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Abstract: Transition-metal-free synthesis of 4-pyrones via TfOH-promoted nucleophilic addition/
cyclization of diynones and water has been developed. This transformation is simple, atom
economical and environmentally benign, providing rapid and efficient access to substituted 4-pyrones.
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1. Introduction

Water (H2O) is inexpensive, safe, and environmentally friendly [1]. It is the most economic and
eco-friendly solvent available in Nature and therefore highly desirable for chemical reactions [2].
Generally, water offers several “green chemistry” benefits as a solvent in organic transformations,
including high efficiency, lower cost, ease of process, green and environmental protection [3,4].
Recently, there are many reports of clean transformations in water medium [5–19], such as
coupling reactions [20–30], cyclizations [31–34], Michael additions [35–39], and condensations [40,41].
Additionally, H2O also participates in organic reactions as a nucleophile [42,43] to provide various
kinds of functional compounds such as imidazo[1,2-a]pyridines [44], amino acid salts [45], α-amino
ketones [46], and 1,3-oxazinan-2-ones [47]. Thus, the studies of organic reactions in aqueous solvents
or H2O-participating reactions are attractive in synthetic chemistry.

4-Pyrones are heterocycles with multiple biological activities [48–50], which are widely found
in biologically active natural products and functional chemicals [51–59]. Particularly, phenoxans,
funicones and rapicones possess potent anti-HIV activity (Figure 1) [60–62]. In general, 4-pyrones
are prepared via the well-known condensation cyclization reaction of carbonyl compounds with
polystep reactions [63–67]. Additionally, a transformation of isoxazoles to substituted pyran-4-ones
in the presence of Mo(CO)6 and HCO2H in a two-step procedure was established [68]. Although
these reported methods have made significant contributions to the applications of 4-pyrones in
pharmacology and food manufacture [69], the development of efficient and practical synthetic methods
for 4-pyrones from easily accessible starting materials is still highly desirable. Continuing our interest
in the conversion of alkynes to heterocycles [70–77], herein, we would like to describe an efficient,
transition-metal-free synthesis of 4-pyrones through TfOH-promoted cyclization of diynones. Water
acts as both the substrate and solvent, obviating the need for an organic co-solvent. Overall, the reaction
is atom-economical and environmentally benign.
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Figure 1. 4-Pyrones disclosed as biologically active organic molecules. 

2. Results and Discussion 

1,5-Diphenylpenta-1,4-diyn-3-one (1a) was chosen as model substrate to identify the optimal 
conditions for this reaction (Table 1). Originally, the reaction was carried out in the presence of 1 
equiv. TfOH for 24 h to afford the desired product 2a in 70% yield (Table 1, entry 1). When other acid 
catalysts such as CH3COOH, PTSA, HCl, H3PO4 and PhCOOH were screened, the yield of 2a 
decreased (Table 1, entries 2–6). Further experiments demonstrated that decreasing the amount of 
TfOH was detrimental to the yield of 2a (Table 1, entries 7 and 8), and no obvious improvement of 
yield was noted by using 2 equiv. of TfOH (Table 1, entry 9). Poor yield of 2a was obtained when the 
reaction was performed at 80 °C, while not much change was noted between 100 °C and 130 °C 
(Table 1, entries 10 and 11). In addition, an 83% yield was achieved when the reaction time was 
extended to 36 h (Table 1, entry 12). Thus, the best conditions for this transformation involved 1 
equiv. of TfOH in H2O at 100 °C for 36 h. 

Table 1. Optimization of reaction conditions a. 

 

Entry Catalyst Time (h) Yield (%) b 
1 TfOH 24 70 
2 CH3COOH 24 0 
3 PTSA 24 50 
4 HCl 24 0 
5 H3PO4 24 0 
6 PhCOOH 24 10 

7 c TfOH 24  10 
8 d TfOH 24 50 
9 e TfOH 24 80 
10 f TfOH 24 20 
11 g TfOH 24 75 
12 TfOH 36 83 

a Reaction conditions: 1a (0.5 mmol), catalyst (1 equiv.), H2O (1 mL), at 100 °C; b Isolated yields; c 
TfOH (0.2 equiv.); d TfOH (0.5 equiv.); e TfOH (2 equiv.); f At 80 °C; g The reaction was carried out in a 
sealed tube at 130 °C. 

Under the optimized reaction conditions, the one-pot reaction worked well using all kinds of 
diynones, as shown in Scheme 1. Firstly, various symmetric diynones were identified as suitable 
substrates for the reaction and provided the desired products in moderate to good yields (Scheme 1, 
2b−2j). Aryl groups with electron-donating groups (EDG) gave satisfactory yields (Scheme 1, 2b−2d 
and 2f−2h), whereas aryl groups with electron-withdrawing groups (EWG) afforded slightly lower 
yields (Scheme 1, 2e). Gratifyingly, aliphatic diynones worked smoothly to generate the 
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2. Results and Discussion

1,5-Diphenylpenta-1,4-diyn-3-one (1a) was chosen as model substrate to identify the optimal
conditions for this reaction (Table 1). Originally, the reaction was carried out in the presence of 1 equiv.
TfOH for 24 h to afford the desired product 2a in 70% yield (Table 1, entry 1). When other acid catalysts
such as CH3COOH, PTSA, HCl, H3PO4 and PhCOOH were screened, the yield of 2a decreased (Table 1,
entries 2–6). Further experiments demonstrated that decreasing the amount of TfOH was detrimental
to the yield of 2a (Table 1, entries 7 and 8), and no obvious improvement of yield was noted by using
2 equiv. of TfOH (Table 1, entry 9). Poor yield of 2a was obtained when the reaction was performed
at 80 ◦C, while not much change was noted between 100 ◦C and 130 ◦C (Table 1, entries 10 and 11).
In addition, an 83% yield was achieved when the reaction time was extended to 36 h (Table 1, entry 12).
Thus, the best conditions for this transformation involved 1 equiv. of TfOH in H2O at 100 ◦C for 36 h.

Table 1. Optimization of reaction conditions a.

Molecules 2017, 22, 109 2 of 14 

 

 
Figure 1. 4-Pyrones disclosed as biologically active organic molecules. 

2. Results and Discussion 

1,5-Diphenylpenta-1,4-diyn-3-one (1a) was chosen as model substrate to identify the optimal 
conditions for this reaction (Table 1). Originally, the reaction was carried out in the presence of 1 
equiv. TfOH for 24 h to afford the desired product 2a in 70% yield (Table 1, entry 1). When other acid 
catalysts such as CH3COOH, PTSA, HCl, H3PO4 and PhCOOH were screened, the yield of 2a 
decreased (Table 1, entries 2–6). Further experiments demonstrated that decreasing the amount of 
TfOH was detrimental to the yield of 2a (Table 1, entries 7 and 8), and no obvious improvement of 
yield was noted by using 2 equiv. of TfOH (Table 1, entry 9). Poor yield of 2a was obtained when the 
reaction was performed at 80 °C, while not much change was noted between 100 °C and 130 °C 
(Table 1, entries 10 and 11). In addition, an 83% yield was achieved when the reaction time was 
extended to 36 h (Table 1, entry 12). Thus, the best conditions for this transformation involved 1 
equiv. of TfOH in H2O at 100 °C for 36 h. 

Table 1. Optimization of reaction conditions a. 

 

Entry Catalyst Time (h) Yield (%) b 
1 TfOH 24 70 
2 CH3COOH 24 0 
3 PTSA 24 50 
4 HCl 24 0 
5 H3PO4 24 0 
6 PhCOOH 24 10 

7 c TfOH 24  10 
8 d TfOH 24 50 
9 e TfOH 24 80 
10 f TfOH 24 20 
11 g TfOH 24 75 
12 TfOH 36 83 

a Reaction conditions: 1a (0.5 mmol), catalyst (1 equiv.), H2O (1 mL), at 100 °C; b Isolated yields; c 
TfOH (0.2 equiv.); d TfOH (0.5 equiv.); e TfOH (2 equiv.); f At 80 °C; g The reaction was carried out in a 
sealed tube at 130 °C. 

Under the optimized reaction conditions, the one-pot reaction worked well using all kinds of 
diynones, as shown in Scheme 1. Firstly, various symmetric diynones were identified as suitable 
substrates for the reaction and provided the desired products in moderate to good yields (Scheme 1, 
2b−2j). Aryl groups with electron-donating groups (EDG) gave satisfactory yields (Scheme 1, 2b−2d 
and 2f−2h), whereas aryl groups with electron-withdrawing groups (EWG) afforded slightly lower 
yields (Scheme 1, 2e). Gratifyingly, aliphatic diynones worked smoothly to generate the 

Entry Catalyst Time (h) Yield (%) b

1 TfOH 24 70
2 CH3COOH 24 0
3 PTSA 24 50
4 HCl 24 0
5 H3PO4 24 0
6 PhCOOH 24 10

7 c TfOH 24 10
8 d TfOH 24 50
9 e TfOH 24 80
10 f TfOH 24 20
11 g TfOH 24 75
12 TfOH 36 83

a Reaction conditions: 1a (0.5 mmol), catalyst (1 equiv.), H2O (1 mL), at 100 ◦C; b Isolated yields; c TfOH
(0.2 equiv.); d TfOH (0.5 equiv.); e TfOH (2 equiv.); f At 80 ◦C; g The reaction was carried out in a sealed tube at
130 ◦C.

Under the optimized reaction conditions, the one-pot reaction worked well using all kinds of
diynones, as shown in Scheme 1. Firstly, various symmetric diynones were identified as suitable
substrates for the reaction and provided the desired products in moderate to good yields (Scheme 1,
2b–2j). Aryl groups with electron-donating groups (EDG) gave satisfactory yields (Scheme 1, 2b–2d
and 2f–2h), whereas aryl groups with electron-withdrawing groups (EWG) afforded slightly lower
yields (Scheme 1, 2e). Gratifyingly, aliphatic diynones worked smoothly to generate the corresponding
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cyclization products 2i and 2j in 50% and 57%, respectively (Scheme 1, 2i and 2j). After exploring the
reaction substrate scope of symmetric diynones, we next examined asymmetric diynones substrates.
To our delight, the corresponding 4-pyrones products were obtained in moderate to good yields
under the standard conditions (Scheme 1, 2k–2r). The desired products 2k–2q were obtained in
55%–78% yields when asymmetric diynones substrates 1k–1q (R2 = Ph, R1 = aryl- or alkyl-) were
subjected to this reaction. Obviously, aryl groups with electron-donating groups gave higher yields
than diynones featuring electron-withdrawing groups on the phenyl ring (Scheme 1, 2l and 2m vs.
2n and 2p). Notably, diynone 1p, which possess an electron-withdrawing group at the ortho-position
of the phenyl ring (R1 = 2-Cl-Ph, R2 = Ph) reacted readily to afford 2p in 61% yield (Scheme 1, 2p).
Furthermore, diynone 1q, which bear both a EDG-incorporated aryl ring and a EWG-incorporated
aryl ring (R1 = 4-OMe-Ph, R2 = 4-F-Ph) also participated well in the reaction and offered 2q in 63%
yield (Scheme 1, 2q). Finally, diynone 1r also worked smoothly to give 2r in 50% yield (Scheme 1, 2r).
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Scheme 1. Synthesis of 4-pyrone derivatives a,b. a Reaction conditions: 1 (0.5 mmol), TfOH (1 equiv.), 
H2O (1 mL), at 100 °C, 36 h; b Isolated yields. 

To better understand the reaction mechanism, we carried out control experiments as outlined in 
Scheme 2. Deuterium-labeled D2O was used in the reaction with diynone 1a to give the 
deuterium-labeled product 2a-d in 80% yield, where over 95% of deuterium was incorporated into 
the cyclization product. 

This result demonstrated that H2O was introduced into the 4-pyrones. Moreover, an O18-labeled 
experiment further showed that H2O reacted with diynones to form 4-pyrones. 

On the basis of the above results and existing literature [78], a plausible mechanistic description 
of the nucleophilic addition and cyclization reaction is shown in Scheme 3. First, the carbonyl of the 
diynone substrate was activated by TfOH, followed by nucleophilic addition of H2O to the 
carbon−carbon triple bond of diynone and keto–enol tautomerization [79,80] to form intermediate A. 
Then intermediate A was converted to B through protonation and C–C bond rotation, which was 
promoted by elevated temperature. Subsequently, an intramolecular nucleophilic attack of the 
oxhydryl group to the carbon−carbon triple bond of B lead to a cyclization intermediate C. Finally, 
deprotonation of C gave the desired 4-pyrone 2. 

Scheme 1. Synthesis of 4-pyrone derivatives a,b. a Reaction conditions: 1 (0.5 mmol), TfOH (1 equiv.),
H2O (1 mL), at 100 ◦C, 36 h; b Isolated yields.

To better understand the reaction mechanism, we carried out control experiments as outlined
in Scheme 2. Deuterium-labeled D2O was used in the reaction with diynone 1a to give the
deuterium-labeled product 2a-d in 80% yield, where over 95% of deuterium was incorporated into the
cyclization product.

This result demonstrated that H2O was introduced into the 4-pyrones. Moreover, an O18-labeled
experiment further showed that H2O reacted with diynones to form 4-pyrones.

On the basis of the above results and existing literature [78], a plausible mechanistic description
of the nucleophilic addition and cyclization reaction is shown in Scheme 3. First, the carbonyl of
the diynone substrate was activated by TfOH, followed by nucleophilic addition of H2O to the
carbon−carbon triple bond of diynone and keto–enol tautomerization [79,80] to form intermediate A.
Then intermediate A was converted to B through protonation and C–C bond rotation, which was
promoted by elevated temperature. Subsequently, an intramolecular nucleophilic attack of the oxhydryl
group to the carbon−carbon triple bond of B lead to a cyclization intermediate C. Finally, deprotonation
of C gave the desired 4-pyrone 2.
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Scheme 3. Proposed mechanism.

The treatment of 1,5-diphenylpenta-1,4-diyn-3-one 1a in H2O at 100 ◦C for 36 h in the presence
of TfOH afforded the corresponding cyclization product 2a in 83% yield. The preparation of this
compound 2a on gram-scale afforded 53% of the isolated product (Scheme 4).
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3. Materials and Methods

3.1. General Information

All manipulations were performed under an air atmosphere unless otherwise stated. Column
chromatography was performed on silica gel (300–400 mesh). NMR spectra were obtained using



Molecules 2017, 22, 109 5 of 14

an Avance 500 spectrometer (1H at 500 MHz and 13C at 125 MHz) or an Avance 400 spectrometer
(1H at 400 MHz and 13C at 100 MHz) (Bruker Corporation, Karlsruhe, Germany). IR spectra were
recorded on a Nicolet ESP 360 FT-IR spectrometer (Nicolet, Madison, WI, USA) and only major peaks
are reported in cm−1. High resolution mass spectra (HRMS) were recorded on an Exactive Mass
Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA) equipped with ESI or APCI ionization
sources. Unless stated otherwise, commercial reagents were used without further purification. All
reagents were weighed and handled at room temperature. Compounds 1a–1r were prepared by the
reported methods [78,81]. The NMR spectra and HRMS spectra of the products can be found in the
Supplementary Materials.

3.2. General Procedure for the Synthesis of Compound 2

The reaction mixture of 1 (0.5 mmol), TfOH (1 equiv.) and H2O (1 mL) in a 15 mL test tube was
stirred at 100 ◦C for 36 h, and monitored periodically by TLC. Upon completion, the reaction mixture
was diluted with water (5 mL) and extracted with ethyl acetate (3 × 5 mL). The combined organic
layers were washed with water and brine, dried over MgSO4 and filtered. The solvent was removed
under vacuum. The residue was purified by flash column chromatography (petroleum ether and ethyl
acetate, v/v = 5:1 to 2:1) to afford 4-pyrones 2 (Scheme 5).

Molecules 2017, 22, 109 5 of 14 

 

sources. Unless stated otherwise, commercial reagents were used without further purification. All 
reagents were weighed and handled at room temperature. Compounds 1a–1r were prepared by the 
reported methods [78,81]. The NMR spectra and HRMS spectra of the products can be found in the 
Supplementary Materials. 

3.2. General Procedure for the Synthesis of Compound 2 

The reaction mixture of 1 (0.5 mmol), TfOH (1 equiv.) and H2O (1 mL) in a 15 mL test tube was 
stirred at 100 °C for 36 h, and monitored periodically by TLC. Upon completion, the reaction mixture 
was diluted with water (5 mL) and extracted with ethyl acetate (3 × 5 mL). The combined organic 
layers were washed with water and brine, dried over MgSO4 and filtered. The solvent was removed 
under vacuum. The residue was purified by flash column chromatography (petroleum ether and 
ethyl acetate, v/v = 5:1 to 2:1) to afford 4-pyrones 2 (Scheme 5). 

 
Scheme 5. Synthesis of Compounds 2. 

2,6-Diphenyl-4H-pyran-4-one (2a) [82]. The general procedure was used with 1,5-diphenylpenta- 
1,4-diyn-3-one (115.04 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude obtained was purified 
by column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford the product as a 
yellow solid (102.90 mg, 83%); m.p. 135.3–136.2 °C (lit: 139–140 °C); 1H-NMR (500 MHz, CDCl3) δ 
7.89–7.82 (m, 4H), 7.55–7.50 (m, 6H), 6.81 (s, 2H) ppm; 13C-NMR (125 MHz, CDCl3) δ 180.2, 163.3, 
131.4, 131.4, 129.1, 125.9, 111.4 ppm; IR (KBr): 3060, 2925, 1647, 1614, 1604, 1493, 1450, 1392, 943, 770, 
683 cm−1; HRMS (m/z) (APCI): calcd. for C17H13O2 249.0917 [M + H+]; found 249.0906. 

2,6-Di-p-tolyl-4H-pyran-4-one (2b) [78]. The general procedure was used with 1,5-di-p-tolylpenta- 
1,4-diyn-3-one (129.05 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude obtained was purified 
by column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford the product as a 
yellow solid (117.35 mg, 85%); m.p. 180.5–183.1 °C (lit: 178 °C); 1H-NMR (500 MHz, CDCl3) δ 7.74 (d, 
J = 8.2 Hz, 42H), 7.32 (d, J = 8.0 Hz, 4H), 6.76 (s, 2H), 2.43 (s, 6H) ppm; 13C-NMR (125 MHz, CDCl3) δ 
180.4, 163.4, 141.9, 129.8, 128.7, 125.8, 110.7, 21.5 ppm; IR (KBr): 3066, 1646, 1605, 1507, 1413, 1383, 
942, 819, 478 cm−1; HRMS (m/z) (APCI): calcd. for C19H17O2 277.1230 [M + H+]; found 277.1219. 

2,6-Bis(4-methoxyphenyl)-4H-pyran-4-one (2c) [82]. The general procedure was used with 1,5-bis 
(4-methoxyphenyl)penta-1,4-diyn-3-one (145.05 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The 
crude obtained was purified by column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) 
to afford the product as a yellow solid (124.78 mg, 81%); m.p. 190–193.8 °C (lit: 189–191 °C); 
1H-NMR (500 MHz, CDCl3) δ 7.79 (d, J = 8.9 Hz, 4H), 7.02 (d, J = 8.9 Hz, 4H), 6.70 (s, 2H), 3.88 (s, 6H) 
ppm; 13C-NMR (125 MHz, CDCl3) δ 163.2, 162.1, 134.4, 127.5, 123.9, 114.5, 109.7, 55.5 ppm; IR (KBr): 
2983, 2875, 2765, 1651, 1607, 1507, 1387, 1262, 1226, 1177, 1020, 829 cm−1; HRMS (m/z) (APCI): calcd. 
for C19H17O4 309.1129 [M + H+]; found 309.1115. 

2,6-Bis(4-(tert-butyl)phenyl)-4H-pyran-4-one (2d) [82]. The general procedure was used with 1,5-bis(4- 
(tert-butyl)phenyl)penta-1,4-diyn-3-one (171.10 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude 
obtained was purified by column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to 
afford the product as a yellow solid (154.89 mg, 86%); m.p. 192.5–193.1 °C (lit: 192–194 °C); 1H-NMR 
(500 MHz, CDCl3) δ 7.79 (d, J = 7.2 Hz, 4H), 7.54 (d, J = 7.4 Hz, 4H), 6.81 (s, 2H), 1.36 (s, 18H) ppm; 
13C-NMR (125 MHz, CDCl3) δ 180.5, 163.5, 155.0, 128.6, 126.0, 125.7, 34.9, 31.0 ppm; IR (KBr): 3064, 
3003, 2998, 2970, 2868, 1715, 1667, 1650, 1450, 1340, 1250, 910 cm−1; HRMS (m/z) (APCI): calcd. for 
C25H29O2 361.2169 [M + H+]; found 361.2153. 

Scheme 5. Synthesis of Compounds 2.

2,6-Diphenyl-4H-pyran-4-one (2a) [82]. The general procedure was used with 1,5-diphenylpenta-
1,4-diyn-3-one (115.04 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude obtained was purified by
column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford the product as a yellow
solid (102.90 mg, 83%); m.p. 135.3–136.2 ◦C (lit: 139–140 ◦C); 1H-NMR (500 MHz, CDCl3) δ 7.89–7.82
(m, 4H), 7.55–7.50 (m, 6H), 6.81 (s, 2H) ppm; 13C-NMR (125 MHz, CDCl3) δ 180.2, 163.3, 131.4, 131.4,
129.1, 125.9, 111.4 ppm; IR (KBr): 3060, 2925, 1647, 1614, 1604, 1493, 1450, 1392, 943, 770, 683 cm−1;
HRMS (m/z) (APCI): calcd. for C17H13O2 249.0917 [M + H+]; found 249.0906.

2,6-Di-p-tolyl-4H-pyran-4-one (2b) [78]. The general procedure was used with 1,5-di-p-tolylpenta-
1,4-diyn-3-one (129.05 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude obtained was purified
by column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford the product as a
yellow solid (117.35 mg, 85%); m.p. 180.5–183.1 ◦C (lit: 178 ◦C); 1H-NMR (500 MHz, CDCl3) δ 7.74
(d, J = 8.2 Hz, 42H), 7.32 (d, J = 8.0 Hz, 4H), 6.76 (s, 2H), 2.43 (s, 6H) ppm; 13C-NMR (125 MHz, CDCl3)
δ 180.4, 163.4, 141.9, 129.8, 128.7, 125.8, 110.7, 21.5 ppm; IR (KBr): 3066, 1646, 1605, 1507, 1413, 1383,
942, 819, 478 cm−1; HRMS (m/z) (APCI): calcd. for C19H17O2 277.1230 [M + H+]; found 277.1219.

2,6-Bis(4-methoxyphenyl)-4H-pyran-4-one (2c) [82]. The general procedure was used with 1,5-bis
(4-methoxyphenyl)penta-1,4-diyn-3-one (145.05 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude
obtained was purified by column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford
the product as a yellow solid (124.78 mg, 81%); m.p. 190–193.8 ◦C (lit: 189–191 ◦C); 1H-NMR (500 MHz,
CDCl3) δ 7.79 (d, J = 8.9 Hz, 4H), 7.02 (d, J = 8.9 Hz, 4H), 6.70 (s, 2H), 3.88 (s, 6H) ppm; 13C-NMR
(125 MHz, CDCl3) δ 163.2, 162.1, 134.4, 127.5, 123.9, 114.5, 109.7, 55.5 ppm; IR (KBr): 2983, 2875, 2765,
1651, 1607, 1507, 1387, 1262, 1226, 1177, 1020, 829 cm−1; HRMS (m/z) (APCI): calcd. for C19H17O4

309.1129 [M + H+]; found 309.1115.

2,6-Bis(4-(tert-butyl)phenyl)-4H-pyran-4-one (2d) [82]. The general procedure was used with 1,5-bis(4-
(tert-butyl)phenyl)penta-1,4-diyn-3-one (171.10 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude
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obtained was purified by column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to
afford the product as a yellow solid (154.89 mg, 86%); m.p. 192.5–193.1 ◦C (lit: 192–194 ◦C); 1H-NMR
(500 MHz, CDCl3) δ 7.79 (d, J = 7.2 Hz, 4H), 7.54 (d, J = 7.4 Hz, 4H), 6.81 (s, 2H), 1.36 (s, 18H) ppm;
13C-NMR (125 MHz, CDCl3) δ 180.5, 163.5, 155.0, 128.6, 126.0, 125.7, 34.9, 31.0 ppm; IR (KBr): 3064,
3003, 2998, 2970, 2868, 1715, 1667, 1650, 1450, 1340, 1250, 910 cm−1; HRMS (m/z) (APCI): calcd. for
C25H29O2 361.2169 [M + H+]; found 361.2153.

2,6-Bis(4-fluorophenyl)-4H-pyran-4-one (2e) [82]. The general procedure was used with 1,5-bis
(4-fluorophenyl)penta-1,4-diyn-3-one (133.12 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude
obtained was purified by column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to
afford the product as a white solid (85.22 mg, 60%); m.p. 160–161.3 ◦C (lit: 167–170 ◦C); 1H-NMR
(500 MHz, CDCl3) δ 7.84 (dd, J = 8.5, 5.2 Hz, 4H), 7.22 (t, J = 8.4 Hz, 4H), 6.75 (s, 2H) ppm; 13C-NMR
(125 MHz, CDCl3) δ 179.9, 164.6 (d, J = 253.4 Hz), 162.5, 128.1 (d, J = 8.8 Hz), 127.6 (d, J = 3.3 Hz),
116.5(d, J = 22.2 Hz), 111.3 ppm; IR (KBr): 3059, 2924, 1662, 1599, 1504, 1417, 1380, 1241, 1223, 1160,
837 cm−1; HRMS (m/z) (APCI): calcd. for C17H11F2O2 285.0729 [M + H+]; found 285.0716.

2,6-Bis(4-pentylphenyl)-4H-pyran-4-one (2f). The general procedure was used with 1,5-bis(4-pentylphenyl)
penta-1,4-diyn-3-one (185.11 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude obtained was
purified by column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford the product
as a yellow solid (163.06 mg, 84%); m.p. 66.7–67.9 ◦C; 1H-NMR (500 MHz, CDCl3) δ 7.76 (d, J = 8.1 Hz,
4H), 7.32 (d, J = 8.1 Hz, 4H), 6.77 (s, 2H), 2.70–2.66 (m, 4H), 1.69–1.61 (m, 4H), 1.36–1.33 (m, 8H), 0.90
(t, J = 6.9 Hz, 6H) ppm; 13C-NMR (125 MHz, CDCl3) δ 180.5, 163.5, 146.9, 129.2, 128.9, 125.9, 110.7, 35.8,
31.4, 30.8, 22.5, 13.9 ppm; IR (KBr): 3032, 2956, 2929, 2857, 1717, 1649, 1609, 1419, 1380, 1186, 944, 849,
649 cm−1; HRMS (m/z) (APCI): calcd. for C27H33O2 389.2482 [M + H+]; found 389.2466.

2,6-Bis(4-ethylphenyl)-4H-pyran-4-one (2g) [78]. The general procedure was used with 1,5-bis(4-ethylphenyl)
penta-1,4-diyn-3-one (143.07 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude obtained was
purified by column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford the product
as a brown solid (124.70 mg, 82%); m.p. 119.5–121.5 ◦C; 1H-NMR (500 MHz, CDCl3) δ 7.77 (d, J = 8.1 Hz,
4H), 7.34 (d, J = 8.1 Hz, 4H), 6.77 (s, 2H), 2.72 (q, J = 7.6 Hz, 4H), 1.28 (t, J = 7.6 Hz, 6H) ppm; 13C-NMR
(125 MHz, CDCl3) δ 180.4, 163.5, 148.2, 128.9, 128.6, 125.9, 110.6, 28.8, 15.2 ppm; IR (KBr): 3070, 2965,
2875, 1647, 1610, 1510, 1451, 1420, 1383, 1187, 1014, 945, 837, 643 cm−1; HRMS (m/z) (APCI): calcd. for
C21H21O2 305.1543 [M + H+]; found 305.1532.

2,6-Di-m-tolyl-4H-pyran-4-one (2h) [78]. The general procedure was used with 1,5-di-m-tolylpenta-
1,4-diyn-3-one (129.05 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude obtained was purified by
column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford the product as a light
yellow solid (100.78 mg, 73%); m.p. 73.5–75.5 ◦C; 1H-NMR (500 MHz, CDCl3) δ 7.66–7.62 (t, J = 7.6 Hz,
4H), 7.41 (t, J = 7.6 Hz, 2H), 7.34 (d, J = 7.6 Hz, 2H), 6.78 (s, 2H), 2.45 (s, 6H) ppm; 13C-NMR (125 MHz,
CDCl3) δ 163.6, 138.9, 132.1, 131.4, 129.0, 126.5, 123.1, 111.3, 21.5 ppm; IR (KBr): 3063, 2923, 1646, 1611,
1485, 1384, 1260, 1075, 929, 784, 694, 435 cm−1; HRMS (m/z) (APCI): calcd. for C19H17O2 277.1230
[M + H+]; found 277.1219.

2,6-Dipropyl-4H-pyran-4-one (2i) [78]. The general procedure was used with undeca-4,7-diyn-6-one
(81.05 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude obtained was purified by column
chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford the product as a brown oil
(45.03 mg, 50%); 1H-NMR (500 MHz, CDCl3) δ 6.05 (s, 1H), 2.44 (t, J = 7.5 Hz, 4H), 1.69–1.61 (m, 4H),
0.95 (td, J = 7.4, 1.1 Hz, 6H) ppm; 13C-NMR (125 MHz, CDCl3) δ 180.6, 169.1, 113.0, 35.4, 20.1, 13.3 ppm;
IR (KBr): 3437, 2965, 2875, 1663, 1619, 1411, 1398, 1148, 933, 864 cm−1; HRMS (m/z) (APCI): calcd. for
C11H14O2 181.1230 [M + H+]; found 181.1221.

2,6-Dicyclopropyl-4H-pyran-4-one (2j) [78]. The general procedure was used with 1,5-dicyclopropylpenta-
1,4-diyn-3-one (79.04 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude obtained was purified by
column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford the product as a white
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solid (50.19 mg, 57%); m.p. 146.7–150.7 ◦C; 1H-NMR (500 MHz, CDCl3) δ 6.04 (s, 2H), 1.72 (tt, J = 8.3,
5.0 Hz, 2H), 1.00–0.95 (m, 4H), 0.92–0.88 (m, 4H) ppm; 13C-NMR (125 MHz, CDCl3) δ 179.5, 168.6,
111.1, 13.7, 7.8 ppm; IR (KBr): 3045, 3010, 2955, 1655, 1602, 1586, 1401, 1095, 1053, 858 cm−1; HRMS
(m/z) (APCI): calcd. for C11H13O2 177.0917 [M + H+]; found 177.0908.

2-Phenyl-6-propyl-4H-pyran-4-one (2k) [78]. The general procedure was used with 1-phenylocta-
1,4-diyn-3-one (98.04 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude obtained was purified by
column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford the product as a brown
solid (83.50 mg, 78%); m.p. 49.8–51.5 ◦C; 1H-NMR (500 MHz, CDCl3) δ 7.75 (dd, J = 7.7, 1.8 Hz, 1H),
7.51–7.46 (m, 1H), 6.72 (s, 1H), 6.19 (s, 1H), 2.60 (t, J = 7.5 Hz, 1H), 1.82–1.73 (m, 1H), 1.03 (t, J = 7.4 Hz,
1H) ppm; 13C-NMR (125 MHz, CDCl3) δ 180.1, 168.8, 163.6, 131.5, 131.3, 129.0, 125.8, 114.0, 111.1, 35.6,
20.3, 13.5 ppm; IR (KBr): 3060, 2926, 1653, 1617, 1493, 1450, 1409, 1061, 937, 866, 772, 691 cm−1; HRMS
(m/z) (APCI): calcd. for C14H15O2 215.1074 [M + H+]; found 215.1065.

2-Phenyl-6-(p-tolyl)-4H-pyran-4-one (2l) [83]. The general procedure was used with 1-phenyl-5-(p-tolyl)
penta-1,4-diyn-3-one (112.04 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude obtained was
purified by column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford the product
as a yellow solid (85.18 mg, 65%); m.p. 155.1–156.4 ◦C (lit: 150 ◦C); 1H-NMR (500 MHz, CDCl3) δ
7.88–7.83 (m, 2H), 7.75 (d, J = 8.2 Hz, 2H), 7.54–7.51 (m, 3H), 7.32 (d, J = 8.1 Hz, 2H), 6.83–6.78 (m, 2H),
2.44 (s, 3H) ppm; 13C-NMR (125 MHz, CDCl3) δ 180.4, 163.6, 163.3, 142.0, 131.5, 131.4, 129.8, 129.1,
128.6, 125.91, 125.86, 111.3, 110.7, 21.5 ppm; IR (KBr): 3064, 2922, 2854, 1646, 1606, 1448, 1413, 1387, 943,
816 cm−1; HRMS (m/z) (APCI): calcd. for C18H15O2 263.1074 [M + H+]; found 263.1061.

2-(4-Methoxyphenyl)-6-phenyl-4H-pyran-4-one (2m) [78]. The general procedure was used with
1-(4-methoxyphenyl)-5-phenylpenta-1,4-diyn-3-one (130.04 mg, 0.5 mmol, 1 equiv.) and water (1 mL).
The crude obtained was purified by column chromatography (petroleum ether/ethyl acetate = 5:1 to
2:1) to afford the product as a brown solid (97.33 mg, 70%); m.p. 161.3–162.2 ◦C (lit: 162 ◦C); 1H-NMR
(500 MHz, CDCl3) δ 7.82 (dd, J = 6.6, 3.0 Hz, 2H), 7.78 (d, J = 8.9 Hz, 2H), 7.50 (dd, J = 5.0, 1.7 Hz, 3H),
7.00 (d, J = 8.9 Hz, 2H), 6.76 (d, J = 1.7 Hz, 1H), 6.70 (d, J = 1.7 Hz, 1H), 3.86 (s, 3H) ppm; 13C-NMR
(125 MHz, CDCl3) δ 180.2, 163.3, 163.0, 162.2, 131.5, 131.2, 129.0, 127.5, 125.8, 123.6, 114.5, 111.1, 109.8,
55.4 ppm; IR (KBr): 3443, 3067, 2900, 2843, 1647, 1604, 1509, 1448, 1423, 1383, 1023, 832, 767, 684 cm−1;
HRMS (m/z) (APCI): calcd. for C18H15O3 279.1014 [M + H+]; found 279.1013.

2-(4-Fluorophenyl)-6-phenyl-4H-pyran-4-one (2n). The general procedure was used with 1-(4-fluorophenyl)-
5-phenylpenta-1,4-diyn-3-one (124.03 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude obtained
was purified by column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford the
product as a yellow solid (77.16 mg, 58%); m.p. 145.5–150.6 ◦C; 1H-NMR (500 MHz, CDCl3) δ 7.89–7.82
(m, 4H), 7.56–7.51 (m, 3H), 7.22 (t, J = 8.5 Hz, 2H), 6.82 (d, J = 1.8 Hz, 1H), 6.77 (d, J = 1.8 Hz, 1H) ppm;
13C-NMR (125 MHz, CDCl3) δ 180.1, 165.6, 163.6, 163.4, 162.5, 131.5, 131.3, 129.2, 128.1 (d, J = 8.9 Hz),
127.6, 125.9, 116.4 (d, J = 22.1 Hz), 111.3 (d, J = 24.2 Hz) ppm; IR (KBr): 3061, 2924, 1659, 1505, 1508,
1417, 1449, 1388, 1232, 1162 cm−1; HRMS (m/z) (APCI): calcd. for C17H12FO2 267.0823 [M + H+];
found 267.0813.

2-Cyclopropyl-6-phenyl-4H-pyran-4-one (2o) [84]. The general procedure was used with 1-cyclopropyl-
5-phenylpenta-1,4-diyn-3-one (97.04 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude obtained was
purified by column chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford the product
as a yellow solid (58.33 mg, 55%); m.p. 106.5–107.8 ◦C (lit: 106 ◦C); 1H-NMR (500 MHz, CDCl3) δ 7.67
(dd, J = 7.9, 1.7 Hz, 2H), 7.50–7.45 (m, 3H), 6.69 (d, J = 2.1 Hz, 1H), 6.23 (d, J = 2.1 Hz, 1H), 1.90 (tt,
J = 7.9, 5.4 Hz, 1H), 1.12 (tt, J = 4.7, 2.5 Hz, 4H) ppm; 13C-NMR (125 MHz, CDCl3) δ 179.8, 169.5, 162.7,
131.3, 131.2, 129.0, 125.6, 111.6, 111.0, 14.1, 8.5 ppm; IR (KBr): 3059, 2927, 1651, 1609, 1544, 1496, 1448,
1394, 1253, 1193, 1087, 931, 878, 766, 685 cm−1; HRMS (m/z) (APCI): calcd. for C14H13O2 213.0917
[M + H+]; found 213.0908.
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2-(2-Chlorophenyl)-6-phenyl-4H-pyran-4-one (2p) [85]. The general procedure was used with
1-(2-chlorophenyl)-5-phenylpenta-1,4-diyn-3-one (132.02 mg, 0.5 mmol, 1 equiv.) and water (1 mL).
The crude obtained was purified by column chromatography (petroleum ether/ethyl acetate = 5:1
to 2:1) to afford the product as a yellow solid (86.03 mg, 61%); m.p. 123.5–124.6 ◦C (lit: 122–124 ◦C);
1H-NMR (400 MHz, CDCl3) δ 7.86–7.81 (m, 2H), 7.60 (dd, J = 7.5, 1.8 Hz, 1H), 7.57–7.54 (m, 1H),
7.52–7.48 (m, 2H), 7.48–7.46 (m, 1H), 7.44 (dd, J = 6.6, 1.7 Hz, 1H), 7.41 (dd, J = 7.4, 1.4 Hz, 1H), 6.86 (d,
J = 2.2 Hz, 1H), 6.67 (d, J = 2.2 Hz, 1H) ppm; 13C-NMR (100 MHz, CDCl3) δ 178.0, 164.1, 162.6, 132.8,
131.9, 131.5, 131.4, 131.2, 130.9, 130.7, 129.1, 127.2, 126.0, 116.8, 111.2 ppm; IR (KBr): 3059, 2931, 1667,
1650, 1600, 1580, 1403, 1250, 1000, 910, 665 cm−1; HRMS (m/z) (ESI): calcd. for C17H12ClO2 283.0528
[M + H+]; found 283.0513.

2-(4-Fluorophenyl)-6-(4-methoxyphenyl)-4H-pyran-4-one (2q) [85]. The general procedure was used with
1-(4-fluorophenyl)-5-(4-methoxyphenyl)penta-1,4-diyn-3-one (139.04 mg, 0.5 mmol, 1 equiv.) and
water (1 mL). The crude obtained was purified by column chromatography (petroleum ether/ethyl
acetate = 5:1 to 2:1) to afford the product as a yellow solid (93.27 mg, 63%); m.p. 138.7–140.5 ◦C
(lit: 144–148 ◦C); 1H-NMR (400 MHz, CDCl3) δ 7.86–7.82 (m, 2H), 7.80–7.77 (m, 2H), 7.27–7.18 (m, 2H),
7.05–7.00 (m, 2H), 6.72 (dd, J = 3.7, 1.9 Hz, 2H), 3.89 (s, 3H) ppm; 13C-NMR (100 MHz, CDCl3) δ 180.2,
165.8, 163.4, 163.3, 162.2 (d, J = 8.9 Hz), 128.1 (d, J = 8.8 Hz), 127.8 (d, J = 3.3 Hz), 127.6, 123.6, 116.4
(d, J = 22.1 Hz), 114.6, 111.0, 109.9, 55.5 ppm; IR (KBr): 3673, 3067, 2969, 1657, 1610, 1509, 1422, 1385,
1270, 1227, 1169, 1074, 1021, 841 cm−1; HRMS (m/z) (ESI): calcd. for C18H14FO3 297.0929 [M + H+];
found 297.0913.

2-Phenyl-4H-pyran-4-one (2r) [86]. The general procedure was used with 1-phenylpenta-1,4-diyn-3-one
(77.02 mg, 0.5 mmol, 1 equiv.) and water (1 mL). The crude obtained was purified by column
chromatography (petroleum ether/ethyl acetate = 5:1 to 2:1) to afford the product as a yellow solid
(43.02 mg, 50%); yellow solid; m.p. 102.2–103.5 ◦C (lit: 100–102 ◦C); 1H-NMR (400 MHz, CDCl3) δ 7.84
(d, J = 5.8 Hz, 1H), 7.74 (dd, J = 7.9, 1.7 Hz, 2H), 7.51–7.44 (m, 3H), 6.78 (d, J = 2.3 Hz, 1H), 6.38 (dd,
J = 5.8, 2.3 Hz, 1H) ppm; 13C-NMR (100 MHz, CDCl3) δ 179.0, 163.9, 154.8, 131.4, 131.0, 129.0, 125.7,
117.0, 112.3 ppm; IR (KBr): 3090, 1675, 1650, 1590, 1549, 1490, 1450, 1402, 1350, 1050, 931, 875, 795, 730,
650 cm−1; HRMS (m/z) (ESI): calcd. for C11H9O2 173.0604 [M + H+]; found 173.0603.

3.3. Control Experiments

3.3.1. Deuterium Labeling Experiments

The reaction mixture of 1 (0.5 mmol), TfOH (1 equiv.), and D2O (1 mL) in a 15 mL test tube was
stirred at 100 ◦C for 36 h, and monitored periodically by TLC. Upon completion, the reaction mixture
was diluted with water (5 mL) and extracted with ethyl acetate (3 × 5 mL). The combined organic
layers were washed with water and brine, dried over MgSO4 and filtered. The solvent was removed
under vacuum. The residue was purified by flash column chromatography (petroleum ether and ethyl
acetate, v/v = 5:1 to 2:1) to afford 4-pyrone 2a-d (100.04 mg, 80%) as a yellow solid; m.p. 116.1–119.5 ◦C;
1H-NMR (500 MHz, CDCl3) δ 7.90–7.83 (m, 4H), 7.55–7.51 (m, 6H), 6.84 (s, 0.12H) (Scheme 6).
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3.3.2. O18-Labelling Experiment

The reaction mixture of 1a (0.5 mmol), TfOH (1 equiv.), and H2O18 (1 mL) in a 15 mL test tube was
stirred at 100 ◦C for 36 h, and monitored periodically by TLC. Upon completion, the reaction mixture
was diluted with water (5 mL) and extracted with ethyl acetate (3 × 5 mL). The combined organic
layers were washed with water and brine, dried over MgSO4 and filtered. The solvent was removed
under vacuum. The residue was purified by flash column chromatography (petroleum ether and ethyl
acetate, v/v = 5:1 to 2:1) to afford 4-pyrone O18-2a (78%) (Scheme 7).Molecules 2017, 22, 109 9 of 14 
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3.3.3. Gram-Scale Synthesis

The reaction mixture of 1a (5 mmol), TfOH (1 equiv.) and H2O (10 mL) in a 50 mL round-bottom
flask was stirred at 100 ◦C for 36 h, and monitored periodically by TLC. Upon completion, the reaction
mixture was diluted with water (30 mL) and extracted with ethyl acetate (3 × 30 mL). The combined
organic layers were washed with water and brine, dried over MgSO4 and filtered. The solvent was
removed under vacuum. The residue was purified by flash column chromatography (petroleum ether
and ethyl acetate, v/v = 5:1 to 2:1) to afford 4-pyrone 2a (53%) (Scheme 8).
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4. Conclusions

We have developed a simple and efficient transition-metal-free method for the synthesis of
substituted 4-pyrones from diynones and H2O. Water is a cheap, green and readily available staring
material, which converted to the desired 4-pyrone products via a nucleophilic addition/cyclization/
dehydrogenation process. The operational simplicity, good yields, and environmentally benign nature
of this method make it an attractive route to 4-pyrones. Further studies on the applications of 4-pyrones
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