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Abstract: Responsive chromogenic materials have attracted increasing interest among researchers;
however, up until now, few materials have exhibited multifunctional chromogenic properties. The
coordination polymers (CPs) provide intriguing platforms to design and construct multifunctional
materials. Here, a multifunctional photo/electricity responsive CP named Zn−Oxv, which is based
on the “extended viologen” (ExV) ligand, was synthesized. The Zn−Oxv exhibited reversible
photochromism, photomodulated fluorescence, electrochromism and electrofluorochromism. Fur-
thermore, we prepared Zn−Oxv thin films and investigated electrochromic (EC) properties of
viologen−based CPs for the first time. Zn−Oxv thin films showed excellent EC performance with
a rapid switching speed (both coloring and bleaching time within 1 s), high coloration efficiency
(102.9 cm2/C) and transmittance change (exceeding 40%). Notably, the Zn−Oxv is by far the fastest
CP EC material based on redox−active ligands ever reported, indicating that the viologen−based
CPs could open up a new field of materials for EC applications. Therefore, viologen−based CPs
are attractive candidates for the design of novel multi−responsive chromogenic materials and EC
materials that could promise creative applications in intelligent technology, dynamic displays and
smart sensors.

Keywords: coordination polymer; multi−responsive; photochromism; photomodulated fluorescence;
electrochromism; electrofluorochromism

1. Introduction

Smart responsive chromogenic materials that exhibit changes in light absorption or
emission properties under external stimuli have been investigated extensively in recent
years [1–4]. Among these chromic materials, optically and electrochemically active chromic
materials promise attractive applications in sensors, lighting, optoelectronic devices and
smart technology devices [5–7]. A number of photo/electro−responsive chromogenic mate-
rials, such as electrochromic (EC), photochromic and electrofluorochromic (EFC) materials
have already been reported [8–13]. Unfortunately, most of them are mono−responsive,
which restricts their practical applications.

Electron−deficient 1,1′−disubstituted−4,4′−bipyridinium derivatives (viologens) are
known for their capability of distinct optical displays. With the assistance of appropriate
electron donors, they can undergo reversible redox reaction via electron transfer (ET) and
exhibit three redox states (dication (V2+), radical cation (V+) and neutral (V0)), which re-
sults in the change of optical properties [14,15]. Due to these special capabilities, viologen
derivatives can be used as photo/electro−responsive materials. However, most viologen
derivatives are electro−responsive but non−photoresponsive. The coordination polymers
(CPs) constructed from metal clusters and organic ligands could provide cooperation be-
tween components and the inter−contact structural framework, which can create effective
channels for ET, allowing for the transition of viologen units between different redox states
under stimuli [16–20]. As a consequence, taking advantage of the great versatility afforded
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by coordination chemistry, nonphoto−responsive viologen ligands may not only result
in photo−responsiveness, but could also integrate photochemical and electrochemical
functionalities [20,21]. The viologen derivatives, which consist of two pyridinium rings
spaced by conjugating aryl groups, named “extended viologen” (ExV), display similar
redox features to the viologen units [20]. According to previous studies, the ExV could
afford new fluorescence properties [22]. Therefore, ExV−based CPs are expected to realize
the coupling of electro/photo−chromism with fluorescence properties. Viologens are typi-
cal organic EC materials with a dramatic optical contrast and have been widely explored.
However, viologens are common solution−type EC materials, which cannot be bleached
by applying a reverse voltage but only by write−erase effect, resulting in a long bleaching
time [23,24]. Viologen−based CPs can be film−forming as a way of solving this problem.
Moreover, CPs possess tunable redox−active sites, surface areas and compositions, which
are favorable factors as EC materials [25,26]. Therefore, viologen−based CPs are promising
EC materials, but their EC properties have rarely been investigated.

In this research, we synthesized a new “extended viologen” (ExV) ligand named
(2−methoxy−1,4−phenylene) bis(1−carboxybenzy)−4,4’−bipyridinium dibromide (Oxv).
As shown in Figure 1, the Oxv ligand can also undergo a two−step reversible redox
process. Furthermore, we chose p−benzenedicarboylic acid (p−H2BDC) as the second
ligand and d10 Zn ion to construct electron−rich ZnO−carboxylates to supply electrons to
electron−deficient Oxv. Finally, we obtained a multifunctional photo/electricity responsive
CP named Zn−Oxv which can achieve the photo/electro−modulated chromism and
luminescence. Photochromism and photomodulated fluorescence of the Zn−Oxv were
further discussed. Additionally, we fabricated the viologen−based CP thin films for the
first time and investigated its EC−EFC properties. The Zn−Oxv films exhibited excellent
EC performance as potential EC materials.
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2. Materials and Methods
2.1. Materials

All solvents and chemicals used in this research were commercial products. Ethanol,
N, N−dimethylformamide (DMF), methanol, chloroform, ethyl acetate, acetone, acetoni-
trile, zinc chloride (ZnCl2), p−benzenedicarboylic acid (p−H2BDC), propylene carbonate
(PC), ethanol, lithium perchlorate (LiClO4) and potassium carbonate were purchased
from Sinopharm Chemical reagent Co. Ltd. (Shanghai, China), 2,5−Dibromoanisole,
4−pyridineboronic acid, (beta−4)−platinum and tris(dibenzylideneacetone)dipalladium(0),
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4−Bromomethylbenzoic acid, and 1,4−Dioxane were bought from Energy Chemical (Shang-
hai, China).

2.2. Methods

Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance AV400
instrument (400 MHz). Mass spectrum was examined by a Thermo Fisher Scientific
ProteomeX−LTQ mass spectrometer (Heifei, China). The Fourier transform infrared
(FTIR) spectra of Zn−Oxv compound and the Oxv free ligand were implemented us-
ing a Bruker Vector 22 spectrometer in the range of 400−4000 cm−1. The morphology of
Zn−Oxv powder and Zn−Oxv films was observed by using a GeminiSEM 500 Schottky
field emission scanning electron microscope. X−ray photoelectron spectroscopy (XPS)
measurements of the Zn−Oxv compound were carried out using an ESCALAB 250 spec-
trometer (Thermo−VG Scientific, East Grinstead, West Sussex, UK), where Al−Kα was
used as the X−ray source. Electron spin resonance (ESR) signals of the Zn−Oxv com-
pound were recorded by JES−FA200 at room temperature. Solid−state UV−vis spectra of
Zn−Oxv powder were recorded on a SOLID3700 UV–vis–NIR spectrophotometer. Photolu-
minescence (PL) spectra were examined by a JOBIN YVON Flurolog−3−TAV fluorescence
spectrophotometer. The cyclic voltammetry (CV) tests of Zn−Oxv thin films were con-
ducted by a three−electrode system using a CHI 660D, which included the ITO substrate
(0.7 × 3.0 cm2) with Zn−Oxv thin films, platinum sheet and the silver wire as the working
electrode, the counter electrode and the reference electrode. The spectroelectrochemical
analysis of Zn−Oxv films was performed by the combination of the CHI 660D electro-
chemical analyzer and JASCO V−670 UV–vis–NIR spectrophotometer. Electromodulated
fluorescence spectra of Zn−Oxv films were examined by the combination of CHI 660D elec-
trochemical analyzer and JOBIN YVON Flurolog−3−TAV fluorescence spectrophotometer.

2.3. Synthesis of the ExV Ligand

The 2, 5−di (4−pyridyl) anisole was synthesized according to the previously reported
procedure in the literature [23]. Alkylation reaction of 2, 5−di (4−pyridyl) anisole was
produced by reacting with 4−bromomethylbenzoic acid in acetonitrile. The mixture was
heated at 90 ◦C with reflux and stirred for 2 days. The precipitate was filtered and washed
repeatedly with acetonitrile.

1H NMR spectrometry data are presented below:
2, 5−di (4−pyridyl) anisole: 1H NMR (300 MHz, CDCl3–d6, ppm): δ 8.715–8.692 (d,

2H), δ 8.671–8.648 (d, 2H), δ 7.563–7.542 (d, 2H), δ 7.523–7.501 (d, 2H), δ 7.483–7.455 (d, 3H),
δ 3.942–3.925 (s, 3H).

(2−methoxy−1,4−phenylene)bis(1−carboxybenzy)−4,4’−bipyridinium dibromide
(Oxv): 1H NMR (300 MHz, DMSO−d6, ppm): δ 9.394–9.359 (d, 2H), δ 9.296–9.255 (d, 2H),
δ 8.769–8.732 (d, 2H), δ 8.769–8.732 (d, 2H), δ 8.048–7.999 (d, 4H), δ 7.927–7.854 (m, 3H),
δ 7.732–7.666 (m, 4H), δ 6.037–5.973 (d, 4H), δ 4.059–4.010 (s, 3H).

2.4. Preparation of Zn−Oxv Powder and Zn−Oxv Thin Films on ITO Substrates

A combination of 2.5 × 10−2 mmol Oxv, 2.5 × 10−2 mmol ZnCl2 and 2.5 × 10−2 mmol
p−H2BDC was mixed in CH3OH−DMF (20.0 mL, v/v = 1/3) and stirred for 10 min. A total
of 5 mL resulting solution was added into a 25 mL Teflon−lined stainless−steel reactor
containing a vertical ITO glass; the above reaction was maintained at 120 ◦C for 3 h. After
cooling to room temperature, the yellow Zn−Oxv powder at the bottom of the reactor was
isolated, rinsed by H2O and ethanol three times and dried in air. Moreover, the prepared
films were removed from the solution and washed briefly with ethanol to remove powder
residual. Bare ITO glass substrates (0.7 × 3.0 cm2) were ultrasonically cleaned with acetone,
methanol and deionized water, in turn, and dried in a vacuum afterwards.
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3. Results
3.1. Structure Verification

Zn−Oxv CPs were synthesized via a hydrothermal method; the SEM image showed a
regular spherical morphology of Zn−Oxv (Figure 2a). For the FTIR spectra of Zn−Oxv
(Figure 2b), the strong absorption bands, which correspond to the vibration of the phenyl
ring observed, confirm the presence of the Oxv ligand [27]. Additionally, for the stretching
vibration of carbonyl, the representative absorption band around 1700 cm−1 disappeared;
the absorption band around 1400 cm−1 exhibited a bathochromic effect, indicating the coor-
dination interaction between the zinc center and the carboxyl group in the Zn−Oxv [28,29].
XPS measurements were carried out to examine the element compositions and to record
the valence state changes in the desired Zn−Oxv CPs; the survey spectrum is exhibited
in Figure 2c. The high−resolution spectrum of O 1s can be deconvoluted into peaks at
530.8, 531.8 and 533.2 eV, shown in Figure 2d, which can be assigned to Zn−O, −COO
and C−O [30,31]. In comparison with O 1s of the Oxv ligand, the presence of the Zn−O
bond in Zn−Oxv CPs further confirms the coordination interaction. The characteristic
binding energy of Zn 2p3/2 and 2p1/2 is observed at 1021.9 and 1045.0 eV (Figure S8),
respectively, which is consistent with the coordination environment of the zinc and the
oxygen atoms [31]. The thermal stability of Zn−Oxv was proven by thermogravimetric
analysis. The collapse of the whole structure happened when the temperature reached
260 ◦C, as shown in Figure S9. All characterization results showed successful fabrication of
Zn−Oxv CPs.
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3.2. Multi−Stimuli Responsive Properties
3.2.1. Photochromism and Photomodulable Fluorescence

Non−photoresponsive viologen units may result in photo−active CPs via photo−induced
electron transfer (PET) through interpenetrating structure. When the n−Oxv compound
was exposed to UV light, the photo−responsive phenomenon also occurred. Zn−Oxv
powder can realize visible color change from yellow to brownish red under UV irradiation;
the solid UV–vis–NIR spectrophotometer records the process. A series of spectra demon-
strated that the prolonged irradiation caused a continuous increase in absorption intensity
over the wavelength from 300 to 700 nm (Figure 3a). Furthermore, a visible color change
occurred within 20 s of UV irradiation, indicating the rapid responsive rate, which is favor-
able for practical applications. The ExV ligand Oxv exhibited intensive cyan fluorescence
emission; the Zn−Oxv compound also displayed intensive fluorescence emission around
466 nm (Figure S10). Under the UV light, the emission intensity of Zn−Oxv also dropped
dramatically along with the color change. The intensity dropped by 40% after 20 s and
reached saturation after 3 min. The fluorescence decay also showed a high responsive rate.
Zn−Oxv compound returned to its original state after around several days at ambient envi-
ronment. This reversible process can be repeated over five times without eye−detectable
color loss and obvious fluorescence intensity changes (Figure 3a,c). Additionally, the
solid−state UV−vis spectrum and fluorescence spectrum of the Oxv ligand exhibited
no obvious change before and after UV light irradiation, further demonstrating that the
photo−responsive effect originated from the coordination structure (Figures S11 and S12).

To characterize the mechanism of the photo−responsive process of the Zn−Oxv
compound, ESR measurements were performed (Figure 3d). After irradiation, the Zn−Oxv
showed a strong single−line signal centered at around g = 2.0006, which is very close to
those reported free radicals [32,33]. No ESR signal of Zn−Oxv at original state and after
recovery was observed. As previous research reported, the radical species can result in
color change and fluorescence quenching. Therefore, the results of ESR measurements
indicate that the formation of radical species via PET is responsible for photochromism and
photomodulable fluorescence.

To gain further insight into the pathway of PET, XPS spectra of the Zn−Oxv powder
were recorded before irradiation and upon irradiation for 5 min (Figure 3e). Compared
with the original state, the Zn 2p core−level band had no significant change, but the XPS
spectra of N 1s, O 1s and Br 3d showed obvious shifts. A new lower−energy band of N
1s appeared at 399.7 eV after irradiation, implying N atoms in pyridinium units are the
electron acceptors [34]. The spectrum of O 1s before irradiation exhibited a peak at 531.0 eV
and the peak shifted to higher energy after irradiation, suggesting some oxygen atoms were
served as electron donors. As mentioned above, the Zn−Oxv compound showed a fast
photo−response, while the other reported viologen−based photo−responsive materials
usually required longer time [19,35]. This fast speed of Zn−Oxv may be mainly attributed
to the fact that Zn−carboxylate clusters possess inherent abundance of O atoms, excellent
stability and redox activity, facilitating the formation of ET pathways [18,35,36]. In addition,
the peak of Br 3d core−level moved to a higher energy, from 68.1 to 68.4 eV, demonstrating
that a portion of the bromide ions also served as electron donors. FTIR spectra of Zn−Oxv
with no difference compound before and after irradiation are shown in Figure S13.
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3.2.2. Electrochromism and Electrofluorochromism

In this research, we fabricated Zn−Oxv films on ITO substrates to investigate the
electro−responsive property. As seen in SEM images and elemental mapping of the
samples (Figure 4a,b), the Zn−Oxv thin film consisted of spherical Zn−Oxv CPs and
results revealed the presence of C, O, Zn that correspond to the main constituents of
the Zn−Oxv, showing successful fabrication of Zn−Oxv CPs films on the ITO substrate.
The cyclic voltammetry (CV) of Zn−Oxv films utilizing the three−electrode system was
measured. The system included 0.2 M PC/LiClO4 solution as the electrolyte, a Zn−Oxv
film on the ITO substrate (0.7 × 3.0 cm2) as the working electrode, the platinum plate
as the counter electrode and the silver wire as the reference electrode. The resultant CV
with a potential window of −1.3 to 0 V is presented inFigure 5a. Herein, the obtained
CV revealed a one−step two−electron reduction process or two very closely spaced one
electron reduction processes of the Zn−Oxv compound, which is similar to other reported
extended viologens [23,37,38].

EC materials display dynamic optical−switching via electrical stimuli. The color of
the Zn−Oxv films also changes during the electrochemical reduction process and spectro-
electrochemical spectroscopy can monitor the color change. The spectroelectrochemical
analysis of Zn−Oxv films was performed by the combination of the electrochemical an-
alyzer and spectrophotometer, using the same three−electrode system as the CV test. A
series of absorbance spectra are shown in Figure 5b. Stepwise applied potentials from
−0.7 V to −1.4 V caused an increased absorption from 440 to 550 nm, while turning the
color of the films from pale yellowish green to purple. In addition, the applied poten-
tials at −1.4 V gave rise to a maximum light transmittance change (∆T) exceeding 40%
around 520 nm (Figure 5c). ∆T was determined as Tb (λ) − Tc (λ), where Tb and Tc refer to
light transmittance in bleached and colored states at a specific wavelength, respectively.
Interestingly, due to the fluorescent ExV ligands, not only the color of the Zn−Oxv film
changed with increasing potential, but the fluorescence emission intensity also dropped.
The spectra of fluorescence intensity were tested via the same three−electrode system by
the combination of a fluorescence spectrophotometer using an electrochemical analyzer
(Figure 5d). Zn−Oxv films returned to a bleached state and a fluorescent state by applying
a reverse potential. Both the color change and fluorescence switching were attributed to
the electrochemical reduction of viologen units that led to the increased absorption in the
visible region and effective fluorescence quenching [14]. The Zn−Oxv thin film showed
EC−EFC bifunctional performance, enabling its extensive applications in both bright and
dark conditions.
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Figure 5. (a) The cyclic voltammogram of Zn−Oxv films (scan rate of 100 mV s−1). (b) Spectro-
electrochemical spectra of Zn−Oxv films under different external potentials. Inset: photographs
of Zn−Oxv thin films at colored and bleached states. (c) The transmittance spectrum of Zn−Oxv
films at colored and bleached states. Inset: transmittance differences between colored and bleached
states. (d) Fluorescence intensity differences between the fluorescent and nonfluorescent states. Inset:
photographs of Zn−Oxv films at fluorescent and nonfluorescent states. (e) Variation of current and
corresponding transmittance switching spectra (recorded at λ = 520 nm) with applied square wave
used for color switching of Zn−Oxv thin films. (f) Transmittance switching between colored and
bleached state. (g) The coloration efficiency of Zn−Oxv thin films.
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The response time and coloring efficiency (CE), which are important parameters for EC
properties, were tested by the combination of UV–vis spectrophotometer and double−step
chronoamperometry techniques using the three−electrode system. The final variation
of current and corresponding transmittance switching spectra (recorded at λ = 520 nm)
under applied square wave potential (−1.2 V applied for 7 s and 1.5 V applied for 40 s)
used for complete color switching are illustrated in Figure 5e. The switching speed was
defined as the time period required for achieving 90% of the transmittance change in a
specific wavelength. The calculated coloration time (tc) and bleaching time (tb) were both
approximately 1 s, showing rapid response speed (Figure 5f). This phenomenon can be
attributed to the high electrochemical response activity of viologen derivatives. On the other
hand, the large contact area between spherical Zn−Oxv particles and electrolytes increased
the active sites for redox reactions. Another criterion of EC performance is the CE, defined
as CE = ∆ OD/(Q/A) = log (Tb/Tc)/(Q/A), wherein ∆OD denotes variation in optical
density, (Q/A) is the intercalated charge per unit area, and Tb and Tc refer to transmittance
values at the bleached and colored state at a certain wavelength. The CE value can be
calculated by the variation of current and transmittance switching spectra. The relationship
between the optical change at 520 nm and unit charge density is shown in Figure 5g;
the value of CE was 102.9 cm2/C. Because organic ligands are mostly redox−inactive,
electrochromic CPs based on functional redox ligands have rarely been reported. The
Zn−Oxv thin films in this work exhibited the fastest response speed, a high ∆T and CE
value compared with reported CPs based on other redox functional ligands (Table 1),
indicating that viologen−based CPs are potential candidates for EC materials.

Table 1. Comparison of EC properties of Zn−Oxv films and other CP films based on functional ligands.

Compounds Functional Ligands ∆T
(%)

tc
(s)

tb
(s) Reference

Zn−Oxv viologen 44.5 0.95 0.99 This work
Zn−NDI−74 NDI 21 3 91 [36]
Cu3(HHTP)2 triphenylene 40 3.2 5.9 [37]

NU−901 pyrene 62 12 5 [38]
CuTCA TCA 65 4.8 3.3 [39]

Zn−MOF−74 DOBDC 13 8 9 [40]
Ni−MOF−74 DHTA 44.4 24.5 23.5 [41]

∆T (transmittance change), tc (coloration time), tb (bleaching time), NDI (Naphthalenedi-
imide), TCA (4,4′,4”−tricarboxytriphenylamine), DHTA (2,5−dihydroxyterephthalic acid), DOBDC
[tris(hydroxymethyl)aminomethane].

4. Conclusions

In summary, a multi−responsive chromogenic CP based on ExV ligands with prop-
erties of photochromism, photomodulated fluorescence, electrochromism and electroflu-
orochromism was synthesized. Under UV irradiation, the Zn−Oxv powder displayed a
reversible color change from yellow to brownish red, along with quenching and recovery
of fluorescence. The aforementioned results demonstrate that such a photo−responsive
process originates from the formation of free nitrogen radicals through PET. Furthermore,
the EC−EFC properties of Zn−Oxv were investigated for the first time. The Zn−Oxv films
showed a reversible color switch between pale yellowish green and purple under applied
potential; the color change was accompanied by fluorescence quenching and recovery. The
Zn−Oxv films exhibited a rapid switching speed (both coloring and bleaching time within
1 s), high coloration efficiency (102.9 cm2/C) and high transmittance change (exceeding
40%), indicating that the CPs based on viologen ligands are candidates for EC materials. In
brief, extended work along with the viologen−based CPs is expected to develop various
multi−responsive chromogenic materials and EC materials relevant to smart technologies
due to tunable redox activity and high charge−deficient characteristic.
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1H NMR spectrum of 2,5−Di (4−pyridyl) anisole in CDCl3. Figure S3: 1H NMR spectrum of 2,5−Di
(4−pyridyl) anisole in CDCl3. Figure S4: CNMR spectrum of the Oxv ligand. Figure S5: The FTIR
spectrum of the Oxv ligand. Figure S6: The MS spectrum of the Oxv ligand. Figure S7: The TGA−DSC
spectrum of the Oxv ligand. Figure S8: High−resolution XPS spectra of Zn 2p, C 1s and N 1s for the
Zn−Oxv. Figure S9: The TGA curve of Zn−Oxv CPs. Figure S10: Fluorescence spectra of Zn−Oxv
sample. Figure S11: Solid−state UV−vis spectra of free ligand (Oxv) before and after irradiation.
Figure S12: Emission spectra of free ligand (Oxv) before and after irradiation. Figure S13: FTIR
spectra of Zn−Oxv compound before and after irradiation.
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