terminology developed under the auspices of the International Conference
on Harmonisation of Technical Requirements for Registration of Pharmaceuticals
for Human Use (ICH). MedDRA® trademark is owned by IFPMA on behalf of
ICH.); Citeline Pharmaprojects® | Pharma Intelligence: https://pharmaintelligence.
informa.com/; STOPGAP: http://stopgapwebapp.com:3838/SWApp/; OFFSIDES:
http://tatonettilab.org/resources/tatonetti-stm.html; AACT: https://aact.ctti-
clinicaltrials.org/download.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The datasets analyzed during this study are public, with the exception of two commercial
datasets: clinical side effect data, indications, and routes obtained from Cortellis Clinical
API and Drug Design API (Clarivate Inc.), and the subset of drug target gene annotations
that was obtained from Citeline Pharmaprojects (Informa Plc.), both of which were used
under license for the current study, and so are not publicly available. However, complete
starting data from which all analyses in the study can be reproduced is provided in
Supplementary Data 1 (primary analysis), Supplementary Data 2 (replication analysis
using OFFSIDES), and Supplementary Data 3-5 (placebo comparisons using AACT). All
other relevant data are available upon request.
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