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Group II metabotropic glutamate receptor (mGluR) ligands are potential novel drugs for
neurological and psychiatric disorders, but little is known about the effects of these
compounds at synapses of the human cerebral cortex. Investigating the effects of
neuropsychiatric drugs in human brain tissue with preserved synaptic circuits might
accelerate the development of more potent and selective pharmacological treatments.
We have studied the effects of group II mGluR activation on excitatory synaptic
transmission recorded from pyramidal neurons of cortical layers 2–3 in acute slices
derived from surgically removed cortical tissue of people with epilepsy or tumors.
The application of a selective group II mGluR agonist, LY354740 (0.1–1 µM) inhibited
the amplitude and frequency of action potential-dependent spontaneous excitatory
postsynaptic currents (sEPSCs). This effect was prevented by the application of a
group II/III mGluR antagonist, CPPG (0.1 mM). Furthermore, LY354740 inhibited the
frequency, but not the amplitude, of action potential-independent miniature EPSCs
(mEPSCs) recorded in pyramidal neurons. Finally, LY354740 did slightly reduce cells’
input resistance without altering the holding current of the neurons recorded in voltage
clamp at −90 mV. Our results suggest that group II mGluRs are mainly auto-receptors
that inhibit the release of glutamate onto pyramidal neurons in layers 2–3 in the human
cerebral cortex, thereby regulating network excitability. We have demonstrated the effect
of a group II mGluR ligand at human cortical synapses, revealing mechanisms by
which these drugs could exert pro-cognitive effects and treat human neuropsychiatric
disorders.

Keywords: presynaptic receptor, glutamatergic, EPSC, cognitive enhancer, transmitter release, epilepsy, mGluR,
human cortex
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INTRODUCTION

Pre- and postsynaptic metabotropic glutamate receptors
(mGluRs) are activated by L-glutamate, the major excitatory
transmitter in the mammalian central nervous system (CNS).
These receptors regulate neuronal excitability and synaptic
plasticity and mediate the actions of neuroactive drugs (Anwyl,
1999; Cartmell and Schoepp, 2002; Niswender and Conn, 2010).
Eight subtypes of mGluRs have been identified and these are
classified into three groups (mGluRs I, II, and III) according
to their amino acid sequence similarities, agonist selectivity,
and interactions with transduction mechanisms (Conn and Pin,
1997). Group II receptors (mGlu2 and mGlu3) are intriguing due
to their peri- and extra-synaptic location outside the synaptic
junction (Shigemoto et al., 1997; Corti et al., 2002), predicting
receptor activation in an activity-dependent manner when
glutamate spills over from the release site (Scanziani et al., 1997).
This process may be of interest not only under physiological
but also under pathological conditions (Molinari et al., 2012).
Group II mGluRs are often coupled to the cyclic AMP cascade
(Conn and Pin, 1997) and are potently activated by a series of
compounds developed by several pharmaceutical companies
and particularly by Eli Lilly and Company, for example (1)-2-
aminobicyclo[3.1.0] hexane-2,6-dicarboxylic acid (LY354740)
(Schoepp et al., 1999).

Work performed in rodents shows that the activation of
group II mGluRs have pre- and post-synaptic effects, consistent
with receptor locations (Anwyl, 1999; Cartmell and Schoepp,
2002; Niswender and Conn, 2010). For example, presynaptic
group II mGluRs, expressed by the perforant pathway from the
entorhinal cortex depress excitatory synaptic responses recorded
from hippocampal CA1 pyramidal cells or interneurons of
stratum lacunosum moleculare (Kew et al., 2001; Capogna,
2004; Price et al., 2005). Conversely, activation of postsynaptic
mGlu3 expressed by hippocampal CA3 pyramidal neurons
enhances excitability by inhibiting a K+ conductance and
by activating a calcium-sensitive cationic conductance (Ster
et al., 2011). Moreover, mGlu3R activation enhances mGlu5R-
mediated somatic Ca2+ mobilization in pyramidal cells of the
mouse prefrontal cortex (Di Menna et al., 2018).

Furthermore, pharmacological or genetic manipulation of
mGlu2 gate synaptic plasticity, for instance at hippocampal
mossy fiber to CA3 pyramidal cell synapses (Yokoi et al.,
1996). Thus, the cellular mechanisms by which group II
mGluRs regulate network function are heterogeneous. Additional
complexity is given by the fact that group II mGluRs are expressed
on axons that target specific cell types but not others (Kintscher
et al., 2012).

Group II mGluRs can be down-regulated during development
(Doherty et al., 2004), indicating that these receptors could be
critical for network maturation as well as for neurodevelopmental
disorders. Conversely, group II mGluRs are up-regulated
following epileptic seizures (Doherty and Dingledine, 2001).
These observations suggest that these receptors could play a
role in various brain disorders. Indeed, group II mGluRs are
currently investigated as potential drug targets for treating
neurological and psychiatric disorders. Several agonists have been

developed with the aim of improving cognitive dysfunction in
schizophrenia, Alzheimer’s disease and anxiety disorders (Caraci
et al., 2018; Ferraguti, 2018; Stansley and Conn, 2018). For
example, agonists of group II mGluRs show anxiolytic activity
in a wide range of animal models of anxiety disorder (Swanson
et al., 2005) and improve cognition (Stansley and Conn,
2018). Experimentally, LY354740 rescues deficits in stereotypy,
locomotion, spatial working memory and cortical glutamate
efflux induced by pharmacological blockade of NMDA receptors
in rodents (Moghaddam and Adams, 1998). Furthermore, several
mGlu2 positive allosteric modulators (PAMs) have shown efficacy
in preclinical animal models of schizophrenia (Spooren et al.,
2000; Galici, 2005) (see review: Maksymetz et al., 2017).

Behavioral effects of mGluR activation in humans provide
translational validity of the results obtained in animal models.
For example, group II mGluR agonists attenuate NMDA receptor
activation-induced deficits in working memory in human
subjects (Krystal et al., 2005). However, clinical trials using
group II mGluR agonists or PAMs in psychiatric patients have
not led to the introduction of novel clinical treatments (see
reviews: Maksymetz et al., 2017; Ferraguti, 2018). Reasons for
translational failure are complex, including species differences,
lack of appropriate animal models, insufficient dosing and limited
bioavailability of the drugs tested (Jucker, 2010). As for many
other receptor systems, there is a gap between the vast amounts
of information available on the actions of group II mGluRs in
rodent versus human CNS. The aim of the present study is to
help closing this gap and to elucidate the action of the potent
and selective group II mGluR agonist LY354740 on pyramidal
neurons recorded from acute slices derived from surgically
removed human cortical tissue.

MATERIALS AND METHODS

Ethics Statement and Patients
Surgical specimens were obtained from the temporal neocortex
of drug resistant temporal lobe epilepsy (TLE) (patients A–
E, Table 1A, five females) and from the temporal and
frontal neocortex of low grade glioma oncological patients
with brain tumors (patients F–H, Table 1B, one female,
two males) operated at the John Radcliffe Hospital, Oxford,
United Kingdom. All studied tissues were necessarily removed
during the surgical procedure and were surplus to diagnostic
requirements. Ethics approval was sought and obtained from
Research Ethics Committees, National Health Service, Health
Research Authority, United Kingdom (NRES Committee South
Central – Oxford C: reference 15/SC/0639; NRES Committee
East of England – Cambridgeshire and Hertfordshire: reference
14/EE/1098). Fully informed written consent was obtained from
each patient who participated.

Slice Preparation
A small piece of cortical tissue (size < 1 cm3) including all layers
and some white matter was isolated using a scalpel, removed and
immediately immersed in cutting artificial cerebrospinal fluid
(ACSF) saturated with carbogen (95% O2/5% CO2), at∼4◦C. The
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solution containing the block of tissue was continuously bubbled
with carbogen. Transportation from the operating theater to the
laboratory lasted 15–60 min. The block of tissue was placed
in a petri dish containing ice-cold cutting ACSF bubbled with
carbogen. In some cases, the block of tissue was divided into
smaller pieces before transportation. Next, the block of tissue
was glued on a platform of a vibratome (Microm HM 650 V,
Thermo Fisher Scientific) and cut into slices at a setting of
325 µm thickness in cutting ACSF at 4◦C. The block of tissue was
oriented in a way to slice perpendicular to the pia and parallel
to the apical dendrites of the pyramidal cells. The cutting ACSF
contained the following compounds (in mM): 65 sucrose, 85
NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 0.5 CaCl2, 7 MgCl2,
10 glucose (pH 7.3, ∼300 mOsm/L). Slices were incubated in
cutting ACSF at 36◦C. After ∼10 min, the cutting ACSF was
replaced with recording ACSF at 36◦C using a peristaltic pump
(Gilson) operated at∼5 mL/min. The recording ACSF contained
the following compounds (in mM): 126 NaCl, 2.5 KCl, 1.2
NaH2PO4, 26 NaHCO3, 2 CaCl2, 2 MgCl2, 10 glucose, (pH 7.3,
∼300 mOsm/L). Slices were heated at 36◦C for 30 min, after
which they were stored at room temperature and continuously
bubbled with carbogen.

Electrophysiological Recordings
Slices were submerged in a recording chamber and stabilized with
a plastic string harp. The chamber was continuously perfused
with oxygenated recording ACSF at a rate of 10 mL/min by
a peristaltic pump (Gilson) at a temperature of 33 ± 1◦C.
Neurons were visualized using a differential interference contrast
(DIC) microscope (Olympus BX51WI) using a LUMPlanFL 60×
water objective (Olympus) and equipped with a camera (Zyla,
ANDOR) connected to a desktop computer. Glass electrodes (4–
6 M�) were prepared from borosilicate glass capillaries (1.2 mm;
GC120F, Harvard Apparatus) using a DMZ Universal puller
(Zeitz-Instrument). Electrodes were filled with an intracellular
solution composed of the following (in mM): 126 K-gluconate,
4 KCl, 4 ATP-Mg, 0.3 GTP-Na2, 10 Na2-phosphocreatine,
10 HEPES, and 0.05% biocytin, with osmolarity of 270–280
mOsmol/L without biocytin, at pH 7.3 adjusted with KOH.
Somatic whole-cell patch-clamp recordings were performed from
visualized neurons in cortical layers 2–3. Electrophysiological
signals were amplified using an EPC10 triple patch clamp
amplifier (HEKA Electronik), digitized at 20 kHz for recordings
in voltage-clamp mode and at 5 kHz for recordings in current-
clamp mode, and acquired using Patchmaster software (HEKA
Electronik). All reported voltage values were compensated for a
calculated 16 mV liquid junction potential between the ACSF
and the recording pipette. Spontaneous or miniature excitatory
postsynaptic currents (sEPSCs or mEPSCs) were recorded in
continuous voltage clamp with a holding potential of –90 mV
(corresponding to the calculated Cl− reversal potential). The
mEPSCs were recorded after the addition of 1 µM tetrodotoxin
(TTX) to the recording ACSF. Uncompensated series resistance
was monitored using a 20 ms-long −10 mV voltage step applied
at the beginning of every sweep (i.e., every minute). The sEPSCs
or mEPSCs were recorded continuously for up to∼30 min. After
3–4 min of baseline recording 0.1–1 µM LY354740 was perfused TA
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into the recording chamber for 5 min. The drug was subsequently
washed out for 10–20 min.

Signal Analysis and Inclusion Criteria
Analysis of synaptic currents and intrinsic membrane responses
was performed using Igor Pro (WaveMetrics). PatchMaster files
were loaded into Igor Pro with Patcher’s Power Tools (Max-
Planck-Institute, Department of Membrane Biophysics). The
input resistance (Rin) was calculated from the slope of steady-
state voltage responses to a series of 8–10 subthreshold current
injections lasting 400 ms. Spike threshold, half-width and fast
after-hyperpolarization (AHPfast, in mV) were determined from
the first spike in response to a juxtathreshold positive current
injection. The spike half-width was defined as the duration at
half-amplitude measured between the threshold potential and
the peak of the action potential. The membrane time constant τ

was estimated from the monoexponential curve fitting of voltage
responses to a −30 pA hyperpolarizing pulse. The membrane
capacitance was calculated as the ratio between membrane τ and
Rin. The rheobase (in pA) was determined as a 50 ms current
injection, able to generate a spike in 50% of the cases in 10 trials.
The instantaneous firing rate (in Hz) was defined as the number
of action potentials evoked during a 1 s-long depolarizing current
pulse of twice the amplitude of the rheobase current. The
adaptation index (range, 0–1) was defined as the ratio between
the first and last inter-spike intervals (ISIs; in ms) elicited by the
same current pulse used to measure the instantaneous firing rate.
The resting membrane potential was estimated by averaging a 20 s
current-clamp trace recorded at a 0 pA holding current. Changes
in Rin evoked by LY354740 application were assessed in voltage
clamp mode by applying regular hyperpolarizing voltage steps
(−10 mV). For these experiments, Rin was calculated as follows:

Rin = Rtot − Rs

where Rtot is the total resistance and Rs is the series resistance. Rs
was calculated as follows:

Rs =
V
IP

where V is the amplitude of the voltage step and Ip is the
amplitude of the peak of the capacitive current transient. Rtot was
calculated as follows:

Rtot =
V
Is

where Is is the amplitude of the steady state current.
The following criteria were determined in order to accept or

reject event files: (1) recorded neurons were able to generate
at least one spike upon current injection in current clamp
mode at the beginning of the recording; (2) the holding current
to clamp the cell at −90 mV was <−100 pA; (3) the series
resistance was <30 M� and did not change more than 20%
during the recording. Spontaneous synaptic events were detected
using TaroTools toolbox for Igor Pro1. The threshold for event
detection was set between −5 and −7 pA depending on the

1https://sites.google.com/site/tarotoolsregister

signal-to-noise ratio of the recording. Events with 20–80% rise-
time longer than 3 ms and half-width shorter than 1 ms were
removed. Subsequently, all events were visually inspected for
the entire recording period in order to confirm the reliability
of the automatic detection. Events were rejected if they did not
display typical fast EPSC kinetic (i.e., ratio between decay time
and 20–80% rise-time <3). Statistical analysis was performed
using Prism software (GraphPad, San Diego, CA, United States),
and the tests used are specified throughout the results. Unless
indicated otherwise, values presented in the text and in the figures
represent the median and the interquartile range (IQR). All data
sets were tested for statistically significant outliers using the Rout
test (Q = 1%).

Visualization of Recorded Cells
After recording, slices were immersed in a fixative containing
4% paraformaldehyde, 15% v/v picric acid dissolved in 0.1 M
phosphate buffer (PB) pH 7.2–7.4, overnight at 4◦C. Slices were
then thoroughly washed in 0.1M PB until all fixative was removed
from the tissue and were either embedded in 20% gelatin and
re-sectioned into 60 µm thickness on a vibratome (VT 1000S,
Leica) or were processed further without re-sectioning. After
permeabilization with Tris Buffered Saline (TBS), containing
0.3% w/v Triton (Tx) (Sigma), the recorded cells were visualized
with overnight incubation in Alexa-488-conjugated streptavidin
(Invitrogen, Thermo Fisher Scientific), diluted 1:1000 in the same
buffer. Sections were then washed with TBS-Tx three times for
10 min and were mounted in Vectashield (Vector Laboratories)
on glass slides for microscopic examination. Visualized neurons
were examined using an epifluorescent microscope (Leitz DMRB,
Leica) equipped with a camera (ORCA-ER, Hamamatsu) and
connected to a desktop computer, using a 480/40 excitation and
a 527/30 emission filter, corresponding to the fluorophore used.
All visualized cells were confirmed to be pyramidal neurons
based on the distribution of dendrites and axon and the presence
of dendritic spines. Images of Z-stacks of some of the labeled
neurons were made using a laser-scanning microscope (LSM 710,
Zeiss) with a Plan-Apochromat 20x/0.8 objective (Zeiss).

Chemicals and Drugs
Salts used in the preparation of the internal recording solution
and ACSF were obtained from either BDH or Sigma-Aldrich.
LY354740 (1)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylic
acid, CPPG (RS)-α-cyclopropyl-4-phosphonophenylglycine and
tetrodotoxin (TTX) were purchased from Tocris Bioscience,
LY354740 was stored as frozen aliquots of 10 mM in DMSO.
CPPG was stored as frozen aliquots of 100 mM in 1 M NaOH.
TTX was stored as frozen aliquots of 1 µM in 10 mM sodium
citrate buffer, pH 4.8.

RESULTS

Identity and Spiking Patterns of the
Recorded Neurons
Neurons were recorded under visual control (n = 30; n = 8
patients: five TLE, three tumor) and I/V protocols were
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performed in whole cell current clamp mode to assess the
spiking patterns of the recorded cells in response to depolarizing
rectangular current pulses. All neurons included in this study
displayed membrane responses, action potential kinetics and
discharge patterns consistent with features commonly observed
in human cortical pyramidal neurons in layers 2–3 (Molnár
et al., 2008) (Table 2 and Figure 1). A subset of slices (16
out 30 from six patients, patient IDs: A–D and G, H) were
histologically processed to visualize the biocytin-filled neurons.
In 15/16 processed slices, the recorded neuron could be identified
as pyramidal cells on the basis of spiny dendrites and axonal
distribution, consistent with the electrophysiological properties
(Figure 1). In one slice the recorded neuron was not recovered.

Pharmacological Activation of Group II
mGluRs Depresses Excitatory Synaptic
Transmission in Human Cortical
Pyramidal Cells
Based on the evidence of group II mGluR modulation of
glutamatergic transmission and pyramidal cell excitability in the
rodent brain (Anwyl, 1999), we tested the effect of these receptors
in human cortical pyramidal cells. We recorded sEPSCs from
pyramidal cells in voltage clamp mode at −90 mV. The median

frequency of sEPSCs was 2.4 Hz (IQR: 1.4–8.2 Hz), whereas the
median amplitude was 13.2 (IQR: 8–15.6 pA; n = 10 from five
patients).

Application of the selective group II mGluR agonist LY354740
(0.1 µM, n = 2; or 1 µM, n = 6) significantly depressed the
frequency and the amplitude of sEPSCs (p = 0.003, Kruskal–
Wallis test, pooled n = 8, Figure 2). Specifically, LY354740
reduced sEPSC frequency by 35% (median; IQR: 32–61%; n = 8)
from baseline (p < 0.01) and sEPSC amplitude by 12% (median;
IQR: 7–21%; n = 8) from baseline (p< 0.01, Dunn’s post hoc test).
The depression of sEPSCs partially persisted after 10–20 min
post-LY354740 recovery period and could not be fully washed out
(baseline vs. washout p < 0.05; LY354740 vs. washout p > 0.05,
LY354740 n = 8, washout n = 6, Dunn’s post hoc test).

We sought to verify that the inhibition of sEPSCs observed
upon application of LY354740 was indeed due to group II
mGluRs, and not due to other factors, for example spontaneous
sEPSC rundown in the slice. To this end, we pre-incubated slices
for ∼10 min with the group II/III mGluR antagonist, CPPG
(0.1 mM) prior to the additional application of LY354740 (1 µM).
Under these conditions, LY354740 did not trigger significant
depression of the frequency (change from baseline: median
+9%, IQR: −1 to +22%, p = 0.312, Wilcoxon test, n = 6) or
amplitude (change from baseline: median +3%, IQR: −10 to

TABLE 2 | Electrophysiological parameters of human cortical pyramidal cells and experimental protocols related to patient and cell codes.

Parameter/experiment Median IQR Cell # Patient/cell codes

Vm rest (mV) −91.6 −89.3 – −93 n = 10 A1, B4–B6, C7, D8–D12

Rin (M�) 160.3 123 – 195.5 n = 11 A1, B4–B6, C7, D8–D13

Membrane tau (ms) 22.6 19.2 – 28 n = 11 A1, B4–B6, C7, D8–D13

Capacitance (pF) 145.7 137.9 – 188 n = 11 A1, B4–B6, C7, D8–D13

Rheobase current (pA) 85 39 – 154 n = 11 A1, B4–B6, C7, D8–D13

Spike threshold (mV) −55.8 −48.5 – −61.3 n = 11 A1, B4–B6, C7, D8–D13

Spike amplitude (mV) 90.4 87.6 – 91.9 n = 11 A1, B4–B6, C7, D8–D13

Spike half-width (ms) 1.1 1 – 1.2 n = 11 A1, B4–B6, C7, D8–D13

AHPfast (mV) 12.7 7.2 – 14.5 n = 11 A1, B4–B6, C7, D8–D13

Sag ratio (−100 pA) 0.882 0.864 – 0.904 n = 9 A1, B5, C7, D8–D13

Rebound amplitude (−100 pA; mV) 1.9 1.3 – 3.5 n = 9 A1, B5, C7, D8–D13

Instantaneous firing rate (Hz) 14 12 – 17.5 n = 11 A1, B4–B6, C7, D8–D13

Adaptation index 0.233 0.189 – 0.322 n = 11 A1, B4–B6, C7, D8–D13

sEPSC frequency (Hz) 2.4 1.4 – 8.2 n = 10 A1, B2–B4, C8, D9, D12, E16–E18

sEPSC amplitude (pA) 13.2 8 – 15.6 n = 10 A1, B2–B4, C8, D9, D12, E16–E18

mEPSC frequency (Hz) 1.7 1.6 – 3.3 n = 9 D13, D14, E15, F19–F21, G23–G25

mEPSC amplitude (pA) 8.6 8.1 – 10.2 n = 9 D13, D14, E15, F19–F21, G23–G25

LY354740 (1 µM) tested on sEPSCs – – n = 6 A1, B2–B4, C8, E16

LY354740 (0.1 µM) tested on sEPSCs – – n = 2 D9, D12

CPPG (0.1 mM) + LY354740 (1 µM) tested on sEPSCs – – n = 6 F22, H26–H30

LY354740 (1 µM) tested on mEPSCs – – n = 6 F19–F21, G23–G25

LY354740 (0.1 µM) tested on mEPSCs – – n = 3 D13, D14, E15

LY354740 (1 µM) tested on holding current – – n = 11 A1, B4, C8, E16, E17, F19–F21, G23–G25

LY354740 (0.1 µM) tested on Rin – – n = 5 D9, D12, D13, D14, E15

LY354740 (1 µM) tested on Rin – – n = 6 F19, F20, F21, G23, G24, G25

CPPG (0.1 mM) + LY354740 (1 µM) tested on Rin – – n = 6 F22, H26, H27, H28, H29, H30

Vm rest, resting membrane potential; Rin, input resistance; AHPfast, fast afterhyperpolarization; sEPSCs, spontaneous excitatory postsynaptic currents; mEPSCs, miniature
excitatory postsynaptic currents; IQR, inter-quartile range.
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FIGURE 1 | Features of a human cortical pyramidal cell. (A) Confocal microscopic image of a biocytin-filled human cortical pyramidal cell in layer 3 (patient/cell code:
H26) showing spiny dendrites, a prominent apical dendrite and axon (a) descending toward the white matter; maximum intensity projection of a z-stack of ∼24 µm
thickness; 1.8 µm optical slice thickness; interval 0.9 µm; 25 slices). (B) Voltage responses of the cell shown in (A) recorded in current clamp mode to
hyperpolarizing (–50 pA) and depolarizing (+400 pA) current steps (holding potential: –80 mV). (C) Representative traces of spontaneous EPSCs recorded in voltage
clamp mode at –90 mV; traces are low-pass filtered at 1 kHz and notch filtered at 50 Hz (width: 0.05 Hz). (A–C) Same cell.

+12%, p> 0.999, Wilcoxon test, n = 6) of sEPSCs (Figure 3). The
frequency and amplitude of sEPSCs in control and in the presence
of CPPG were not significantly different (frequency in control:
median 2.4 Hz, IQR: 1.4–8.2 Hz, n = 10; frequency with CPPG:
median 4 Hz, IQR: 1.7–6.5 Hz, n = 6, p = 0.865, Mann–Whitney
test; amplitude in control: median 13.2 pA, IQR: 8–15.6 pA,
n = 10; amplitude with CPPG: median 10.5, IQR: 9.1–11.7 pA,
n = 6, p = 0.534, Mann–Whitney test), suggesting poor or no
endogenous activation of group II mGluRs by glutamate under
our experimental conditions.

Group II mGluRs Depress Excitatory
Synaptic Transmission Mainly via a
Presynaptic Effect
In pyramidal cells of the rodent hippocampus (Ster et al., 2011)
and primate prefrontal cortex (Jin et al., 2017), the activation
of group II mGluRs change postsynaptic conductances. The
observed depression of sEPSCs in our experiments may be
due to: (1) presynaptic inhibition of glutamate release; (2)
a hyperpolarization of other pyramidal cells innervating the
recorded pyramidal cell; (3) a purely postsynaptic effects on the
recorded cells (e.g., changes of AMPA receptor conductance),
or a combination of the above. To discriminate between these
scenarios, we tested in voltage clamp mode whether LY354740

application altered the holding current and the Rin of the
recorded pyramidal cells (Figure 4). We did not observe a
change in the holding current upon the application of LY354740
(1 µM) in neurons at −90 mV (change from baseline: median
2.6 pA, IQR −0.5 to 10.4 pA, p = 0.175, Wilcoxon test,
n = 11, Figures 4A,B), suggesting that, at least at this membrane
potential, pyramidal cells are not hyperpolarized by this drug.
Nonetheless, LY354740 application (0.1 µM, n = 5; or 1 µM,
n = 6) triggered a small but significant reduction of Rin (median
change −5%, IQR: 3–10%, p = 0.04, Kruskal–Wallis test, pooled
n = 11; baseline vs. LY354740 p < 0.05, LY354740 vs. washout
p> 0.05, baseline vs. washout p> 0.05, Dunn’s post hoc test). This
effect was absent when CPPG (0.1 mM) was applied prior to the
additional application of LY354740 (1 µM; p = 0.7, Wilcoxon test,
n = 6). The reduction of Rin from baseline triggered by LY354740
was significantly smaller in the presence of CPPG (p = 0.03,
Mann–Whitney test), suggesting that this effect was mediated by
activation of group II mGluRs. Thus, group II mGluRs appear
to trigger small changes in membrane conductance in pyramidal
cells.

Next, in order to further discriminate between presynaptic and
postsynaptic effects, we tested the drug on spontaneous mEPSCs
recorded from pyramidal cells. In the presence of 1 µM TTX to
block action potentials, mEPSC frequency had a median value of
1.7 Hz (IQR: 1.6–3.3 Hz) and mEPSC amplitude had a median
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FIGURE 2 | Activation of group II mGluRs depresses excitatory synaptic transmission in human cortical pyramidal cells. (A) Representative traces in voltage clamp
mode (–90 mV) during baseline and application of the group II mGluR agonist LY354740 (0.1 µM) to a pyramidal cell. (B) Cumulative probability distributions of the
inter-sEPSC intervals and sEPSC amplitudes for the cell shown in (A). LY354740 significantly reduces sEPSC frequency (left, p = 0.0001, Kolmogorov–Smirnov test),
and non-significantly decreases sEPSC amplitude (right, p = 0.056, Kolmogorov–Smirnov test). (C) Event time histograms (bin size: 10 ms, cell in A,B) showing the
effect of LY354740 application on sEPSC frequency (left) and amplitude (right). (D) Baseline normalized effects of LY354740 (0.1 or 1 µM) on individual cells (see
Table 2) show significant reduction of sEPSC frequency (left, p = 0.003 Kruskal–Wallis test; baseline vs. LY354740 p < 0.01, baseline vs. washout p < 0.05,
LY354740 vs. washout p > 0.05, Dunn’s post hoc test, n = 8) and sEPSC amplitude (right, p = 0.003 Kruskal–Wallis test; baseline vs. LY354740 p < 0.01, baseline
vs. washout p < 0.05, LY354740 vs. washout p > 0.05, Dunn’s post hoc test, n = 8). In some cells, washout could not be analyzed due to changes in series
resistance (>20% baseline). Numbers denote codes of individual cells (see Table 2). ∗p < 0.05, ∗∗p < 0.01, ∗∗∗∗p < 0.0001.

value of 8.6 pA (IQR: 8.1–10.2 pA, n = 9). Application of 0.1 µM
(n = 3 cells) or 1 µM LY354740 (n = 6) caused a significant
reduction in the frequency of mEPSCs (change from baseline:
median −50%, IQR: −29 to −67%, p = 0.019 Kruskal–Wallis
test; baseline vs. LY354740 p < 0.05, Dunn’s post hoc test, n = 9
cells pooled, Figure 5). In contrast, mEPSC amplitude was not
significantly altered by LY354740 (change from baseline: median
−2%, IQR −4 to +2%, p = 0.239 Kruskal–Wallis test; n = 9,
Figure 5). Taken together, these results suggest that activation of
group II mGluRs leads to presynaptic and postsynaptic effects in
pyramidal cells. However, the lack of changes in holding current
(at least at −90 mV) and the modest changes in Rin suggest
that the depression of excitatory transmission is predominantly
caused by inhibition of glutamate release from glutamatergic
terminals innervating pyramidal cells.

DISCUSSION

We have demonstrated that activation of group II mGluRs
inhibits spontaneous excitatory transmission impinging onto
pyramidal neurons in layers 2–3 of the human cerebral cortex.
The group II mGluR agonist LY354740 depressed the frequency
and amplitude of action potential-dependent sEPSCs but did
not alter the holding current of pyramidal cell, although it
slightly reduced the cells’ input resistance. It also reduced the
frequency but not the amplitude of action potential-independent
mEPSCs. Overall, these findings suggest that group II mGluRs
act predominantly via a presynaptic effect on glutamate release,
rather than via hyperpolarization of layers 2–3 pyramidal
cells or postsynaptic effects on ionotropic glutamate receptor
conductance. However, we cannot exclude that activation of
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FIGURE 3 | An antagonist of group II/III mGluRs prevents depression of excitatory synaptic transmission by LY354740. (A) Representative traces in voltage clamp
mode (–90 mV) during baseline and application of LY354740 (1 µM) in the presence of the group II/III mGluR antagonist CPPG (0.1 mM) in a neuron. (B) Cumulative
probability distributions of the inter-sEPSC intervals and sEPSC amplitudes for the cell shown in (A). LY354740 does not reduce sEPSC frequency (p = 0.967,
Kolmogorov–Smirnov test) or amplitude (p = 0.999, Kolmogorov–Smirnov test). (C) Event time histograms (bin size: 10 ms, cell in A,B) showing the effect of
LY354740 application on sEPSC frequency (left) and amplitude (right) in presence of CPPG. (D), on average, LY354740 (1 µM) does not significantly change sEPSC
frequency (left, p = 0.312 Wilcoxon test, n = 6) or sEPSC amplitude (p > 0.999 Wilcoxon test, n = 6). Numbers denote codes of individual cells (see Table 2).

postsynaptic group II mGluRs in pyramidal cells can lead
to network effects. Increases in membrane conductance could
lead to membrane hyperpolarization when the cell’s membrane
potential is more depolarized and/or to a reduction of the cell’s
excitability. If large numbers of pyramidal neurons express group
II mGluRs in the human cortex, even a small hyperpolarization
or reduction in excitability could alter network dynamics. Our
results confirm the negative ‘autoreceptor’ role of this receptor
observed in rodent neocortex (e.g., Libri et al., 1997) and
hippocampus (e.g., Capogna, 2004). Although group II mGluRs
on glutamatergic terminals are activated by glutamate, the
source of this transmitter may be either the same terminal
that is being suppressed or nearby terminals. In fact, the
receptors are widely distributed along the axons and the
non-junctional bouton membrane, and glutamate release sites

are densely distributed in the neuropil. Therefore, the term
‘autoreceptor’ describes the chemical nature of the terminal
and the receptor, and not necessarily a terminal-autonomous
regulatory mechanism.

Preclinical studies have demonstrated that group II mGluR
agonists exhibit antipsychotic-like properties in animal models
of schizophrenia (Stansley and Conn, 2018). However, when
these compounds were tested in clinical trials on schizophrenic
patients, results were not encouraging (Muguruza et al., 2016).
This may be due to patient selection or previous exposure to
atypical antipsychotics (Muguruza et al., 2016; Maksymetz et al.,
2017). Nonetheless, it is important to acknowledge that rodent
animal models do not fully capture the complexities of psychiatric
disorders and often show poor predictive power for drug efficacy
(Nestler and Hyman, 2010).
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FIGURE 4 | Activation of group II mGluRs does not lead to detectable inward currents in human cortical pyramidal cells. (A) Representative trace in voltage clamp
mode (–90 mV) during baseline and application of LY354740 (1 µM). The trace was processed with a low pass filter (5 Hz stop band), a notch filter (50 Hz) and
boxcar averaging (window of 50 data points; original sampling rate: 20 kHz) to remove synaptic events and isolate the holding current. (B) LY354740 (1 µM) does
not significantly affect the holding current (p = 0.175, Wilcoxon test, n = 11). Numbers denote codes of individual cells (see Table 2). (C) Baseline normalized effects
of LY354740 (0.1 or 1 µM) on individual cells (see Table 2) show significant reduction of Rin (median change –5%, IQR: 3–10%, p = 0.04 Kruskal–Wallis test;
baseline vs. LY354740 p < 0.05, baseline vs. washout p > 0.05, LY354740 vs. washout p > 0.05, Dunn’s post hoc test, n = 11). (D) On average, LY354740 (1 µM)
does not significantly impact pyramidal cells’ Rin when CPPG (0.1 mM) is pre-applied (p = 0.7, Wilcoxon test, n = 6). (E) Boxplot showing significantly bigger
reduction of Rin between application of LY354740 only and LY354740 with CPPG (p = 0.03, Mann–Whitney test). In some cells, washout could not be analyzed due
to changes in series resistance (>20% baseline). Numbers denote codes of individual cells (see Table 2). ∗p < 0.05.

Unraveling the cellular effects of group II mGluRs in human
cortex could facilitate the identification of causes underlying
the poor efficacy of current drugs and help design new, more
effective pharmacological treatments. We have tested the effect
of a ligand of broad interest for drug development, an agonist
for type II mGluRs, on synaptic events recorded from human
cortical neurons. Our results demonstrate that this ligand, tested
previously in rodents, is effective in inhibiting EPSCs recorded
in human pyramidal cells. Future studies using human cortical
slices may also help to design novel antipsychotic drugs by
shedding light on the physiological effects of PAMs of group
II mGluRs (e.g., LY487379 or AZD8529), designed to improve
cognition deficits with fewer side effects than more traditional
drugs (Singewald et al., 2015).

Our data show that LY354740 inhibited the frequency and
amplitude of action potential-dependent sEPSCs as well as the
frequency, but not amplitude, of action potential-independent
mEPSCs. The latter effect by a drug is usually interpreted
as inhibition of spontaneous vesicle fusion and transmitter
release (Scanziani et al., 1992). However, LY354740 also appears
to trigger postsynaptic effects, as indicated by the small
but significant effect of LY354740 on cells’ input resistance.
Future studies could confirm the effect of group II mGluRs
on neurotransmitter release by examining calcium-dependent
release evoked by electrical stimulation of a set of presynaptic
fibers. Calcium-dependent and independent neurotransmitter

release have been often assumed to share similar mechanisms
(Scanziani et al., 1992), although more recent data suggest that
the pool of vesicles underlying spontaneous transmitter release
can be different from that involved in evoked release (Sara et al.,
2005).

In the present study, we could test only a small number
of neurons due to limited availability of human cortical tissue.
Therefore, we have not explored the subcellular or molecular
mechanisms leading to presynaptic depression of glutamatergic
transmission. In rodent hippocampus, these receptors are found
at pre-terminal axons and on the boutons at some distance
from release sites (Shigemoto et al., 1997; Corti et al., 2002),
but whether similar localization also occurs in the human
cerebral cortex is not known. Based on rodent data, group
II mGluR activation could act downstream on N- and P/Q
type Ca2+ channels, presynaptic K+ channels, intrinsic release
machinery proteins or could be activated by retrograde release of
endogenous transmitters from the postsynaptic cells (Niswender
and Conn, 2010). Furthermore, our data cannot rule out a
contribution of group II mGluRs expressed by pyramidal cells’
dendritic membrane, perhaps at some distance from the soma.
Finally, mGlu3 is expressed in human astrocytes where it
enhances the uptake of glutamate from the synapse by increasing
the expression of glial glutamate transporters (Aronica et al.,
2003), and this mechanism could contribute to the inhibition of
glutamatergic synaptic events observed in our experiments.
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FIGURE 5 | Activation of group II mGluRs depresses excitatory synaptic transmission via a presynaptic effect. (A) Representative traces in voltage clamp mode (–90
mV) from a neuron during baseline and application of the group II mGluR agonist LY354740 (1 µM) in the presence of 1 µM tetrodotoxin; mEPSCs are marked with
arrows. (B) Cumulative probability distributions of the inter-mEPSC intervals and mEPSC amplitudes for the cell shown in (A). LY354740 significantly reduces
mEPSC frequency (left, p < 0.0001, Kolmogorov–Smirnov test) but not mEPSC amplitude (right, p = 0.999, Kolmogorov–Smirnov test). (C) Event time histograms
(bin size: 10 ms, cell in A,B) showing the effect of LY354740 application on mEPSC frequency (left) and amplitude (right). (D) Baseline normalized effect of (0.1 µM,
n = 3 cells, or 1 µM, n = 6 cells) on individual cells. LY354740 significantly reduces mEPSC frequency (left, p = 0.019 Kruskal–Wallis test; baseline vs. LY354740
p < 0.05, baseline vs. washout p > 0.05, LY354740 vs. washout p > 0.05, Dunn’s post hoc test, n = 9) but not mEPSC amplitude (right, p = 0.239 Kruskal–Wallis
test; n = 9). In some cells, washout could not be analyzed due to change in series resistance (>20% baseline). Numbers denote codes of individual cells (see
Table 2). ∗p < 0.05, ∗∗∗∗p < 0.0001.

We have only investigated the activation of group II mGluRs
by an exogenous ligand. However, it is unclear whether
endogenous ligands (likely glutamate) could also modulate
neurotransmission. The frequency and amplitude of sEPSCs
detected in the presence of the mGluR II/III antagonist CPPG
were similar to control conditions, suggesting undetectable
levels of group II mGluR activation by endogenous glutamate
in acute slices. Future studies should investigate activity-
dependent activation of group II mGluRs, as demonstrated
in rodents hippocampus (Kew et al., 2001, 2002; Capogna,
2004), which may also be relevant to mechanisms of synaptic
plasticity (Tzounopoulos et al., 1998). In the human cortex,
group I mGluRs trigger long-term depression of excitatory
transmission impinging on fast-spiking GABAergic interneurons

(Szegedi et al., 2016), but it is not yet known whether group II
mGluRs can mediate analogous effects.

It is yet to be determined whether group II mGluRs depress
transmission at all glutamatergic synapses on pyramidal cells or
at specific pathways. Spontaneous synaptic events recorded from
pyramidal neurons could be mainly due to glutamate released
either from thalamus and/or from cortical inputs (Pasquale and
Sherman, 2012). Future experiments using selective stimulation
of anatomically identified fibers could determine what input(s)
physiologically activate group II mGluRs in the human cerebral
cortex.

Whether group II mGluR activation leads to depression
of most glutamatergic synapses or to suppression of specific
pathways, a marked reduction of excitatory transmission in layers
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2–3 pyramidal cells is likely to trigger dramatic network effects.
Intriguingly, altered activity of cortical neuronal ensembles has
been reported in two mouse models of schizophrenia (Hamm
et al., 2017), a finding that suggests that group II mGluRs –
despite unsuccessful clinical trials to date – could still represent
a promising target for this disorder.

It is likely that activation of group II mGluRs causes changes
in neurotransmission that are not restricted to glutamatergic
synapses onto pyramidal cells. First, these receptors might
be located on glutamatergic axons innervating at least
some GABAergic interneurons, similar to the modulation of
excitability of fast-spiking GABAergic neurons of human cortex
by group I mGluRs (Szegedi et al., 2017). Group II mGluRs might
be expressed in a cell-type dependent manner, comparable to
the expression of mGluR7 (Shigemoto et al., 1996), or other
presynaptic metabotropic receptors, e.g., the cannabinoid 1
receptor (Ludanyi et al., 2008). Second, group II mGluRs might
also modulate GABAergic transmission (Hayashi et al., 1993;
Ohishi et al., 1994). It will be interesting to investigate whether
similar mechanisms occur in the human cortex.

Which group II mGluRs were activated in the present
experiments? LY354740 is a potent and selective agonist (up to
1 µM) at mGlu2 and mGlu3 receptors with an EC50 of about
10–50 nM in the rat cortex, hippocampus and striatum, and
10 or 30 nM in cells expressing recombinant mGlu2 or mGlu3,
respectively (Schoepp et al., 1999). The concentrations used in
this study, therefore, were several fold higher than the EC50, in
order to ensure activation of mGluRs throughout the entire depth
of the slice. Although the concentrations used in this study still
predict selectivity over groups I and III mGluRs (EC50: 300 µM
and 100 µM, respectively), we did not discriminate between
mGlu2 and mGlu3 activation (e.g., Johnson et al., 2013). Thus,
future investigations could attempt to discriminate between
mGlu2 and mGlu3, also because understanding the different roles
of these two receptors could help to design more selective drugs.

The action of group II mGluRs is regulated by development,
network events and epileptic-like events in rodents (Doherty
et al., 2004). Future studies using tissue closer to pathological
focus could test whether pathological processes can cause
functional upregulation of receptors.

It is important to acknowledge that the use of tissue from
human cerebral cortex of patients subjected to neurosurgery has
some methodological limitations. One of these is that the tissue
may have some pathological features that remain undetected. We
have used cortical tissue from people with epilepsy refractory to
medications or from low grade glioma tumor patients (except one
patient that was grade III). We have performed the experiments
only on cortical tissue that was located outside the focal epileptic
region. Accordingly, we have not observed any epileptic-like
signal in the human cortical slices used for our study, such as
rhythmic spike bursts in current clamp or rhythmic sEPSC bursts
in voltage clamp. In the samples obtained from the periphery
of diffuse gliomas as assessed by magnetic resonance imaging,
variability may be caused by the degree of glial infiltration.
Another possible limitation is the variability due to heterogeneity
of cortical areas of provenance, different age and sex of the

patients, their individual clinical and pharmacological history.
Despite this variability, we observed basal functional parameters
that were rather homogeneous across samples and patients
and consistency in the effects mediated by group II mGluRs.
In addition, cortical tissue removed from remote brain tumor
sites has been used as control, non-epileptic tissue in a study
investigating cellular activities in human epileptic tissue (Jiang
et al., 2012).

CONCLUSION

In conclusion, the present study suggests that the activation of
group II mGluRs mainly leads to inhibition of glutamate release
at synapses on layers 2–3 pyramidal neurons of human cerebral
cortex via presynaptic ‘autoreceptors.’ We have established an
experimental framework to test the neurophysiological effects of
ligands that are relevant to neuropsychiatric conditions in acute
slices of human neocortex. Clarifying the mechanisms of action
by these ligands has the potential to shed light on their actions
in the human brain and bolster the design of more potent and
selective drugs.
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