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This work investigates multi-resolution methodologies for simulating dimer

models. The solvent particles which make up the heat bath interact with the

monomers of the dimer either through direct collisions (short-range) or through

harmonic springs (long-range). Two types of multi-resolution methodologies are

considered in detail: (a) describing parts of the solvent far away from the dimer

by a coarser approach; (b) describing each monomer of the dimer by using a

model with different level of resolution. These methodologies are then used to

investigate the effect of a shared heat bath versus two uncoupled heat baths,

one foreach monomer. Furthermore, the validityof the multi-resolution methods

is discussed by comparison to dynamics of macroscopic Langevin equations.
1. Introduction
Molecular dynamics (MD) approaches, based on the rules of classical mech-

anics, have been used to study the behaviour of complex biomolecules in

biological applications [1,2]. They are written in terms of the positions and vel-

ocities of particles, representing either individual atoms or groups of atoms,

describing parts of a biomolecule [3–6]. Inter-particle forces in MD models

include combinations of short-range and long-range interactions [7,8]. In all-

atom MD models, a common example of short-range forces are interactions

described by the Lennard–Jones potential [9,10], while Coulomb forces provide

an example of long-range forces [7]. Considering coarse-grained or caricature

MD models, short-range interaction models include systems when particles

only interact through direct collisions [11–14], while long-range interactions

also include models where particles interact through harmonic springs

[15,16]. Once the inter-particle interactions are specified, MD describes the

time evolution of the model as a system of ordinary or stochastic differential

equations for the positions of particles, which can also be subject to algebraic

constraints, representing bonds between atoms or fixed internal structures of

a biomolecule [2,17,18].

Biologically relevant simulations have to be done in aqueous solutions.

A number of water models have been developed in the literature to use in

all-atom MD simulations, including commonly used three-site (SPC/E,

TIP3P) models [19,20]. In coarse-grained MD models, water is often treated

with the same level of coarse-graining as other molecules in the system. For

example, four water molecules are combined into a single coarse-grained

water bead in the Martini model [3], while the Wat Four water model [6]

uses four linked beads placed at the corners of a tetrahedron to collectively rep-

resent 11 water molecules. In this paper, we consider two theoretical heat baths

which enable more analytical progress than solvent models based on all-atom

or coarse-grained water models. In both cases, the convergence to the Langevin

description of the solute particle can be established in a certain limit [11–16].
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Our solute particle will also be treated with the same level

of simplicity and described as a simple dimer molecule

consisting of two monomers (beads) connected by a spring.

Multi-resolution (hybrid) methods use detailed and

coarse-grained simulations in different parts of the simulation

domain during the same dynamic simulation [21–24].

Such methods have been developed in different application

areas and at different spatial and temporal scales in the litera-

ture, including dual-resolution approaches AdResS and

H-AdResS for all-atom MD simulations [25–29], methods

for coupling Brownian dynamics approaches with lattice-

based stochastic reaction-diffusion models [30–32] or

methods which make use of continuum mean-field equations

for the macroscopic component of the simulation [33–35].

In some multi-resolution MD approaches, the region of

high resolution moves together with the large microscopic

structure of interest so that the high resolution model is

always used for the whole considered structure, which can

range in size from a single biomolecule (a protein or a

DNA in solution [27,28]) to virus-like particles [36,37]. The

structure of interest is placed in the centre of the simulation

domain, and it is solvated using a detailed atomistic MD

water in its immediate neighbourhood, which is coupled

with a coarse-grained water description in the rest of the

computational domain.

Another type of multi-resolution modelling is used for

modelling of macromolecules where a detailed model of an

important part of a macromolecule is coupled with a coarser

model of the rest of the macromolecule. For example, atomis-

tic detail of the active part of an enzyme has been coupled

with a coarser model of the rest of the protein [38], different

resolutions have been used in bead-spring modelling of DNA

[39,40] or for modelling of polymer melts [41,42].

In this paper, we study both multi-resolution approaches

using a simple dimer model consisting of two monomers

(beads) connected by a spring. Similar models, where a macro-

molecule is described as several beads, representing parts of

the simulated biomolecule, connected by springs, have been

obtained in the literature using the method of ultra-coarse-

graining [43]. Thus, our dimer model can be considered as a

caricature of an ultra-coarse-grained model of a macromol-

ecule. We study its behaviour in two theoretical heat baths.

Our investigation focuses on multi-resolution (multiscale)

descriptions of the solvent which can be described at the micro-

scopic level of individual solvent molecules or at the

macroscopic (dimer) level with the introduction of extrinsic

random thermal forces on the monomers. We present models

of the same dimer with various multi-resolution descriptions

for the solvent and highlight the conditions and reasons,

when and why, different model approximations of the solvent

may be made in simulations.

Our paper is organized as follows. In §2, we introduce the

macroscopic dimer model with a macroscopic description for

solvent forces. This macroscopic model is fully described by

Langevin equations. The Langevin macroscopic model is

commonly used in simulation due to ease of implementation

and analysis. We discuss in §2 the properties of this descrip-

tion with the intent to use these properties as benchmarks

against which to compare microscopic and multi-resolution

solvent models for the same dimer. Two theoretical micro-

scopic approaches to model the solvent are introduced and

studied through multi-resolution (simultaneous microscopic

and macroscopic coupled) modelling in §§3 and 4. One of
them is based on (very) short-range interactions, as heat

bath particles only interact with the dimer on contact. The

other one is at the opposite extreme, as it is based on (very)

long-range interactions, where the heat bath is modelled as

a system of many harmonic oscillators.
2. The dimer model
In this section, we will talk exclusively about the construction

of the model for the dimer which will be used throughout

this manuscript. In doing so, we describe the solvent at

the macroscopic level as an extrinsically added random

force. The result will be a set of Langevin equations.

Throughout the manuscript, we will modify the treatment

of the solvent forces at various scales and hybrid resolutions

but the underlying dimer model will be the same.

We consider a model of a dimer which is described

by positions of its two monomers, denoted by X1 ¼ [X1;1,

X1;2, X1;3] and X2 ¼ [X2;1, X2;2, X2;3], respectively. Each mono-

mer has the same mass, M. We denote by R the vector

describing the separation between the monomers, i.e. R ¼

X2 2 X1, and by R its magnitude R ¼ jRj. The interaction

between monomers is given in terms of the potential

F ; F(R):[0, 1)! R, which generates a force on each of

the monomers with magnitude F 0(R).

When the dimer is placed into a heat bath, there are

additional forces on the two monomers caused by interactions

with solvent molecules. The solvent forces can be modelled in a

number of different ways and at various scales. In this manu-

script, we consider two classes of models to describe the

solvent–dimer interactions. The first, presented in §3, models

the solvent as a bath of point particles which collide with

the monomers and elastic collisions (short-range inter-

actions) contribute to the generation of the forces. In the

second case, described in §4, solvent molecules are point

particles which oscillate around and interact at a distance

(through long-range interactions) with the monomers. The

solvent-dimer interactions are the sum of harmonic oscilla-

tory forces acting on each of the monomers. Importantly,

both descriptions under suitable assumptions lead to a macro-

scopic description of the dimer given by the following set of

Langevin equations:

dX1 ¼ V1 dt, (2:1)

dV1 ¼
F0(R)

M
R

R
dt� gV1 dtþ g

ffiffiffiffiffiffiffi
2D
p

dW1, (2:2)

dX2 ¼ V2 dt (2:3)

and dV2 ¼ �
F0(R)

M
R

R
dt� gV2 dtþ g

ffiffiffiffiffiffiffi
2D
p

dW2, (2:4)

where V1 ¼ [V1;1, V1;2, V1;3] and V2 ¼ [V2;1, V2;2, V2;3] are vel-

ocities of the first and second monomer, respectively, W1 and

W2 are three-dimensional vectors of independent Wiener pro-

cesses, D is a diffusion coefficient and g is a friction

coefficient, with dimension [g] ¼ [time]�1.

System (2.1)–(2.4) provides a macroscopic model of

the dimer, which we compare with microscopic (or multi-

resolution) MD simulations which explicitly model the

solvent. Its validity for different MD models can be tested

by comparing values of different dimer’s statistics at equili-

brium, including its expected length Ld, dimer velocity
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autocorrelation function Cd(t) and dimer diffusion constant

Dd, defined by

Ld ¼ lim
t!1
hRi,

Cd(t) ¼ lim
t!1

1

3
hV(tþ t) �V(t)i

and Dd ¼ lim
t!1

1

6t
(X(t)� X(0))2
� �

,

(2:5)

where X ¼ (X1 þ X2)=2 is the centre of mass of the dimer and

V ¼ (V1 þV2)=2 is its velocity. These quantities can be obtained

analytically for our macroscopic model (2.1)–(2.4) as follows.

Adding equation (2.2) and equation (2.4) and noting that the

sum of two independent Wiener processes is another Wiener

process W with its variance equal to the sum of the variances

of the original two processes, we obtain an Ornstein–Uhlenbeck

process for V in the following form:

dV ¼ �gV dtþ g
ffiffiffiffi
D
p

dW:

Therefore, we have

Cd(t) ¼ Dg

2
exp [�gt]: (2:6)

Integrating over t, we deduce

Dd ¼
ð1

0

Cd(t) dt ¼ D
2
: (2:7)

Taking the difference of equation (2.4) minus equation (2.2),

implementing the over-damped assumption (where g is large)

and combining the independent Weiner processes into a

single Weiner process W gives

dR ¼ � 2F0(R)

Mg

R

R
dtþ 2

ffiffiffiffi
D
p

dW:

The stationary distribution corresponding to this process is pro-

portional to exp [2F(R)/(MDg)]. Normalizing, we find the

distribution of dimer lengths equal to

@(R) ¼
exp �F(R)

MDg

h i
4p
Ð1

0 r2 exp �F(r)
MDg

h i
dr
:

In the simulations that follow in this manuscript, we shall be

assuming the dimer potential acts like a linear spring with a

rest length of ‘0 and a spring constant of k between the two

monomers. That is, we shall assume

F(R) ¼ k(R� ‘0)2

2
: (2:8)

Each monomer within the dimer is representing a half of a mol-

ecule of interest and the value of the spring constant indicates

the flexibility in which the molecule can change its shape. In

this paper, we consider the parameter regime where the

spring constant k is sufficiently large so that the dimer has a

well-defined structure. In the limit of large k, we have

1 ¼ MDg=(k ‘2
0)� 1. Then, Ld can be calculated as

Ld � ‘0 1þ 2MDg

k ‘2
0

� �
, (2:9)

which is valid up to the first order in 1. In particular, the pres-

ence of heat baths extends the dimer from its rest length on

average. In the following two sections, we study two theoretical

MD models, where we use equations (2.6), (2.7) and (2.9) to
compare the macroscopic theory with the results obtained by

MD simulations.
3. Short-range interaction heat bath
We describe the two monomers as balls with radius r0 and

mass M which interact with point solvent particles when

they collide with them. In particular, this is a theoretical

model of a (very) short-range interaction heat bath. Between

collisions, monomers follow Newton’s Second Law of Motion

in the form

M
dV1

dt
¼ F0(R)

R

R
(3:1)

and

M
dV2

dt
¼ �F0(R)

R

R
, (3:2)

where, following our notation introduced in §2, positions and

velocities of the monomers are denoted by Xi and Vi, respect-

ively, and R ¼ X2 2 X1.

Our short-range interaction heat bath is described in

terms of positions x
j
i and velocities v

j
i , of heat bath particles,

where i ¼ 1, 2 is the monomer number and j ¼ 1, 2, 3, . . ., is

the number of the heat bath particle. Notice that this formu-

lation allows us to consider two important cases: (a) each

monomer has its own heat bath; (b) a single heat bath is

shared by both monomers. By comparing our simulation

results in cases (a) and (b), we can explicitly investigate

whether there are any significant hydrodynamic interactions

between the monomers. In the case (b), we simplify our nota-

tion by describing particles of the single heat bath by

x j ¼ x
j
1 ¼ x

j
2 and v j ¼ v

j
1 ¼ v

j
2: (3:3)

In both cases (a) and (b), we assume that all heat bath par-

ticles have the same mass, m, and define (dimensionless)

parameter m by

m ¼M
m
:

We are interested in the parameter regime where m� 1.

Our MD model is based on elastic collisions of heavy

monomers (balls with mass M and radius r0) with point

heat bath particles with masses m. We assume that

the collisions are without friction, then conservation of

momentum and energy yields the following formulae for

post-collision velocities [12]:

~Vi ¼ [Vi]
k þ m� 1

mþ 1
[Vi]

? þ 2

mþ 1
v

j
i

h i?
(3:4)

and

~v
j
i ¼ v

j
i

h ik
þ 1� m

mþ 1
v

j
i

h i?
þ 2m

mþ 1
[Vi]

?, (3:5)

where v
j
i is the velocity of the heat bath particle which col-

lided with the ith monomer, tildes denote post-collision

velocities, superscripts ? denote projections of velocities

on the line through the centre of the monomer and the

collision point on its surface, and superscripts k denote

tangential components.

Heat bath models based on elastic collisions (3.4) and (3.5)

have been studied by a number of authors [11–14].

Consider a single monomer in infinite domain R3, and let

the heat bath consist of an infinite number of particles with



(a) (b) (c)

x1 < b x1 > bb

Figure 1. A diagrammatic representation of multi-resolution approaches for a dimer in a heat bath with short-range interactions. (a) Simulation of the whole dimer
in a co-moving frame. The green box depicts the co-moving frame that is centred about the dimer. The blue dots correspond to solvent molecules that are explicitly
modelled. Solvent molecules are not explicitly modelled in the external grey regions. (b) Simulation of one monomer in a co-moving frame. (c) Simulation with a
fixed region of space where an MD model is explicitly used. A dimer molecule can move to the grey region where it is simulated using the Langevin description.
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positions distributed according to the spatial Poisson process

with density

lm ¼
3

8r2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mþ 1)g

2pD

r
: (3:6)

This means that the number of points in a subset V of R3

has its probability mass function given by the Poisson distri-

bution with mean lmjVj, where jVj is the volume of V. Let the

velocities of the heat bath particles be distributed according

to the Maxwell–Boltzmann distribution

fm(v) ¼ 1

s3
m(2p)3=2

exp � v2
1 þ v2

2 þ v2
3

2s2
m

" #
, (3:7)

where v ¼ [v1, v2, v3] and

sm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(mþ 1) D g

p
: (3:8)

Then the monomer’s behaviour is known to converge to the

Langevin dynamics [12,14]. In particular, if we consider

that each monomer has its own heat bath, we can show

that the position and velocity of the monomers, Xi and Vi,

converge (in the sense of distributions) to the solution of

(2.1)–(2.4) in the limit m! 1.

In reality, all beads representing a macromolecule exist

within a single heat bath. Thus, we ask whether the correlations

introduced by a bath of solvent which interacts with

both monomers has a non-negligible affect on the equili-

brium statistics of the dimer. Introducing such coupled

heat baths for both short-range (in this section) and long-

range (in §4) interactions, we study whether there is a

significant difference between the one-bath and two-bath

models as we vary ‘0, the separation distance, introduced in

equation (2.8). In order to study this problem, we make use of

multi-resolution modelling.

3.1. Multi-resolution model using a co-moving frame
The solvent in the short-range heat bath interacts with

the monomers of the dimer through direct contact. In order

to simulate the model for long times, i.e. where the

dimer has undergone a large excursion, the simulated

domain must be vast as will be the number of solvent

particles that must be modelled. We present a multi-

resolution approach where we only model the solvent that

is within the close vicinity of the dimer. We consider a co-

moving cubic frame of length L that is centred at Xf(t),
which we here identify with the centre of mass of the

dimer at time t, i.e.

Xf(t) ¼ X(t) ¼ X1(t)þ X2(t)
2

: (3:9)

Within this frame, we explicitly model the heat bath with

solvent particles, i.e. they are simulated in the cubic box

Xf(t)þ �L
2

,
L
2

� �
� � L

2
,

L
2

� �
� �L

2
,

L
2

� �
: (3:10)

Externally, we model the heat bath as a continuum, where

the particles are distributed according to the spatial Poisson

process with density lm given in (3.6) and the velocities are

distributed according to fm(v) given in (3.7), see figure 1a
for a diagrammatic representation of the multi-resolution

framework (drawn for clarity in two spatial dimensions,

while all our simulations are three-dimensional). As the

dimer moves around in R3, the frame will move with it. In

order for the multi-resolution model to capture, the full

model where solvent particles are distributed in the entire

domain, R3, we need to introduce new solvent particles at

the boundary of the frame.

Consider that time is discretized using small time step Dt,
i.e. if the current time is t, we want to calculate the state of

the system at time t þ Dt. In our simulations of the multi-

resolution model, we need the probability of introducing a

particle at a boundary of the frame (3.10) in a timestep of

length Dt and subsequently the distribution of the position

xnew and velocity vnew of the new solvent particle. For simpli-

city, we transform into the coordinate system of the co-

moving frame which over an interval of length Dt has velocity

Vf ¼
Xf(tþ Dt)� Xf(t)

Dt
: (3:11)

The frame is always translated to occupy the region [0, L]3.

Thus, the velocities for the solvent particles in the new refer-

ence frame are given by w j ¼ v j �Vf. We first calculate the

density of particles that enter the frame via a particular bound-

ary within a timestep of length Dt. Take, as an illustrative

example, the boundary face corresponding to fx1 ¼ 0g. Con-

sider particles which are in half-space (�1, 0)� R2 at time t.
These particles have not yet been explicitly included in the

simulation. Some of them will be in half-space (0, 1)� R2 at

time t þ Dt. Their density, h(x1), only depends on their first

coordinate x1 [ (0, 1). We can calculate h(x1) by integrating

density (3.6) and (3.7) over solvent particles which are at
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Figure 2. Plot of the acceptance probability (3.20) of the algorithm pre-
sented in table 1 for parameters given by (3.18) and (3.19) (solid line)
compared with the acceptance probability (3.20) calculated for optimal
choices of a1(b) and a2(b) for each parameter value b. (Online version
in colour.)

Table 1. Acceptance – rejection algorithm for sampling random numbers
according to the probability distribution p(z; b) given by (3.16).

— Generate two random numbers h1 and h2 uniformly distributed

in interval (0,1).

— Calculate a1(b) and a2(b) according to (3.18) and (3.19).

— Compute an exponentially distributed random number h3 by

h3 ¼ 2a1(b) log (h1).

— If h1 h2 , a2(b) erfc(h3 þ b), then choose h3 as a sample

from the probability distribution (3.16). Otherwise, repeat the

algorithm.
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x01 [ (�1, 0) at time t and have the appropriate velocity to

reach x1 [ (0, 1) at time t þ Dt, namely as [14]

h(x1) ¼
ð0

�1

ð
R2

lmfm
x1 � x01

Dt
þ Vf;1, v2, v3

� �
dv2 dv3 dx01

¼ lm

2
erfc

x1 þ Vf;1Dt
smDt

ffiffiffi
2
p

 !
, (3:12)

where Vf;1 is the first component of the frame velocity and

erfc(z) ¼ 2=
ffiffiffiffi
p
p Ð1

z exp (�s2) ds is the complementary error

function. Integrating (3.12) over the domain (0, 1) � [0, L] �
[0, L] gives us the average number of particles that have entered

the frame from the fx1 ¼ 0g boundary in a time interval of

length Dt as

pin ¼
ð1

0

ðL

0

ðL

0

h(x1) dx3 dx2 dx1

¼ lmL2Dt

 
smffiffiffiffiffiffi
2p
p exp �

V2
f;1

2s2
m

" #
� Vf;1

2
erfc

Vf;1

sm

ffiffiffi
2
p

" #!
:

(3:13)

In our simulations, we choose a timestep small enough that

pin � 1, we can therefore use pin as the probability of introdu-

cing a new solvent particle. Let z ¼ [z1; z2; z3] be the position of

the new solvent particle in the coordinate system of the co-

moving frame. Then coordinates z2 and z3 are uniformly

distributed in (0, L) and the first coordinate can be sampled

from the error function distribution

C1 erfc
z1 þ Vf;1Dt
smDt

ffiffiffi
2
p

" #
, for z1 [ (0, 1), (3:14)

where C1 is a normalizing constant. Then the position of

the new solvent particle in the original coordinates is

xnew ¼ zþ Xf(tþ Dt)� [L=2, L=2, L=2]. The velocity, w, of

the new particle in the co-moving frame must have a first

coordinate exceeding z1/Dt in order to reach z1 in a time

interval of length Dt. Noting that w ¼ vnew �Vf we write

down the distribution of the velocity as the following truncated

Gaussian distribution

C2 H(v1Dt� (z1 þ Vf;1Dt))fm(v), (3:15)

where C2 is a normalizing constant and H( � ) is the Heaviside

step function, satisfying H(y) ¼ 1 for y [ [0, 1) and H(y) ¼ 0

otherwise. The position and velocity of solvent particles intro-

duced at the other five faces can be done by symmetric

modifications of the above distributions.
Random numbers from distributions (3.14) and (3.15) can

be efficiently sampled using acceptance–rejection algorithms.

We use an acceptance–rejection method for the truncated

normal distribution (3.15) presented in the literature [44],

while we sample random numbers from the distribution

(3.14) using the acceptance–rejection algorithm presented in

table 1. This is a generalization of the acceptance–rejection

algorithm for sampling random numbers according to the

distribution
ffiffiffiffi
p
p

erfc(z) previously used in simulations in

the stationary frame [14]. In the case of the distribution

(3.14), we need to sample random numbers according to

the probability distribution

p(z; b) ¼ C3(b) erfc(zþ b), (3:16)

where b [ R is a constant and C3(b) is the normalizing con-

stant given by

C3(b) ¼
ffiffiffiffi
p
p

exp [� b2]�
ffiffiffiffi
p
p

b erfc(b)
: (3:17)

The algorithm in table 1 does this by generating an exponen-

tially distributed random number h3 with mean a1(b), where

a1(b) ¼
ffiffiffiffi
p
p

2
� erfc(b) exp (b2), for b � 0;

1, for b 	 0:

	
(3:18)

To maximize the acceptance probability of this algorithm, we

choose its second parameter, a2(b), as

a2(b) ¼
1

erfc(b)
, for b � 0;

exp 2bffiffiffi
p
p

 �

, for b 	 0:

8<
: (3:19)

Then its acceptance probability is depending on b as

a2(b)

a1(b) C3(b)
: (3:20)

We plot the acceptance probability (3.20) in figure 2 for our

choices (3.18) and (3.19) of a1(b) and a2(b) as the solid line.

We observe that the acceptance probability (3.20) for b ¼ 0

is equal to 2=p � 63:7%. This value can be improved [14] in the

case of b ¼ 0 to 86.3% provided that we choose a1 ¼ 0.532 and

a2 ¼ 0.814. To obtain a similar improvement for all values of b,

we could choose both a1(b) and a2(b) to maximize the accep-

tance probability (3.20), rather than postulating that a1(b)



Table 2. One iteration of the multi-resolution simulation algorithm of the dimer in a co-moving frame.

[S1] Update the positions of the solvent and the monomers by their ‘free-flight’ positions (3.21) – (3.22).

[S2] If the ‘free-flight’ position (3.22) of a solvent particle lies within the radius of either of the monomers, reverse the trajectories of the solvent and

the monomer by time t , Dt such that they are just touching. Calculate post-collision velocities by equations (3.4) and (3.5) and update their

new positions by moving forward by time t. Otherwise, each ‘free-flight’ position is accepted as the particle’s position at time t þ Dt.

[S3] Update the velocities of the monomers by (3.23) – (3.24).

[S4] Calculate the new centre of the co-moving frame, Xf (t þ Dt), by (3.9). Update N(t) by removing solvent particles which now lie outside of

the frame (3.10) from the simulation.

[S5] Calculate the velocity of the frame, Vf , over the interval [t, t þ Dt] by equation (3.11).

[S6] Generate two random number r1 and r2 uniformly distributed in interval (0, 1). If r , 6pin, then choose a side of the cube at random and

generate proposed position xnew and velocity vnew of the new solvent particle according to distributions (3.14) and (3.15).

If r2 , hacc(xnew, vnew), then increase N(t) ¼ 1 and initialize the new solvent particle at position xnew with velocity vnew.

[S7] Continue with step [S1] using time t ¼ t þ Dt.
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is given by the piecewise defined function (3.18) and optimiz-

ing a2(b) only. The acceptance probability (3.20) of the resulting

algorithm (which would have a1(b) and a2(b) given by a lookup

table, rather than by using formulae (3.18) and (3.19)) is plotted

in figure 2 as the dashed line for comparison. However, in our

illustrative simulations, we use the acceptance–rejection algor-

ithm in table 1 with the values of a1(b) and a2(b) given by (3.18)

and (3.19).

Comparing equations (3.16) and (3.14), we observe that

we can sample random numbers from the distribution

(3.14) by sampling random numbers from the distribution

p(z; Vf;1Dt) (using the acceptance-rejection algorithm in table 1

for b ¼ Vf;1Dt)) and multiplying them by the factor smDt
ffiffiffi
2
p

.

One iteration (i.e. an update of the state of the system from

time t to time t þ Dt) of the multi-resolution simulation algor-

ithm in the co-moving frame is given as algorithm [S1]–[S7]

in table 2. It evolves the positions and velocities of both mono-

mers together with the positions and velocities of N(t) solvent

particles, where N(t) does depend on time t. To formulate algor-

ithm [S1]–[S7], we assume that the timestep Dt is chosen small

enough so that at most one collision happens per iteration.

We initialize the two monomers with a separation distance

‘0 and generate a Poisson number (with mean lm L3) of solvent

particles in our simulation domain, the cubic frame (3.10). The

solvent particles are initially placed uniformly in the frame

(3.10), where we remove particles overlapping with monomers

(before we begin our simulation) to get the initial number, N(0),

of simulated solvent particles. Their initial velocities are drawn

from the Maxwell–Boltzmann distribution (3.7).

In step [S1], we update the system over the time interval

(t, t þ Dt] using the ‘free-flight’ positions for each monomer

and solvent particle, namely we use

X̂i(tþ Dt) ¼ Xi(t)þVi(t)Dt (3:21)

and
x̂

j
i (tþ Dt) ¼ x

j
i (t)þ v

j
i (t)Dt, (3:22)

where i ¼ 1, 2 is the monomer number and j ¼ 1, 2, . . . , N(t),
is the number of the heat bath particle. Since Dt is chosen so

small that only one collision happens during the time interval

[t, t þ Dt), most of the ‘free-flight’ positions of solvent par-

ticles are accepted in step [S2] as their updated positions

x
j
i (tþ Dt) and only the solvent particle colliding with a

monomer is further updated.
In step [S3], we update the velocities of the monomers by

solving (3.1) and (3.2) over one time step [t, t þ Dt]. We discre-

tize (3.1) and (3.2) using the forward Euler method as follows:

V1(tþ Dt) ¼ ~V1 þ
F0(R)

M
R

R
Dt (3:23)

and

V2(tþ Dt) ¼ ~V2 �
F0(R)

M
R

R
Dt, (3:24)

where ~Vi, for i ¼ 1, 2, is either the post-collision velocity (if a col-

lision happened in step [S2]) or is equal to Vi(t). In steps [S4]–

[S5], we update the position and velocity of the frame. We

remove solvent particles which are outside of the simulation

domain and update N(t) accordingly.

In step [S6], we use probability pin, given by (3.13), to

check whether any solvent particle entered the simulation

domain during the time interval (t, t þ Dt]. Since pin is the

probability of entering the domain through one of its six

sides, we can, for time step Dt small enough that 6pin � 1,

introduce at most one solvent particle through a randomly

chosen side with probability 6pin. The initial position and vel-

ocity of the introduced solvent particle are sampled according

to distributions (3.14) and (3.15) or their symmetric modifi-

cations, taking into account through which side of the cubic

frame (3.10) the particle entered the frame.

There is one little caveat in our derivation of pin. To derive

equation (3.13), we integrated over the half-space

(�1, 0)� R2, meaning that once we consider all six faces of

the cubic frame (3.10) we have over-counted twice at the

edges and three times at the corners (as it is highlighted

with darker grey shading in our illustrative diagram in

figure 1a). This will have negligible effect if we choose L suf-

ficiently large. However, it can bias our simulation for values

of L comparable with the monomer size r0 when Dt is not suf-

ficiently small as boundary effects become more pronounced.

To compensate for this effect, we consider the sampled pos-

ition, xnew and velocity vnew of the new incoming particle at

time t þ Dt and calculate its previous position at time t by

y ¼ xnew � vnew Dt:

If y is in the regions which were counted twice or three times

in our derivation, we reject the proposed introduction of the

new solvent particle with the corresponding probability.



2 3
�0/r0

L
d/
� 0

–1
(×

10
–4

)

4 5

2

4

6

8

equation (2.9)

single bath

two baths

Figure 3. The extension of the average length of a dimer from its separation
distance ‘0. The equilibrium data for each model was collected from a long-
time simulation of length 100 dimensionless time units where Dt ¼ 1026

and the monomers were initially placed with separation ‘0. The values of
a ¼ ‘0/r0 presented are f2.25, 2.5, 2.75, 3, 3.5, 4, 4.5, 5g. The parameters
used are r0 ¼ 0.08, g ¼ 10, D ¼ 1, m ¼ 103 and k ¼ 106. In the one-
bath case, we use L ¼ 0.72 for the frame (3.10) enclosing the whole
dimer, and for the two-bath case, we use L ¼ 0.32 for each monomer frame.
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Namely, we use the acceptance probability in step [S6]

given by

hacc(xnew, vnew) ¼
1, for y� Xf(t) [ Y1;
1
2 , for y� Xf(t) [ Y2;
1
3 , for y� Xf(t) [ Y3,

8<
:

where Y j , R3 is the region of the space which consists of

points which have exactly j of their coordinates outside of

the interval [2L/2, L/2]. For example, in our two-dimen-

sional diagrammatic representation in figure 1a, the lighter

grey shading corresponds to region Y1 while the darker

grey shading corresponds to region Y2.

In our illustrative simulations, we use algorithm [S1]–[S7]

from table 2 together with parameter values r0 ¼ 0.08, g ¼ 10,

D ¼ 1, m ¼ 103, k ¼ 106 and L ¼ 0.72 for the one-bath case. In

figure 3, we compare simulation results of the average length

of the dimer at equilibrium, Ld, for the one-bath and two-bath

models. Since the two-bath case uses uncoupled heat baths,

we can further improve the efficiency of our algorithm

by centring the co-moving frame corresponding to each

heat bath on the corresponding monomer, i.e. we use

Xf(t) ¼ Xi(t) for the heat bath corresponding to the ith mono-

mer in step [S4] (instead of the centre of mass (3.9))

and choose smaller value of L in the two-bath case, namely

L ¼ 0.32. In both one-bath and two-bath models, the solvent

particles are distributed according to the spatial Poisson

process with density lm given by (3.6). The velocities are

distributed according to the Maxwell–Boltzmann distri-

bution fm(v) given by (3.7). We note that in the two-bath

case, our model converges to the Langevin dynamics (2.1)–

(2.4) as m!1. This allows us to attribute any changes

between the one-bath case and the Langevin model to the

correlations induced by sharing a heat bath. The asymptotic

analytic result obtained for the Langevin model, equation

(2.9), is plotted as the black solid line for comparison.

In figure 3, we set the separation distance to be ‘0 ¼ ar0

where a � 2, such that at this distance apart the monomers

are not overlapping. The plot shows the two-sided 99% con-

fidence intervals for (Ld 2 ‘0)/‘0 for a [ f2.25, 2.5, 2.75, 3,
3.5, 4, 4.5, 5g. Firstly, we note that Ld . ‘0 in each of the

models as predicted in (2.9). There seems to be reasonable

correspondence between the one- and two-bath models,

with the confidence intervals overlapping. This suggests

that the correlations we lose by approximating a larger co-

moving frame around both monomers with two smaller

dedicated frames around each monomer are negligible,

allowing us to increase efficiency without biasing our overall

results. In the next section, we build on this observation and

present a multi-resolution framework which replaces one of

the smaller dedicated frames by a coarser model of the heat

bath, written in terms of the Langevin dynamics.
3.2. Monomers with different resolution
As the length of a polymer (i.e. numbers of monomers)

increases, a model incorporating solvent particles around

each of the monomers becomes increasingly computationally

expensive. However, a fully coarse-grained Langevin

model of a polymer such as the Rouse model [39] can lack

the required level of detail. Thus, some multi-resolution

approaches for simulating macromolecules only model an

important (small) part of a macromolecule using a detailed

modelling approach [38–42]. In our case, we can mimic

such methodologies by modelling the first monomer with

explicit solvent with a heat bath of physical molecules,

while the second monomer is modelled using the Langevin

equations (2.3) and (2.4). Such a multi-resolution approach

is schematically shown in figure 1b. To simulate this model,

we use a co-moving frame, given by equation (3.10), which

is centred around the first monomer, i.e. Xf(t) ¼ X1(t).
One iteration of the algorithm is presented as algorithm

[M1]–[M5] in table 3. To begin, we initialize the particle

positions and velocities in the similar way as in the case of

algorithm [S1]–[S7], with the only difference that the cubic

frame (3.10) is now centred around the first monomer. steps

[M1] and [M2] are directly equivalent to steps [S1] and [S2].

In step [M3], we update the position and velocity of the

second monomer by

V2(tþ Dt) ¼ V2(t)� F0(R)

M
R

R
þ gV2(t)

� �
Dtþ g

ffiffiffiffiffiffiffiffiffiffiffi
2DDt
p

j,

(3:25)

where j is sampled from the normal distribution with

zero mean and unit variance. That is, we have replaced the

heat bath of the second monomer by solving the corres-

ponding Langevin equation (2.1)–(2.4) using the standard

Euler–Maruyama integrator. There have been other schemes

developed in the literature for discretizing the Langevin

equation such as van Gunsteren & Berendsen [45] and the

Langevin Impulse integrators, which capture the Langevin

dynamics more accurately especially in the presence of

forces, such as the spring force between the monomers [46].

Another option would be to consider the BBK integrator

[47], which we use in §4.1, where we present a multi-resolution

algorithm for the long-range interaction heat bath model and

discretize the Langevin equation using a combination of the

velocity Verlet and Euler–Maruyama integrators, see

equations (4.11)–(4.15). An additional approach is the Verlet

scheme [48] that approximates the velocity using a central

difference discretization rather than the forward difference

approach used in the Euler–Maruyama method, or Runge–



Table 3. One iteration of the multi-resolution simulation algorithm of the dimer in the heat bath with short-range interactions, where the second monomer is
simulated by the Langevin dynamics.

[M1] Update the positions of the solvent and the monomers by their ‘free-flight’ positions (3.21) and (3.22).

[M2] If the ‘free-flight’ position (3.22) of a solvent particle lies within the radius of the first monomer, reverse the trajectories of the solvent and

the monomer by time t , Dt such that they are just touching. Calculate post-collision velocities by equations (3.4) and (3.5) for i ¼ 1

and update their new positions by moving forward by time t. Otherwise, each ‘free-flight’ position is accepted as the particle’s position at

time t þ Dt.

[M3] Update the velocity of the first monomer by (3.23) and the velocity of the second monomer by (3.25).

[M4] Calculate the new centre of the co-moving frame as Xf (t þ Dt) ¼ X1(t). Update N(t) by removing solvent particles which now lie outside of

the frame (3.10) from the simulation. Use steps [S5] – [S6] from the algorithm in table 2 to introduce new solvent particles into the co-

moving frame (3.10).

[M5] Continue with step [M1] using time t ¼ t þ Dt.

0

0

1

2

3

4

5

0.2 0.4

C
d
(t

)

0.6
t

0.8 1.0

multi-resolution
equation (2.6)

Figure 4. The velocity autocorrelation function for the multi-resolution model
(solid line) for short-range interactions. The function is estimated from long
time simulation over dimensionless time of 500 time units. It is compared
with the result for the Langevin description of the whole dimer, given by
equation (2.6) (dashed line). The parameters are r0 ¼ 0.08, g ¼ 10,
D ¼ 1, m ¼ 103, k ¼ 106, ‘0 ¼ 4r0, Dt ¼ 1026 and L ¼ 0.32. (Online
version in colour.)
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Kutta methods [49], which could further reduce the error of the

multi-resolution simulations.

In order to compare simulations of the multi-resolution

model with simulations of the Langevin model (2.1)–(2.4),

we use the velocity autocorrelation function of the dimer,

Cd(t), given by equation (2.5). It has been analytically calcu-

lated for the Langevin description in equation (2.6). In

figure 4, we present numerical estimates of the velocity auto-

correlation function of the multi-resolution model from long

time simulation data, using definition (2.5).

Our results compare well with the theoretical result for the

Langevin model, though it seems like there is a slightly raised

value for Cd(0). Using (2.7), we can estimate the diffusion

constant of the dimer Dd by numerically integrating the

velocity auto-correlation function in interval [0, 1]. We obtain

Dd � 0.529, while its theoretical value for the dimer model is

given in equation (2.7) as D/2 ¼ 0.5. Another approach is to fit

the exponential function, in the form equation (2.6), to the com-

putational result presented in figure 4. In this way, the values of

both D and g can be estimated simultaneously. We found that

D � 1.0714, which is higher than our parameter value D¼ 1,

and g � 9.6064, which is lower than g ¼ 10 used in our simu-

lations. This could suggest that the value of lm is too low or

that of sm is too high in our simulations. However, when these
quantities are measured during the simulations we do not

observe any deviation. This suggests that, rather than our

sampling methods, there are small errors introduced by our

implementation of the moving frame, or more profound bound-

ary effects introduced by the small size of the frame. A potential

problem in the implementation of the co-moving frame, is that

solvent particles that leave the frame never return. For a station-

ary frame, this is valid as the monomer cannot interact with a

particle that leaves. However, for a co-moving small frame

centred about the monomer, a solvent particle could leave the

frame and return at a later time in the simulation. This is not

taken into account in the presented algorithms.
4. Long-range interaction heat bath
Coarse-grained models of molecular systems can be written in

terms of beads interacting through coarse-grained force fields.

Each bead represents a collection of atoms and a coarse-

grained potential energy can be constructed from detailed

all-atom MD. Such an approach can usually provide a good

description of equilibrium properties of molecular systems,

but it does not necessarily lead to correct dynamics if the

time evolution of the system is solely based on the Hamil-

tonian dynamics corresponding to the coarse-grained

potential energy surface [50]. Dynamical behaviour can be cor-

rected by introducing additional degrees for freedom

(fictitious particles) interacting with each coarse-grained

bead [50–52]. Fictitious particles can then be subject to

suitable friction and noise terms to correct the dynamics.

Considering our dimer molecule model as an example

of a coarse-grained molecule, written in terms of two

coarse-grained beads (monomers) interacting through

coarse-grained potential energy (2.8), then each monomer

could be coupled with one or several fictitious particles inter-

acting with the monomer through a suitable harmonic spring

term [50,51]. Our long-range interaction heat bath is based on

this approach, by assuming that the ith monomer, i ¼ 1, 2, is

coupled with Ni harmonic oscillators, in a manner similar to

well-known theoretical heat bath models [15,16]. Then

equations (3.1) and (3.2), expressing Newton’s Second Law

of Motion, include additional terms as follows [15]:

M
dV1

dt
¼ F0(R)

R

R
þ
XN1

j¼1

k1,ja1,j



x

j
1 � a1,jX1

�
(4:1)
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and

M
dV2

dt
¼ �F0(R)

R

R
þ
XN2

j¼1

k2,ja2,j



x

j
2 � a2,jX2

�
, (4:2)

where x
j
i is the position of the jth solvent particle which

interacts with the ith monomer through a harmonic spring

with spring constant ki,j and interaction constants ai,j,

j ¼ 1, 2, . . . , Ni, i ¼ 1, 2. Equations (4.1) and (4.2) are coupled

with the evolution equations for solvent particles. We assume

that v
j
i is the velocity of the jth solvent particle interacting

with the ith monomer. Moreover, we assume that all oscil-

lators have the same mass, m. Using Newton’s Second Law

of Motion, we get the following evolution equations for the

heat bath oscillators:

dx
j
i

dt
¼ v

j
i (4:3)

and

m
dv

j
i

dt
¼ �ki,j



x

j
i � ai,jXi

�
, (4:4)

for j ¼ 1, 2, . . . , Ni and i ¼ 1, 2. Unlike in some fictitious particle

models [50–52], we do not include friction and random forces

into equation (4.4) for solvent, because we assume that we expli-

citly model all solvent particles, i.e. N1 and N2 are considered to

satisfy N1� 1 and N2� 1. We are therefore working ‘close’ to

the limit N1! 1 and N2! 1, in which we can get the conver-

gence of our long-range interaction heat bath to the Langevin

dynamics as discussed below. In practice, it is impossible to

include all solvent molecules in simulations and friction and

noise terms are still included to control temperature of the simu-

lated system [2,53]. We can solve the solvent equations of

motion (4.3) and (4.4) to give [2,54]

x
j
i ¼ x

j
i (0) cos (vi,jt)þ

v
j
i (0)

vi,j
sin (vi,jt)

þ ai,jvi,j

ðt

0

sin (vi,j(t� t)) Xi(t) dt,

where x
j
i (0) is the initial position of the jth heat bath particle cor-

responding to the ith monomer, v
j
i (0) is its initial velocity and

vi,j ¼ (ki,j/m)1/2 is its frequency. Substituting for x
j
1 and x

j
2 in

dimer’s equations of motion (4.1) and (4.2), we obtain the fol-

lowing coupled system of generalized Langevin equations:

M
dV1

dt
¼ F0(R)

R

R
�
ðt

0

k1(t)V1(t� t) dtþ j1 (4:5)

and

M
dV2

dt
¼ �F0(R)

R

R
�
ðt

0

k2(t) V2(t� t) dtþ j2, (4:6)

where the friction kernel ki(t) and noise term ji ; ji(t) ¼ [ji;1,

ji;2, ji;3] are given by

ki(t) ¼ m
XNi

j¼1

a2
i,jv

2
i,j cos (vi,jt)

and ji(t) ¼ m
XNi

j¼1

x
j
i (0)ai,j v

2
i,j cos (vi,jt)

þ v
j
i (0)ai,jvi,j sin (vi,jt),

for i ¼ 1, 2. We assume that initial positions and velocities of

solvent oscillators, x
j
i (0) and v

j
i (0), are both independently
sampled according to their equilibrium distributions. Then

noise autocorrelation function is given by the generalized

fluctuation–dissipation theorem

lim
t!1
hji;j(t)ji;n(t� t)i ¼ 2kBTd j,nki(t),

where kB is the Boltzmann constant and T is the absolute temp-

erature. Next, we assume that the frequencies vi,j are sampled

from a (continuous) exponential distribution with mean v

and we set our interaction constants equal to

ai, j ¼
1

vi, j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 gv

Ni mp

r
, (4:7)

where g . 0 is the friction constant used in equations (2.2) and

(2.4). Then friction kernel (4.7) becomes

ki(t) ¼ 2gv

p

1

Ni

XNi

j¼1

cos (vi,jt):

Passing to the limit Ni! 1 allows us to consider the above

summation as a continuous integral over the distribution of

oscillator frequencies, with both friction kernels k1(t) and

k2(t) converging to the same friction kernel [54]

k(t) ¼ 2g

p

ð1

0

cos (vt) exp �v

v


 �
dv

¼ 2g

p

v

v2t2 þ 1
:

(4:8)

Then
Ð1

0 k(t) dt ¼ g: Moreover, we can define the limiting fric-

tion kernel by

k1(t) ¼ lim
v!1

k(t),

which, for our choice of oscillators’ frequencies and

interaction terms (4.7), satisfies k1(t) ¼ 0 for t . 0 and

k1(0) ¼1. Thus, the limiting kernel is a multiple of the Dirac

delta function. Therefore, the position and velocity of the

monomers, Xi and Vi, converge to the solution of (2.1)–(2.4)

in the limit v! 1, provided that each monomer has its

own separate heat bath. Moreover, we obtain the Einstein–

Smoluchowski relation for the diffusion constant of the

monomer as D ¼ kBT/(gM).

As in §3, we have explained our MD model of the dimer

using the case where each monomer has its own heat bath.

We now turn our attention to the case when monomers share

their heat bath. This has been studied in the case of the short-

range interaction MD model in §3.1 with the help of multi-

resolution modelling in a co-moving frame, as schematically

shown in figure 1a. In the case of long-range interactions, a

co-moving frame is less straightforward to implement because

we need to take into account that particles outside of the

simulated box do exert (long-range) forces on particles in our

simulation domain. Some multi-resolution techniques in the

literature solve this problem by introducing suitable overlap

(bridging, blending) regions [51,55–57], where molecules

which are near the simulation domain exert some partial

forces on the simulated molecules.

In what follows, we do not truncate the simulated

domain, but we consider a different multi-resolution

approach in §4.1. Before then we discuss results comparable

to figure 3, i.e. we compare simulations with a single heat

bath and two heat baths for the case of our long-range inter-

action MD model. The results are presented in figure 5, where

we use the same values of ‘0 as in figure 3, expressed as



2 3
�0/r0

4 5

L
d
/�

0
–

1(
×

10
–4

)

–2

0

2

4

6

8

equation (2.9)
equation (4.10)

single bath
two baths

Figure 5. The extension of the average length of a dimer from its separation
distance ‘0 for long-range interaction heat bath models. The values of par-
ameters are the same as in figure 3, together with v ¼ 100, N1 ¼ N2 ¼

N ¼ 104, M ¼ 1 and m ¼ 1023, which give the same value of m ¼ M/m
as used in figure 3. The simulations for the single heat bath case use par-
ameter choice (4.9) with a2

j ¼ gv=(Npk j ), k j ¼ mv2
j=2 and vj

sampled according to the exponential distribution with mean v, confirming
result given in equation (4.10) (green dashed line). The results for the two
heat bath case are compared with the result obtained for the Langevin model
in equation (2.9) (black solid line).

Table 4. One iteration of the multi-resolution simulation algorithm of the
dimer in the heat bath with long-range interactions, where the second
monomer is simulated by the Langevin dynamics.

[L1] Update velocities of the dimer and solvent particles for a

half time step using (4.11).

[L2] Update positions of the dimer and solvent particles using

(4.12).

[L3] Recalculate accelerations of each monomer and solvent

oscillators by (4.14) – (4.16).

[L4] Update velocities of the dimer and solvent particles for a

half time step using (4.13).

[L5] Continue with step [L1] using time t ¼ t þ Dt.
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a-multiples of r0, although our long-range interaction model

does not make use of parameter r0. The value of Ld is for each

value of ‘0 calculated from a long simulation over 200 dimen-

sionless time units, where the first 100 time units are used to

equilibrate the system, while the second half of each simu-

lation is used to compute Ld. To initialize this model, we

start with monomers separated by the rest length ‘0 and

sample oscillators’ frequencies, vi,j, according to the exponen-

tial distribution with mean v. Their positions and velocities

are sampled from the Maxwell–Boltzmann distribution. For

the two-bath model, each dimer particle is separately initia-

lized with its own set of oscillators around their respective

positions in space.

In figure 5, we observe that in the case of the two-bath

model we obtain results which match well with equation

(2.9) for our parameter values. These results are also directly

comparable with the results obtained for the two-bath case in

figure 3. The situation is more complicated in the case of

simulations with a single heat bath with N oscillators.

Then, using notation (3.3), we can rewrite (4.1) and (4.2) as

M
dVi

dt
¼ (�1)iþ1F0(R)

R

R
þ
XN

j¼1

ki,jai,j



x j � ai,jXi

�
,

for i ¼ 1, 2, where the heat bath evolution equation (4.4)

includes terms corresponding to both monomers

m
dv j

dt
¼ �k1,j



x j � a1,jX1

�
� k2,j



x j � a2,jX2

�
,

for j ¼ 1, 2, . . . , N. Our results will then depend how we

choose parameters ki,j and ai,j. For example, if we choose ki,j

and ai,j to be the same for both monomeres, i.e.

k1,j ¼ k2,j ¼ k j and a1,j ¼ a2,j ¼ a j, (4:9)

for j ¼ 1, 2, . . . , N, then the oscillating frequency of the jth
heat bath oscillator is v j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k j=m

p
and we can subtract the
evolution equations for monomers to obtain

M
d2R

dt2
¼ �2F0(R)

R

R
�
XN

j¼1

k ja
2
jR:

This equation does not contain any heat bath variables. Using

(4.7) to select aj, i.e. using a2
j ¼ 2gv=(Nmpv2

j) ¼ gv=(Npk j),

we get

M
d2R

dt2
¼ �2F0(R)

R

R
þ gv

p
R:

Using potential (2.8), we conclude that we effectively

obtain a shorter rest length of the spring which gives the fol-

lowing approximation:

Ld �
2 kp ‘0

2 kpþ gv
: (4:10)

This result is plotted in figure 5 together with results obtained

by illustrative simulations. We use a long-time simulation

of length 200 dimensionless time units, with monomers

initially placed at separation ‘0 and averaging over the

second half of the simulation (of length 100 dimensionless

time units) to obtain the presented values of dimer’s expected

length Ld.

In figure 5, we observe that the average dimer length,

Ld, during our single heat bath simulations is smaller

than the natural length of the spring, ‘0. However, this con-

clusion is only a consequence of our choice of parameters

(4.9). An opposite phenomenon can be observed in simu-

lations for other parameter regimes. For example, if we

divide our oscillators into two groups consisting of N1 and

N2 oscillators, i.e. N ¼ N1 þ N2, and choose our parameters

ki,j and ai,j such that

k2,j ¼ 0, for j ¼ 1, 2, . . . , N1,

and k1,j ¼ 0, for j ¼ N1 þ 1, N1 þ 2, . . . , N,

then our ‘one-bath’ case is effectively equal to the two-bath

case for which we have the result given in equation (2.9) pre-

sented in figure 5. In particular, depending on our choices of

ki,j and ai,j, the single heat bath case can both increase or

decrease the average length of the dimer.
4.1. Multi-resolution modelling of dimer
In figure 1b, we use our dimer example to illustrate a multi-

resolution approach which models a part of a molecule
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d
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)

0.6
t

0.8 1.0

multi-resolution
equation (2.6)

Figure 6. The velocity autocorrelation function for the multi-resolution model
(solid line) for long-range interactions, estimated from long time simulation
over dimensionless time of 103 dimensionless time units. It is compared
with the result for the Langevin description of the whole dimer, given by
equation (2.6) (dashed line). The parameters are the same as in figure 4,
namely g ¼ 10, D ¼ 1, k ¼ 106, M ¼ 1, m ¼ 1023, ‘0 ¼ 0.32, together
with v ¼ 100 and N1 ¼ 105. (Online version in colour.)
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using a detailed MD approach, while using a coarser descrip-

tion of the rest of the molecule. Here, in the same manner as

carried out for our short-range model in §3.2, we illustrate

such a multi-resolution approach using our long-range inter-

action MD model. We use the Langevin model (2.1)–(2.4) to

coarse-grain one of the monomers, while the other monomer

is modelled in detail using the MD model with its heat

bath described by harmonic oscillators (4.3) and (4.4). As in

figure 4, we again calculate numerical estimates for the

velocity autocorrelation function, Cd(t) in equation (2.5),

from long time simulations of the dimer after equilibrium

has been reached.

The pseudo-code of one iteration our multi-resolution

algorithm is presented as algorithm [L1]–[L5] in table 4.

algorithm [L1]–[L5] is based on the velocity Verlet

integrator, where both monomers are updated by

Vi tþ 1

2
Dt

� �
¼ Vi(t)þ

1

2
Ai(t)Dt, (4:11)

Xi(tþ Dt) ¼ Xi(t)þVi tþ 1

2
Dt

� �
Dt (4:12)

and Vi(tþ Dt) ¼ Vi tþ 1

2
Dt

� �
þ 1

2
Ai(tþ Dt)Dt, (4:13)

where Ai, for i ¼ 1, 2, is the acceleration of the corresponding

monomer. For the first monomer, its acceleration A1 is

defined as the right-hand side of equation (4.1) divided by

M, i.e.

A1 ¼
F0(R)

M
R

R
þ 1

M

XN1

j¼1

k1,ja1,j



x

j
1 � a1,jX1

�
: (4:14)

For the second monomer, we use the BBK integrator [47],

i.e. we define its acceleration as

A2 ¼ �
F0(R)

M
R

R
� gV2 þ g

ffiffiffiffiffiffiffi
2D
Dt

r
j, (4:15)

where j is sampled from the normal distribution with zero

mean and unit variance. The corresponding solvent oscillator

integrator is identical to the scheme (4.11)–(4.13), with X1, V1

and A1 replaced by x j, v j and a j, respectively, where
acceleration a j is defined as the right-hand side of equation

(4.4) divided by m, i.e.

a j ¼ �
ki,j

m



x

j
i � ai,jXi

�
: (4:16)

The results obtained by algorithm [L1]–[L5] are compared

with analytic results given by equation (2.6) for the Langevin

model in figure 6. We see that there is a good correspondence

between these, suggesting that the value �v ¼ 100 is large

enough to create an accurate Dirac delta approximation

from the kernel function (4.8), along with having a large

enough number of oscillators, N1 ¼ 105, in our heat bath for

our other approximations to hold. If these conditions did

not hold, we would see that our kernel function has a differ-

ent form (for example, decaying at a slower rate), and in this

case we would have to use a generalized Langevin model as

our coarse-graining approach in order to capture the

dynamics of the dimer with sufficient accuracy.

The diffusion constant of the dimer, Dd, can again be esti-

mated by numerically integrating the velocity auto-correlation

function. Integrating our results from figure 6 over interval

[0, 1], we obtain Dd � 0.510, which compares well with the

theoretical value, D/2¼ 0.5, given by equation (2.7).
5. Discussion and conclusion
In this paper, we have used two theoretical heat baths.

Although these heat baths are based on qualitatively different

descriptions of solvent–dimer interactions, they both lead to

the Langevin description, given in equations (2.1)–(2.4), in a

certain limit. In particular, we can use this limiting process to

coarse-grain a part of the simulated dimer molecule, while

using a detailed MD model to describe the rest of the molecule.

Such a multi-resolution approach has potential to significantly

speed up computer simulations of dynamics of macromolecules

[38–42], provided that it is combined with additional multiscale

and multi-resolution methodologies, discussed below.

Our long-range interaction model leads to the system of

generalized Langevin equations, given by equations (4.5) and

(4.6). Although we have worked in the parameter regime

where the generalized Langevin equations can be well approxi-

mated by the system of Langevin equations given by (2.1)–(2.4),

this will not be the case in other parameter regimes and for more

realistic solvent descriptions, especially when the memory

kernel is estimated from MD simulations [58,59]. One possible

strategy in this case is to couple a detailed MD model with a sto-

chastic coarse-grained model which is written with the help

of additional variables [50–52]. To improve the efficiency of

simulations further, one can then coarse-grain such a general-

ized Langevin description using a Brownian dynamics

approach [14,60]. Brownian dynamics modelling can be further

coupled with stochastic reaction–diffusion modelling based on

lattice-based (compartment-based) methods [22]. Lattice-based

models are very attractive for simulations of intracellular pro-

cesses, because they enable modelling of spatio-temporal

processes in the whole cell or its significant parts [61]. Coupling

Brownian dynamics with compartment-based approaches has

been used in a number of applications, including multi-resol-

ution modelling of actin dynamics in filopodia [62,63] or for

modelling intracellular calcium dynamics [64].

In this paper, we have investigated multi-resolution

approaches, schematically described in figure 1a,b. Another
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class of multi-resolution approaches in the literature con-

siders a fixed subdomain of the computational domain

where a detailed modelling approach is used, which is

coupled with a coarser model in the rest of the simulation

domain [21,22]. Such an approach is useful, for example,

when modelling intracellular ion dynamics. Ions pass

through an ion channel in single file and an MD model has

to be used to accurately compute the discrete, stochastic, cur-

rent in the channel [65,66], while the details of the behaviour

of individual ions are less important away from the channel

where copy numbers may be very large. Thus, we can

improve efficiency of our simulations if we allow ions to

pass between regions with an explicitly modelled heat bath

and a region where their trajectories are described by coarser

stochastic models [51].

A similar multi-resolution approach can also be designed

for our illustrative dimer model. It is schematically shown in

figure 1c, where we identify the region with explicitly simu-

lated heat bath as {x1 . b} ¼ (b, 1)� R2, where b is the fixed

position of the boundary. We are again interested in the behav-

iour of the dimer in the MD model which would be considered

in the full space, R3. However, we now want to replace solvent

particles which are in {x1 , b} ¼ (�1, b)� R2 by a coarser

Langevin description (2.1)–(2.4). To do that, we have to care-

fully consider how we handle the transfer of monomers

between fx1 . bg and fx1 , bg. In figure 1c, we present a

two-dimensional illustration of a monomer when it intersects

the interface, fx1 ¼ bg. Such a monomer is subject to the col-

lisions with heat bath particles on the part of its surface

which lies in fx1 . bg. This has to be compensated by using

a suitable random force from fx1 , bg, so that the overall

model is equivalent to (2.1)–(2.4) in the Langevin limit. Such

correction terms can be derived analytically for the case of a

spherical monomer in our short-range interaction heat bath

and are presented in [14,54]. They can be used to couple the

MD model with its corresponding Langevin description,

which can be further coupled with Brownian dynamics,

simulated using a much larger time step [14].

Mathematical analysis of multi-resolution methodologies

can make use of the analysis of the model behaviour close to

the boundaries of the computational domain. For example,

derivations of reactive (Robin) boundary conditions of

macroscopic models from their corresponding microscopic

descriptions [67–69] can be generalized to the analysis of

behaviour of molecules close to hybrid interfaces in multi-

resolution schemes [21,30,31]. Analysis of open boundaries
of MD schemes (i.e. boundaries which can transfer mass,

momentum and energy) can lead to further understanding

of multi-resolution schemes such as AdResS and hybrid

continuum-particle dynamics [70], which enable efficient

simulation of biomolecules at realistic physiological

conditions [71].

Equations for coupled detailed/coarse-grained models

can be systematically derived using Zwanzig’s projection

method, which has been used to address co-existence of

atoms and beads (larger coarse-grained units) in the same

dynamic simulations [72,73]. The equations of motion take

the form of dissipative particle dynamics, which have been

coupled with atomistic water simulations to design multi-res-

olution schemes in the literature [74]. Other multi-resolution

methods couple atomistic water with specially designed

coarse-grained water models [75] or with a continuum

approach [35]. Coupling discrete and continuum approaches

can also be done for different molecular species present in the

system and our choice of a modelling approach for each

species can be based on its relative abundance [76–78].

One of several important points which have been left out

from our discussion is the discretization of time. Although

our illustrative simulations use the same time step for both

the MD model and the Langevin description, this is not the

most efficient or desirable strategy, because the MD model

requires much smaller time step than the corresponding

Langevin equation. There is potential to design more efficient

schemes by updating the coarser description only at certain

multiples of the time step which is used in the most detailed

model [39]. This is also the case when a modeller further

coarse-grains the Langevin description into a Brownian

dynamics model which uses even large timesteps [14].
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