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Recent advances in single-cell RNA sequencing (scRNA-seq) have accelerated

the development of techniques to classify thousands of cells through

transcriptome profiling. As more and more scRNA-seq data become

available, supervised cell type classification methods using externally well-

annotated source data become more popular than unsupervised clustering

algorithms. However, accurate cellular annotation of single cell transcription

data remains a significant challenge. Here, we propose a hybrid network

structure called TransCluster, which uses linear discriminant analysis and a

modified Transformer to enhance feature learning. It is a cell-type identification

tool for single-cell transcriptomic maps. It shows high accuracy and robustness

in many cell data sets of different human tissues. It is superior to other known

methods in external test data set. To our knowledge, TransCluster is the first

attempt to use Transformer for annotating cell types of scRNA-seq, which

greatly improves the accuracy of cell-type identification.
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1 Introduction

Recent advances in single-cell RNA sequencing (scRNA-seq) have furthered the

understanding of cell compositions in complex tissues (Haque et al., 2017). Through the

characterization of different cell types based on gene expression levels, facilitating our

understanding on disease pathogeneses, cellular lineages or differentiation trajectories and

cell-cell communication (Macosko et al., 2015; Regev et al., 2017; Potter, 2018; Shao et al.,

2020). In the data processing protocols of scRNA-seq experiments, cell type identification is a

key step in the subsequent analysis. The current strategies are divided into two main types,

unsupervised-based and supervised-based annotation strategies. Unsupervised-based strategy

applies clustering to classify cells into different clusters (Su et al., 2021; Tian et al., 2021).
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Several methods including Scanpy (Wolf et al., 2018), Seurat (Butler

et al., 2018), SINCERA (Guo et al., 2015), SC3 (Kiselev et al., 2017),

SIMLR (Wang et al., 2017), SNN-Clip (Xu and Su, 2015), BackSPIN

(Zeisel et al., 2015) belong to this category. This type of approach

requires a priori knowledge about known cellular markers.

Replicability of this cell identification protocol can be further

reduced with increased number of clusters and multiple

selections of cluster marker genes (Shao et al., 2020; Wang et al.,

2021). Supervised-based strategy determines potential cell identity

by comparing similarities between individual cells and reference

databases of bulk or scRNA-seq profiles, such as scDeepSort (Shao

et al., 2021), SingleR (Aran et al., 2019), ACTINN (Ma and

Pellegrini, 2020), singleCellNet (Tan and Cahan, 2019), scMap-

cell (Kiselev et al., 2018). Still, the accurate cell type annotation for

single-cell transcriptomic data remains a great challenge

(Lahnemann et al., 2020).

Fortunately, recent advances in deep learning have enabled

significant progress in the ability of artificial intelligence

techniques to integrate big data, incorporate existing

knowledge and learn arbitrarily complex relationships

(Gibney, 2015; Silver et al., 2016). Given the state-of-the-art

accuracy deep learning has achieved in numerous prediction

tasks, it has been increasingly used in biological research (Zhang

et al., 2019) and biomedical applications (Wainberg et al., 2018;

Lv et al., 2020). For example, Jian Hu et al. proposed the ItClust

method, which uses deep neural networks to learn feature

expressions on the source data and then migrate to the target

data to cluster the unknown labeled cells (Hu et al., 2020). One of

the commonly used deep learning methods is convolutional

neural networks (CNNs) (Qian et al., 2018), a class of

feedforward neural networks. In CNNs, convolutional

operations are good at extracting local features but have

difficulties in capturing global representations. Since the

introduction of Transformer (Vaswani et al., 2017), it has

shown breakthrough performance in many learning tasks, and

its strength lies in its ability to capture global contextual

information in an attentional manner to establish a long-

range dependence on the target (Song et al., 2022). We

propose a new deep learning-based method for single-cell

category prediction by combining CNN with Transformer to

extract more powerful features.

In this study, we designed a cell type identification method

called TransCluster, based on the Transformer framework. To the

best of our knowledge, this is the first time that Transformer is

applied to the field of single cell identification. Firstly, we prepared

single-cell transcriptional profiles of different tissues in the human

body (Han et al., 2020), as the training set. Next, we used the

improved Transformer model for feature extraction of the gene

expressionmatrix. Then, features were further extracted using CNN.

Finally, we compared the performance of TransCluster with other

knownmethods on an external dataset. In addition, we evaluated the

performance of TransCluster with eight additional human tissue

scRNA-seq atlases. The results demonstrated that TransCluster is a

robust method that can help scientists achieve the accurate cell-type

annotation of scRNA-seq data without additional prior knowledge.

2 Materials and methods

2.1 Datasets

The scRNA-seq data (Shao et al., 2021; Pang et al., 2022) were

obtained from the Shao et al. (2021) and Baron et al. (Hu et al.,

2020). The Shao dataset includes primary tissues from human

and mouse, which exclude unannotated cells. The Baron dataset

is a large human pancreas dataset. Human gene symbols were

modified based on NCBI gene data, unmatched genes and

duplicated genes were removed, and for all human datasets,

the raw data were normalized by the global-scaling normalization

method LogNormalize. On the one hand, we selected human

tissues to verify the applicability of TransCluster on different

tissues, including pancreas, human peripheral blood, adipose,

adrenal gland, liver, kidney, spleen and pleura, with a total of

8 tissues and 51744 cells and the number of cell categories are 14,

10, 7, 9, 11, 7, 9, and 5 respectively. For each cell type, cells

numbering at least more than 5‰ of the total cells in each tissue,

the ratio of training and testing cells was set to 8:2, randomly

divided into training and testing sets, and five experiments were

performed, with the average value taken as the final result. On the

other hand, to compare the accuracy of TransCluster with other

methods, all cells from a particular tissue were used to train the

model for cell-type prediction on the test cells that originated

from the same tissue. Firstly, genes with zero expression in both

datasets were removed to decrease the amount of data and to

reduce the effect of irrelevant information (it was experimentally

verified that different gene classes of cells in both datasets could

still make accurate predictions). Secondly, cell types that were

present in both datasets were selected to avoid unknown cell

types. Finally, cells that were present in both datasets were

removed to ensure the objectivity of the prediction results.

The lung dataset has six categories of cells, including

Transformed epithelium, AT2 cell, Macrophage, T cell,

Endothelium and Fibroblast. In the kidney dataset, there are

three categories of Endothelial cell, Epithelial cell, and Proximal

tubule epithelial cell. In the blood dataset, there are four

categories of B cell, Dendritic cell, Monocyte, and T cell. In

addition, we have done a large number of stability experiments to

determine the hyperparameters of the model and show the

experimental results in the paper.

2.2 Model architecture

TransCluster consists of three components: A dimensionality

reduction part, a weighted feature extractor and a linear classifier.

The dimensionality reduction component uses linear
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discriminant analysis (LDA) (Hastie et al., 2009), a supervised

machine learning algorithm that reduces features to the

appropriate dimension based on the labels of the data. The

weighted feature extractor inductively learns the feature

information of the cells and generates linear separable feature

space of the cells. In this layer, a modified version of the

Transformer (Vaswani et al., 2017) is used as the backbone,

combined with a one-dimensional CNN (Qian et al., 2018). The

final linear classifier classifies the final cell state representation

generated from the weighted feature extractor into one of the

predefined cell type categories. The structure of the model is

shown in Figure 1.

2.2.1 Linear discriminant analysis
As shown in Figure 1, we use linear discriminant analysis

(LDA) to reduce the dimensionality of the gene expression

matrix. In order to solve a multilabel classification problem

efficiently and effectively, we need not only to consider the

correlation of class labels and features of each data item but

also to take into account the different cardinalities of the classes

(Xu et al., 2021). The basic idea of LDA is to project the high-

dimensional samples into the optimal discriminant vector space

in order to extract the categorical information and compress the

spatial dimensionality (Guo et al., 2020). At the same time, the

projection ensures that the samples have the maximum inter-

class distance and the minimum intra-class distance in the new

subspace, i.e., the samples have the best separability in this space

(Xu et al., 2021). For the input single-cell data matrix (the

number of genes is m, the number of cells is n, the number of

classes is k and the dimension after dimensionality reduction is

d), it is experimentally verified that the best performance is

achieved when d equals k-1. So, the dense representation with

fixed size dimension k-1is extracted as the initial representation.

The matrix after LDA processing is transposed, each number in

the matrix is added with the same number so that all matrix

numbers are positive, and table headers are added to obtain the

reduced-dimensional gene expression matrix.

D′ � [LDA(D)]T + A (1)

where D is the gene expression matrix input to the LDA module,

A is a suitable positive matrix with each element being an

identical positive number, and D′ is the output matrix after

partial processing by dimensionality reduction.

2.2.2 Weighted feature extractor
Transformer uses multi-head attention instead of recurrent

layer or convolutional layer to extract information, which

improves the performance of multiple tasks in natural

language processing (NLP) (Vaswani et al., 2017; Sun et al.,

2021). Compared with convolutional neural network (CNN)

(Qian et al., 2018) and recurrent neural network (RNN)

(Hochreiter, 1998), Transformer shows superior ability to deal

FIGURE 1
Structure of TransCluster. The input of TransCluster is the gene expression matrix of cells and the category of cells. (A) The cellular gene
expression matrix was downscaled by the LDAmethod according to the cell category. (B) Feature extraction of the input processed gene expression
matrix by (A) using a modified transformer and a one-dimensional CNN. (C) Classification of cells using linear classifiers, n is the number of
categories.
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with long-range dependencies (Guo et al., 2020). Multi-head

attention mechanism enables Transformer to learn the features

of different subsequences in the sequence (Wang et al., 2022).

Transformer is capable of linking different positions of a

sequence to obtain an embedding containing contextual

information when processing sequence information (Baron

et al., 2016).

The LDA-encoded sequence is input to Transformer to

generate a feature vector Ttransformer, which contains sequence

structure information.

Ttransformer � Transformer(D′) (2)

Where D′ is the output matrix after partial processing by

dimensionality reduction, Ttransformer is the gene expression

matrix after transformer processing.

Self-attention layer, Firstly, each gene expression in the LDA

reduced matrix is considered as a vector, and Transformer

multiplies each vector of the input by three matrices to obtain

three new vectors Q, K, and V, thus adding more parameters and

improving the model effect. The attention score is calculated by

computing the dot product of Q and the K vector of each gene.

The obtained scores are normalized with SoftMax. The V-vector

of each gene is multiplied by the normalized value to the output

of the self-attentive layer, with the following equation.

Attention(Q,K,V) � SoftMax(QKT��
dk

√ )V (3)

Where Q is the query vector, K denotes the vector of relevance of

the queried information to other information, V denotes the

vector of queried information, and dk is the dimension of the key

vector.

Multi-Head Attention, Each head computes its own

Attention, and then multiplies it to obtain the final feature

representation after stitching.

MultiHead(Q,K,V) � Concat(head1, ..., headh)Wo (4)

Where headi � Attention(Q,K,V), Concat is a bitwise sum

operation, Wo
i ∈ Rhdv×dmodel , which is the weight matrix. If

h � 8, then dk � dv � dmodel/h � 64, Setting different h =

{1,2,3,4,5,6,7,8,9,10} to do sensitivity tests, the results show

that the model works best with h = 5. Therefore, our model

takes head = 5.

Position-wise Feed-Forward Networks, The position fully

connected feed-forward network has two dense layers, the first

layer has a Relu activation function and the second layer is a

linear activation function. Position-wise means that the input

and output dimensions are the same. The formulation is stated

below:

FFN(x) � max (0, xW1 + b1)W2 + b2 (5)

Where x denotes the multi-head output. xW1 + b1 denotes a

linear transformation, max represents the Relu activation

function, and W2 and b2 are the weights of the second linear

transformation.

Positional encodings, Cos and sin functions are used to

encode the position and enhance the model’s ability to

perceive the position information. The formulas are as follows.

PE(pos,2i+1) � sin ( pos

100002i/dmodel
) (6)

PE(pos,2i+1) � cos ( pos

100002i/dmodel
) (7)

Where pos indicates the position of the gene, i indicates the

dimension of the gene, dmodel denotes the dimension of

embedding.

The Transformer-processed matrix Ttransformer is fed into the

1D-CNN network (Han et al., 2020) for further feature

extraction. Where T is the sequence after one-dimensional

convolutional processing.

T � CNN(Ttransformer) (8)

2.2.3 Linear classifier layer
The features extracted by the CNN are fed into a linear

classifier for category prediction (Baron et al., 2016) and the

probabilities of each category are output. The features go

through nonlinear changes in the dense layer to extract the

association between these features and finally map them to the

output space. The activation function is softmax. The loss

function is calculated as follows. Where yi is the real label and

ŷi is the predicted label.

Loss � −∑output size

i�1 yi.logŷi (9)

2.3 Baseline methods

To test the performance of our method with other methods

on annotating cell types of single-cell transcriptomics data, we

compare TransCluster with the following baseline methods.

Because our model is a deep learning method, which is a

supervised learning method, in order to have more convincing

experimental results, all the baseline methods we selected are

supervised learning methods.

1. scDeepsort (Shao et al., 2021) is a graph-based method for

single-cell category prediction. To construct the weighted cell-

gene graph, cells and genes were both treated as graph nodes

and the gene expression for each cell was regarded as the

weighted edge between cells and genes.

2. SingleR (Aran et al., 2019) is an R package for automated cell

type annotation of single cell RNA-seq sequencing (scRNA-

seq) data, using a reference transcriptome dataset of pure cell

types to independently infer the likely cell type of each cell.
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3. ACTINN (Ma and Pellegrini, 2020) is a method for automatic

cell class recognition using neural networks, which uses a

neural network with three hidden layers trained on a dataset

with predefined cell types and predicts the cell types of other

datasets based on the trained parameters.

4. singleCellNet (Tan and Cahan, 2019) is able to classify cells

across species based on the processed gene expression matrix.

5. scMap_cell (Kiselev et al., 2018) takes the cells in the query

dataset as the nearest neighbors of the reference data, and the

nearest neighbor cells in the reference dataset are most similar

to the cells in the query dataset.

2.4 Metrics

We chose five metrics to evaluate the performance of the

model, including accuracy, f1−score, precision, recall and

matthews correlation coefficient (MCC). Since we are

solving a multi-classification problem with unbalanced

data for each category, we choose macro precision, macro

recall and macro f1−score. These metrics have different

focuses. Accuracy focuses on assessing the model’s ability

to correctly classify samples, while macro f1−score focuses on
assessing the sensitivity of the model. Macro precision

addresses the question of how many of the samples that

the model predicts as positive classes are predicted correctly,

macro recall addresses the question of how many of the

samples that the model predicts out of all positive classes.

MCC focuses on the prediction of model classification

performance in unbalanced datasets. We calculate

accuracy, macro precision, macro recall, MCC and macro

f1−score respectively by the following equations. Where TP,

FP, FN and TN are short for the true positives, the false

positives, the false negatives and the true negatives

respectively (Shao et al., 2021). TP is a positive sample

predicted by the model as a positive class. TN is the

negative sample predicted as the negative class. FP is the

negative sample predicted as positive class. FN is the positive

sample predicted as the negative class.

Accuracy � TP + TN

TP + TN + FP + FN
(10)

Macro Precision � 1
l
∑l

i�1
TPi

TPi + FPi
(11)

MacroRecall � 1
l
∑l

i�1
TPi

TPi + FNi
(12)

MCC � TP*TN − FP*FN���������������������������������������(TP + FP)*(TP + FN)*(TN + FP)*(TN + FN)√
(13)

Macro F1 � 2 × Macro Precision × MacroRecall

Macro Precision +MacroRecall
(14)

3 Results

3.1 Performance comparison of
TransCluster with other methods on
external test datasets

We compared the results of TransCluster with five

baseline methods on tissues of lung, kidney and blood in

Shao dataset (Shao et al., 2021). The five baseline methods

included scDeepSort (Shao et al., 2021), SingleR (Aran et al.,

2019), ACTINN (Ma and Pellegrini, 2020), singleCellNet (Tan

and Cahan, 2019) and scMap_cell (Kiselev et al., 2018). In the

datasets of different tissues, all cells from a specific tissue in

the Shao dataset were selected as the training set, and test cells

from the same tissues were used for cell type prediction. The

processing of the datasets is described in detail in the

Materials and Methods section. The experimental results of

the baseline approach (Shao et al., 2021) are taken from the

references, and the training and test sets used for all

experiments are identical. The final results are shown in

Table 1.

Generally, from Table 1, it can be seen that TransCluster

can predict cell classes in external test datasets after training in

the training set, and the accuracy (ACC), f1−score and

matthews correlation coefficient (MCC) are higher than

other models. As shown in Table 1, in the lung, blood and

kidney datasets, the best performance is found in the blood

dataset with an ACC of 0.9429, f1−score of 0.8224, and MCC of

0.9050. In comparison, the performance in the lung dataset is

poorer with an ACC of 0.7637, f1−score of 0.5942, and MCC of

0.6545, due to the fact that the lung dataset has more cell types

and is more difficult to perform cell class identification. This is

sufficient to demonstrate that our proposed model trained on

a cellular dataset of a specific tissue and predicted cell type on

another dataset of the same tissue. Since the training and test

sets belong to different datasets of the same tissue, the gene

classes of both are somewhat different and the results of

feature learning are poor, resulting in generally a slightly

lower accuracy than that of experiments performed on the

same dataset.

3.2 Performance of TransCluster on
different tissues

To demonstrate the universality of TransCluster, we used

different data of human tissues from the Shao dataset (Shao

et al., 2021) to measure the prediction results. We split each

dataset into an 8:2 of the training set and test set, and take the

average of five experiments as the final result. Part of the

experimental results are shown in Figure 2. In which, train
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denotes the amount of data in the training set and test denotes

the amount of data in the test set. As shown in Figure 2, we can

easily find that the model has the highest ACC and MCC in the

Pleura dataset with 0.9782 and 0.9595, respectively. The

lowest ACC and MCC were obtained in the fat dataset with

0.8051 and 0.7684. The reason for this situation may be that

the data volume of the Adipose dataset is too small, resulting

in incomplete feature learning, while the Pleura dataset has a

large enough data volume and a relatively small number of cell

classes. Overall, it seems that TransCluster achieves more than

80% accuracy in several different human tissue datasets, which

demonstrates the applicability of our model. Meanwhile, the

higher values of ACC and MCC and the generally lower values

of precision and recall are due to the very unequal distribution

of the categories in the used dataset. For multi-categorization,

ACC and MCC are more convincing indicators, and the

performance of ACC and MCC is sufficient to illustrate the

goodness of our model.

3.3 Sensitivity analysis

3.3.1 Ablation experiments
For choosing the hyperparameters that make our model own

the best performance, we did some sensitivity analysis

experiments on the Baron dataset (Shao et al., 2021). First, in

Table 2, we discuss the variation of various performance

parameters of the model with or without decoders at different

numbers of attentional heads. Meanwhile, we discuss the

performance of the model under different dimensionality

reduction, and the experimental results are shown in Figure 3.

It is found that the performance of our model has very small

fluctuation as the number of heads increases in Table 2. This

means that for our model, too many attention heads have not

made the model work better. The model performs well in both

cases with or without the decoder part. And in both cases, the

best result is achieved when head equals five. The highest ACC,

f1−score, precision, recall and MCC of TransCluster with decoder

TABLE 1 Performance comparison of TransCluster with existing methods on different datasets. The bolded part is the best performance case.

Tissue
model

Lung Blood Kidney

ACC F1−score MCC ACC F1−score MCC ACC F1−score MCC

TransCluster 0.7637 0.5942 0.6545 0.9429 0.8224 0.9050 0.9274 0.6804 0.8512

scDeepSort 0.6622 0.5921 0.5990 0.9283 0.7993 0.7855 0.9173 0.6044 0.5402

SingleR 0.6150 0.5905 0.5923 0.6128 0.5135 0.4902 0.3155 0.3730 0.2934

ACTINN 0.7346 0.5763 0.5809 0.8327 0.6074 0.5911 0.7682 0.5536 0.4264

singleCellNet 0.7032 0.5115 0.4983 0.9152 0.8082 0.7812 0.7200 0.5203 0.3848

scMap_cell 0.3428 0.0424 0.2448 0.6115 0.3323 0.2899 0.0093 0 0.0348

FIGURE 2
Performance of TransCluster on different tissues.
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are 0.9370, 0.7324, 0.7714, 0.7156 and 0.9223, respectively. The

highest ACC, f1−score, precision, recall and MCC of TransCluster

without decoder are 0.9354, 0.7855, 0.8001, 0.7817 and 0.9201.

Therefore, our model is chosen to have the decoder part and the

number of attention heads is chosen to be five.

Figure 3 shows the variation of ACC,f1−score, precision, recall
and MCC of the model with different number of dimensionality

reduction, and k in the figure indicates the number of

dimensionality reduction. From Figure 3, It can be found that

the accuracy of the model generally shows an increasing trend as

the number of dimensionality reduction increases. Taking the

Baron dataset (Shao et al., 2021) as an example, the accuracy of

the model is highest when using LDA dimensionality reduction

and keeping the number of features as 13, i.e., the number of cell

categories in the dataset minus 1. This pattern was also found by

experiments on other datasets, so the number of downscaled

retained features was chosen by subtracting 1 from the number of

cell categories.

3.3.2 Availability of the main part of the
TransCluster

The model includes a linear discriminant analysis (LDA)

dimensionality reduction part, which is placed after dividing the

dataset. In order to determine the location of the LDA, we

experimented with the method of dimensionality reduction

before dividing the dataset. Since the dimensionality reduction

better represents the features of different cell classes, as shown in

Figure 4, taking the liver dataset as an example, the performance

of the model is better to reduce the dimension of the whole

dataset and then split it than to reverse the order of two

operations. This is because the LDA dimensionality reduction

TABLE 2 Performance of themodel with or without the decoder section under different number of attention heads on Baron dataset. The bolded part
is the best performance case.

Head-num TransCluster with decoder TransCluster without decoder

ACC F1−score Precision Recall MCC ACC F1−score Precision Recall MCC

1 0.9105 0.7110 0.7217 0.7058 0.9007 0.9292 0.6787 0.7260 0.6655 0.9157

2 0.9152 0.6582 0.6658 0.6544 0.8975 0.9183 0.7172 0.8372 0.7037 0.8978

3 0.9012 0.6328 0.6443 0.6351 0.8647 0.9354 0.7182 0.7408 0.7098 0.9189

4 0.9144 0.6740 0.6920 0.6673 0.9012 0.9191 0.6168 0.6789 0.6138 0.8896

5 0.9370 0.7324 0.7714 0.7156 0.9223 0.9354 0.7855 0.8001 0.7817 0.9201

6 0.9268 0.7405 0.7661 0.7262 0.9056 0.9230 0.7345 0.7717 0.7146 0.8989

7 0.9307 0.6519 0.6573 0.6565 0.9136 0.9331 0.6907 0.7305 0.6854 0.9028

8 0.9160 0.6947 0.7218 0.6821 0.8549 0.9230 0.6734 0.6914 0.6637 0.8974

9 0.9160 0.6694 0.6882 0.6632 0.8561 0.9245 0.7192 0.7864 0.6873 0.8987

10 0.9160 0.6619 0.6888 0.6485 0.8354 0.9261 0.7307 0.7647 0.7252 0.9072

FIGURE 3
The effect of dimensionality reduction on the model.

FIGURE 4
LDA’s position experiment.
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process uses cell labels as a reference, which makes its selection of

the main features more accurate. However, the actual cells to be

predicted have no prior knowledge of the labels, therefore, it is

more reasonable to choose the way of dividing the dataset first.

This experiment is sufficient to justify the LDA location and also

reveals the usability of the main part of the model.

3.3.3 Visual analysis
T-distributed stochastic neighbor embedding (t-SNE)

(Maaten and Hinton, 2008) is a machine learning algorithm

used for dimensionality reduction, which can visualize high-

dimensional data, so that we have an intuitive understanding of

the distribution of data. As shown in Figure 5, we visualize the

prediction results of the model by the t-SNE method in order to

discover the testing effect of the model more intuitively.

In Figure 5, the visualization of real cell classes is shown on

the left, and the distribution of cell classes predicted by

TransCluster is shown on the right (taking the optimal

prediction result of Spleen dataset as an example). We can

know that the vast majority of cells are predicted accurately

except for very few cells.

3.3.4 Confusion matrix
The confusion matrix is a summary of the predictions for a

classification problem. The number of correct and incorrect

predictions is summarized using count values and broken

down by each category, which is the key to the confusion

matrix (Görtler et al., 2022). The confusion matrix shows

which part of the classification model is confused when

making predictions, providing insight not only into the errors

made by the classification model, but more importantly, the types

of errors that occur, overcoming the limitations associated with

using classification accuracy alone (Li et al., 2022). As shown in

Figure 6, we show the confusion matrix of the classification

results for the kidney dataset.

As can be seen from Figure 6, for the kidney dataset, of the

740 predicted data for the 7 cell categories, the category that

could all be accurately predicted is B cell, 10.71% of Dendritic

cells and 2.19% of Endothelial cells are incorrectly

categorized as Loop of Henle. 94.96% of Epithelial cells are

FIGURE 5
Visualization results.

FIGURE 6
Confusion matrix for the classification results of the Kidney
dataset.
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accurately predicted, the probability of being incorrectly

predicted as Dendritic cells, Endothelial cells, Intercalated

cells are all 0.84%, the probability of being predicted as Loop

of Henle is 2.52%. The accuracy of prediction of Loop of

Henle is 97.85%, and that of Endothelial cell is 96.97%. 3.30%

of Intercalated cells are incorrectly classified as Loop of

Henle. thus, the prediction accuracy of B cell is the

highest, and Loop of Henle caused the most interference to

the model prediction.

4 Discussion

In this study, we proposed a single-cell category prediction

model, TransCluster, which adopts a unique dimensionality

reduction approach and feature extraction method. Unlike

other methods, TransCluster begins with gene expression

matrix processing by LDA’s dimensionality reduction method

to ensure that the features being learned are more targeted. At the

same time, the number of parameters is greatly reduced, making

the model run much faster than other baseline methods. The

modified Transformer is used for feature information extraction,

which makes the extracted features closer to the target data and

more effective than other methods.

To our knowledge, which is the first application of the

Transformer module to the field of single-cell category

prediction. Extensive experiments in the human scRNA-seq

dataset have shown that our model is able to accurately

predict the majority of cells in multiple human tissues.

Comparison with other models reveals that our model can

achieve state-of-the-art prediction performance, which

demonstrates the feasibility of the Transformer module in cell

classification tasks.

There are some aspects of our approach that could be

improved in the future. Due to the rapid development of

graph neural networks (Wu et al., 2021), models with

constructed cellular relationship graphs are starting to emerge

in the field of cell type prediction. We will use graphs to improve

the cell type identification pipeline. We expect that over time,

more cell types from larger maps should be used to train more

comprehensive neural networks. In the future, we will apply

single-cell datasets containing more data information to single-

cell category prediction.

Data availability statement

The source code is available at https://github.com/

Danica123/TransCluster.git and all datasets are publicly

available at https://github.com/Danica123/TransCluster/

releases/tag/Dataset.

Author contributions

Conceptualization, TS and SW; methodology, HD; software,

GW and HD; validation, XZ, YZ and LJ; investigation, HD;

resources, HD; data curation, HD and LJ; writing—original draft

preparation, HD; writing—review and editing, SW; visualization,

YZ; supervision, TS and SW. All authors have read and agreed to

the published version of the manuscript.

Funding

This work was supported by National Key Research and

Development Project of China (2021YFA1000102,

2021YFA1000103), National Natural Science Foundation of

China (Grant Nos. 61873280, 61972416, 62272479, 62202498),

Taishan Scholarship (tsqn201812029), Foundation of Science

and Technology Development of Jinan (201907116),

Shandong Provincial Natural Science Foundation

(ZR2021QF023), Fundamental Research Funds for the Central

Universities (21CX06018A), Spanish project PID 2019-

106960GB-I00, Juan de la Cierva IJC 2018-038539-I.

Acknowledgments

We thank our partners who provided all the help during the

research process and the team for their great support.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Frontiers in Genetics frontiersin.org09

Song et al. 10.3389/fgene.2022.1038919

https://github.com/Danica123/TransCluster.git
https://github.com/Danica123/TransCluster.git
https://github.com/Danica123/TransCluster/releases/tag/Dataset
https://github.com/Danica123/TransCluster/releases/tag/Dataset
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1038919


References

Aran, D., Looney, A. P., Liu, L., Wu, E., Fong, V., Hsu, A., et al. (2019). Reference-
based analysis of lung single-cell sequencing reveals a transitional profibrotic
macrophage. Nat. Immunol. 20 (2), 163–172. doi:10.1038/s41590-018-0276-y

Baron, M., Veres, A., Wolock, S. L., Faust, A. L., Gaujoux, R., Vetere, A., et al.
(2016). A single-cell transcriptomic map of the human and mouse pancreas reveals
inter- and intra-cell population structure. Cell Syst. 3 (4), 346–360. doi:10.1016/j.
cels.2016.08.011

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating
single-cell transcriptomic data across different conditions, technologies, and
species. Nat. Biotechnol. 36 (5), 411–420. doi:10.1038/nbt.4096

Gibney, E. (2015). DeepMind algorithm beats people at classic video games.
Nature 518 (7540), 465–466. doi:10.1038/518465a

Görtler, J., Hohman, F., Moritz, D., Wongsuphasawat, K., Ren, D., Nair, R., et al.
(2022). “Neo: Generalizing confusion matrix visualization to hierarchical and
multi-output labels,” in CHI conference on human factors in computing systems.

Guo, J., Sun, Y., Gao, J., Hu, Y., and Yin, B. (2020). Robust adaptive linear
discriminant analysis with bidirectional reconstruction constraint. ACM Trans.
Knowl. Discov. Data 14 (6), 1–20. doi:10.1145/3409478

Guo, M., Wang, H., Potter, S. S., Whitsett, J. A., and Xu, Y. (2015). Sincera: A
pipeline for single-cell RNA-seq profiling analysis. PLoS Comput. Biol. 11 (11),
e1004575. doi:10.1371/journal.pcbi.1004575

Han, X., Zhou, Z., Fei, L., Sun, H., Wang, R., Chen, Y., et al. (2020). Construction
of a human cell landscape at single-cell level. Nature 581 (7808), 303–309. doi:10.
1038/s41586-020-2157-4

Haque, A., Engel, J., Teichmann, S. A., and Lonnberg, T. (2017). A practical guide
to single-cell RNA-sequencing for biomedical research and clinical applications.
Genome Med. 9 (1), 75. doi:10.1186/s13073-017-0467-4

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The elements of statistical
learning : Data mining, inference, and prediction. New York, NY: Springer.

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent
neural nets and problem solutions. Int. J. Unc. Fuzz. Knowl. Based. Syst. 6 (2),
107–116. doi:10.1142/s0218488598000094

Hu, J., Li, X., Hu, G., Lyu, Y., Susztak, K., and Li, M. (2020). Iterative transfer learning
with neural network for clustering and cell type classification in single-cell RNA-seq
analysis. Nat. Mach. Intell. 2 (10), 607–618. doi:10.1038/s42256-020-00233-7

Kiselev, V. Y., Kirschner, K., Schaub, M. T., Andrews, T., Yiu, A., Chandra, T.,
et al. (2017). SC3: Consensus clustering of single-cell RNA-seq data. Nat. Methods
14 (5), 483–486. doi:10.1038/nmeth.4236

Kiselev, V. Y., Yiu, A., and Hemberg, M. (2018). scmap: projection of single-cell RNA-
seq data across data sets. Nat. Methods 15 (5), 359–362. doi:10.1038/nmeth.4644

Lahnemann, D., Koster, J., Szczurek, E., McCarthy, D. J., Hicks, S. C., Robinson,
M. D., et al. (2020). Eleven grand challenges in single-cell data science. Genome Biol.
21 (1), 31. doi:10.1186/s13059-020-1926-6

Li, X., Han, P., Wang, G., Chen, W., Wang, S., and Song, T. (2022). SDNN-PPI:
Self-attention with deep neural network effect on protein-protein interaction
prediction. BMC Genomics 23 (1), 474. doi:10.1186/s12864-022-08687-2

Lv, H., Dao, F. Y., Zhang, D., Guan, Z. X., Yang, H., Su, W., et al. (2020). iDNA-
MS: An integrated computational tool for detecting DNA modification sites in
multiple genomes. iScience 23 (4), 100991. doi:10.1016/j.isci.2020.100991

Ma, F., and Pellegrini, M. (2020). Actinn: Automated identification of cell types in
single cell RNA sequencing. Bioinformatics 36 (2), 533–538. doi:10.1093/
bioinformatics/btz592

Maaten, L. v. d., and Hinton, G. (2008). Visualizing Data using t-SNE. J. Mach.
Learn. Res. 9, 2579–2605.

Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., et al.
(2015). Highly parallel genome-wide expression profiling of individual cells using
nanoliter droplets. Cell 161 (5), 1202–1214. doi:10.1016/j.cell.2015.05.002

Pang, S., Zhang, Y., Song, T., Zhang, X., Wang, X., and Rodriguez-Paton, A.
(2022). Amde: A novel attention-mechanism-based multidimensional feature
encoder for drug-drug interaction prediction. Brief. Bioinform. 23 (1), bbab545.
doi:10.1093/bib/bbab545

Potter, S. S. (2018). Single-cell RNA sequencing for the study of development,
physiology and disease. Nat. Rev. Nephrol. 14 (8), 479–492. doi:10.1038/s41581-
018-0021-7

Qian, S., Liu, H., Liu, C., Wu, S., and Wong, H. S. (2018). Adaptive activation
functions in convolutional neural networks. Neurocomputing 272, 204–212. doi:10.
1016/j.neucom.2017.06.070

Regev, A., Teichmann, S. A., Lander, E. S., Amit, I., Benoist, C., Birney, E., et al.
(2017). The human cell atlas. Elife 6, e27041. doi:10.7554/eLife.27041

Shao, X., Liao, J., Lu, X., Xue, R., Ai, N., and Fan, X. (2020). scCATCH: Automatic
annotation on cell types of clusters from single-cell RNA sequencing data. iScience
23 (3), 100882. doi:10.1016/j.isci.2020.100882

Shao, X., Yang, H., Zhuang, X., Liao, J., Yang, P., Cheng, J., et al. (2021).
scDeepSort: a pre-trained cell-type annotation method for single-cell
transcriptomics using deep learning with a weighted graph neural network.
Nucleic Acids Res. 49 (21), e122. doi:10.1093/nar/gkab775

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
et al. (2016). Mastering the game of Go with deep neural networks and tree search.
Nature 529 (7587), 484–489. doi:10.1038/nature16961

Song, T., Wang, G., Ding, M., Rodriguez-Paton, A., Wang, X., and Wang, S.
(2022). Network-based approaches for drug repositioning. Mol. Inf. 41 (5),
e2100200. doi:10.1002/minf.202100200

Su, Y., Liu, C., Niu, Y., Cheng, F., and Zhang, X. (2021). A community structure
enhancement-based community detection algorithm for complex networks. IEEE
Trans. Syst. Man. Cybern. Syst. 51 (5), 2833–2846. doi:10.1109/tsmc.2019.2917215

Sun, J., Xie, J., and Zhou, H. (2021). “EEG classification with transformer-based
models,” in 2021 IEEE 3rd global conference on life sciences and technologies
LifeTech. 09-11 March 2021. Nara, Japan.

Tan, Y., and Cahan, P. (2019). SingleCellNet: A computational tool to classify
single cell RNA-seq data across platforms and across species. Cell Syst. 9 (2),
207–213. doi:10.1016/j.cels.2019.06.004

Tian, Y., Su, X., Su, Y., and Zhang, X. (2021). Emodmi: A multi-objective
optimization based method to identify disease modules. IEEE Trans. Emerg.
Top. Comput. Intell. 5 (4), 570–582. doi:10.1109/tetci.2020.3014923

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,– in Proceedings of the Advances in Neural
Information Processing Systems 30 (NIPS 2017), Long Beach, CA, 5999–6009.

Wainberg, M., Merico, D., Delong, A., and Frey, B. J. (2018). Deep learning in
biomedicine. Nat. Biotechnol. 36 (9), 829–838. doi:10.1038/nbt.4233

Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., and Batzoglou, S. (2017).
Visualization and analysis of single-cell RNA-seq data by kernel-based similarity
learning. Nat. Methods 14 (4), 414–416. doi:10.1038/nmeth.4207

Wang, H., Zhao, J., Su, Y., and Zheng, C. H. (2021). scCDG: A Method based on
DAE and GCN for scRNA-seq data Analysis. IEEE/ACM Trans. Comput. Biol.
Bioinform., early access., 1. doi:10.1109/TCBB.2021.3126641

Wang, S., Song, T., Zhang, S., Jiang, M., Wei, Z., and Li, Z. (2022). Molecular
substructure tree generative model for de novo drug design. Brief. Bioinform. 23 (2),
bbab592. doi:10.1093/bib/bbab592

Wolf, F. A., Angerer, P., and Theis, F. J. (2018). Scanpy: Large-scale single-cell gene
expression data analysis. Genome Biol. 19 (1), 15. doi:10.1186/s13059-017-1382-0

Wu, Q. W., Cao, R. F., Xia, J., Ni, J. C., Zheng, C. H., and Su, Y. (2021). Extra trees
method for predicting LncRNA-disease association based on multi-layer graph
embedding aggregation. IEEE/ACM Trans. Comput. Biol. Bioinform., early access.
doi:10.1109/TCBB.2021.3113122

Xu, C., and Su, Z. (2015). Identification of cell types from single-cell
transcriptomes using a novel clustering method. Bioinformatics 31 (12),
1974–1980. doi:10.1093/bioinformatics/btv088

Xu, L., Raitoharju, J., Iosifidis, A., and Gabbouj, M. (2021). Saliency-based
multilabel linear discriminant analysis. IEEE Trans Cybern. 52. 10200-10213.
doi:10.1109/TCYB.2021.3069338

Zeisel, A., Munoz-Manchado, A. B., Codeluppi, S., Lonnerberg, P., La Manno, G.,
Jureus, A., et al. (2015). Brain structure. Cell types in the mouse cortex and
hippocampus revealed by single-cell RNA-seq. Science 347 (6226), 1138–1142.
doi:10.1126/science.aaa1934

Zhang, X., Peng, X., Han, C., Zhu, W., Wei, L., Zhang, Y., et al. (2019). A unified
deep-learning network to accurately segment insulin granules of different animal
models imaged under different electron microscopy methodologies. Protein Cell 10
(4), 306–311. doi:10.1007/s13238-018-0575-y

Frontiers in Genetics frontiersin.org10

Song et al. 10.3389/fgene.2022.1038919

https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1016/j.cels.2016.08.011
https://doi.org/10.1016/j.cels.2016.08.011
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/518465a
https://doi.org/10.1145/3409478
https://doi.org/10.1371/journal.pcbi.1004575
https://doi.org/10.1038/s41586-020-2157-4
https://doi.org/10.1038/s41586-020-2157-4
https://doi.org/10.1186/s13073-017-0467-4
https://doi.org/10.1142/s0218488598000094
https://doi.org/10.1038/s42256-020-00233-7
https://doi.org/10.1038/nmeth.4236
https://doi.org/10.1038/nmeth.4644
https://doi.org/10.1186/s13059-020-1926-6
https://doi.org/10.1186/s12864-022-08687-2
https://doi.org/10.1016/j.isci.2020.100991
https://doi.org/10.1093/bioinformatics/btz592
https://doi.org/10.1093/bioinformatics/btz592
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1093/bib/bbab545
https://doi.org/10.1038/s41581-018-0021-7
https://doi.org/10.1038/s41581-018-0021-7
https://doi.org/10.1016/j.neucom.2017.06.070
https://doi.org/10.1016/j.neucom.2017.06.070
https://doi.org/10.7554/eLife.27041
https://doi.org/10.1016/j.isci.2020.100882
https://doi.org/10.1093/nar/gkab775
https://doi.org/10.1038/nature16961
https://doi.org/10.1002/minf.202100200
https://doi.org/10.1109/tsmc.2019.2917215
https://doi.org/10.1016/j.cels.2019.06.004
https://doi.org/10.1109/tetci.2020.3014923
https://doi.org/10.1038/nbt.4233
https://doi.org/10.1038/nmeth.4207
https://doi.org/10.1109/TCBB.2021.3126641
https://doi.org/10.1093/bib/bbab592
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1109/TCBB.2021.3113122
https://doi.org/10.1093/bioinformatics/btv088
https://doi.org/10.1109/TCYB.2021.3069338
https://doi.org/10.1126/science.aaa1934
https://doi.org/10.1007/s13238-018-0575-y
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1038919

	TransCluster: A Cell-Type Identification Method for single-cell RNA-Seq data using deep learning based on transformer
	1 Introduction
	2 Materials and methods
	2.1 Datasets
	2.2 Model architecture
	2.2.1 Linear discriminant analysis
	2.2.2 Weighted feature extractor
	2.2.3 Linear classifier layer

	2.3 Baseline methods
	2.4 Metrics

	3 Results
	3.1 Performance comparison of TransCluster with other methods on external test datasets
	3.2 Performance of TransCluster on different tissues
	3.3 Sensitivity analysis
	3.3.1 Ablation experiments
	3.3.2 Availability of the main part of the TransCluster
	3.3.3 Visual analysis
	3.3.4 Confusion matrix


	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


