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Abstract: This paper proposes a high-efficiency super-resolution frequency-modulated continuous-
wave (FMCW) radar algorithm based on estimation by fast Fourier transform (FFT). In FMCW radar
systems, the maximum number of samples is generally determined by the maximum detectable
distance. However, targets are often closer than the maximum detectable distance. In this case,
even if the number of samples is reduced, the ranges of targets can be estimated without degrading
the performance. Based on this property, the proposed algorithm adaptively selects the number of
samples used as input to the super-resolution algorithm depends on the coarsely estimated ranges
of targets using the FFT. The proposed algorithm employs the reduced samples by the estimated
distance by FFT as input to the super resolution algorithm instead of the maximum number of
samples set by the maximum detectable distance. By doing so, the proposed algorithm achieves the
similar performance of the conventional multiple signal classification algorithm (MUSIC), which
is a representative of the super resolution algorithms while the performance does not degrade.
Simulation results demonstrate the feasibility and performance improvement provided by the
proposed algorithm; that is, the proposed algorithm achieves average complexity reduction of 88%
compared to the conventional MUSIC algorithm while achieving its similar performance. Moreover,
the improvement provided by the proposed algorithm was verified in practical conditions, as
evidenced by our experimental results.

Keywords: FMCW radar; super-resolution; low complexity; MUSIC

1. Introduction

Radar sensors are a subject of research in various fields, such as defense, space, and
vehicles, given their robustness against several conditions, including wind, rain, fog, light,
humidity, and temperature [1–6]. The ultra wide band (UWB) radar systems with high-
resolution and high-precision had been in the spotlight as a representative radar system [3].
The UWB radar systems employ very narrow pulse width and thus they require very wide
bandwidth [7,8]. This is the reason for the high complexity of the UWB radar systems.
Hence, UWB radar systems are mainly used in fields that are less sensitive to the burden of
costs such as defense and space [9]. As the application range of radar gradually expands,
those with low cost and low complexity have been placed in the research spotlight among
the many types of radar systems. The continuous wave (CW) radar is a representative low-
complexity radar system [10,11]. The CW radar systems use only the difference between
the carrier frequencies at the transmitter and receiver to estimate the velocity of the target.
Since it is only necessary to perform sampling on the sine wave signal corresponding to
the carrier frequency difference, it is converted into a digital signal with less complexity
burden. However, the CW radar has the limitation that it cannot be used for various
purposes because it cannot measure the distance to the target.

As an alternative to these, studies on frequency modulation continuous wave (FMCW)
radar systems have been reported [12–18]. FMCW radar systems are capable of estimating
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the range, Doppler, and angle of targets, despite their low-cost, low-complexity hardware
systems, as their signal processing is performed in a low frequency band after mixing. As
the applications of the radar sensors increase, FMCW radar technology is considered one
of the most promising technologies. For example, the FMCW radar systems have been
applied to surveillance applications [19–21]. In [19,20], they have presented the design and
test of radar sensing platform based on FMCW radar in transport systems. In addition,
they provided for the better trade-off that can be found in terms of power consumption
and the detectable range. In [21], however, the authors proposed a solution to rapidly
detect the moving targets by utilizing the subtract between two FMCW chirp signals.
In [22–25], they addressed that the FMCW radar is one of the most promising techniques
for non-contact monitoring to measure vital signals, such as heart respiration rates. In [23],
they showed the human indication by measuring the respiration pattern using the FMCW
radar and deep learning algorithm. In [25], the authors presented a vital sign monitoring
systems by using the 120 GHz FMCW radar. In [26], a low complexity FMCW radar
algorithm was proposed by reducing the dimension of 2D data. Meanwhile, FMCW radar
systems had been utilized for vehicles [27–29]. In [27], the randomized switched antenna
arrays FMCW radar were introduced for automotive applications. They tried to solve the
delay-space coupling problem of the traditional switched antenna arrays systems. In [28],
they proposed a method to simultaneously detect and classify objects by using a deep
learning model, specifically, that you only look once, so-called YOLO, with pre-processed
automotive radar signals using FMCW radar.

In FMCW radar systems, meanwhile, fast Fourier transform (FFT)-based estimators
are widely employed [19]. In [16], a novel direction of arrival (DOA) estimation algorithm
was proposed for FMCW radar systems. This algorithm virtually extends the number
of arrays using simple multiplications. The FFT is employed in this algorithm, and thus,
the computational complexity of this algorithm is very low compared with other high-
resolution algorithms. However, it does not provide a large resolution improvement,
although the resolution provided by this algorithm is higher than that of conventional FFT-
based estimation algorithms. In [18], an algorithm employing only regions of interest in
the total samples was proposed, in order to estimate the distance and the velocity of targets
in an attempt to reduce redundant complexity. However, an improvement in resolution
was not expected, as this algorithm was also based on the FFT. In other words, it is difficult
for FFT-based estimators to distinguish between multiple adjacent targets.

To overcome this disadvantage of FFT-based estimators in FMCW radar systems, sev-
eral algorithms have been proposed. In [30–39], various super-resolution algorithms have
been proposed, such as the multiple signal classification (MUSIC) and estimation of signal
parameters via rotational invariance technique (ESPRIT) algorithms. These algorithms
employ eigenvalue decomposition (EVD) or singular-value decomposition (SVD) of the cor-
relation matrix obtained from the received signal, in order to distinguish signal and noise
subspaces. The parameters corresponding to the desired signals are accurately estimated
using the relationship that the subspace of the signal and the subspace of the noise are
orthogonal to each other. However, their computational complexity drastically increases
as the number of input samples increases. Thus, these algorithms may not be suitable
when the number of input samples is large. Oh et al. [35] employed the inverse of the
covariance matrix, instead of the EVD or SVD, to reduce the complexity of super-resolution
algorithms. However, under a low signal-to-noise ratio (SNR), the performance of this
algorithm was significantly degraded [36]. In [37], a low-complexity MUSIC algorithm for
DOA estimation was proposed. This algorithm properly uses the trade-off between the
field-of-view (FOV) and the angular resolution. Hence, this algorithm attempts to reduce
the computational complexity of the MUSIC algorithm. In this case, however, DOA estima-
tion is considered; thus, the number of inputs to the MUSIC algorithm to be considered is
not large, as the maximum number of samples is the same as the number of arrays.

To reduce the computational complexity while exploiting the high-resolution features
of super-resolution-based estimators, the algorithm proposed in this paper reduces the
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number of samples used as input to the MUSIC algorithm, based on the beat frequency
estimated by the FFT. In other words, in the proposed algorithm, the number of samples is
set based on the distance estimated by FFT, instead of the maximum detectable distance
(as in the conventional MUSIC algorithm). Based on this reduced number of samples,
the overall complexity of the proposed algorithm is decreased, by using only some of
the samples of a given beat signal as the input to the MUSIC algorithm. Compared
to [37], in the proposed algorithm, the number of samples used as inputs of the MUSIC
algorithm is also determined in various ways according to various situations depending
on the estimated distance rather than one threshold condition. To this end, in this paper,
we mathematically show the process of how many reduced samples were required for
the same performance according to the ratio of the distance estimated by the FFT and
the maximum detection distance. Our simulation results confirm the improvement in
performance produced by the proposed algorithm; that is, the proposed algorithm can
achieve similar performance to the conventional MUSIC algorithm, despite its considerably
lower complexity. Moreover, our experimental results verify that the proposed algorithm
can operate well in a real environment.

The remainder of this paper is structured as follows: in Section 2, we describe the
system model considered in this study. Then, the proposed low-complexity MUSIC al-
gorithm is described in Section 3. In Section 4, through simulations, the performance of
the proposed algorithm is compared to that of the conventional MUSIC algorithm and
their computational complexities are evaluated. In Section 5, the experimental setup is
introduced and the experiment results are provided, which confirm the performance of the
proposed algorithm in practical environments. Finally, we conclude this paper in Section 6.

2. System Model for FMCW Radar Systems

The system model of a FMCW radar system consisting of one transmitting (TX)
antenna and one receiving (RX) antenna is considered in this section.

The TX signal at the ith frame of the FMCW radar is denoted by x(i)(t), which is
transmitted from the TX antenna during NF frames, as shown in Figure 1
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Figure 1. System model of an FMCW radar.

The TX FMCW signal, x(i)(t), is composed of a total of L ramp signals, and is
expressed as [17,18]

x(i)(t) =
L−1

∑
l=0

x0(t− lT − iLT), for 0 ≤ i ≤ NF − 1, (1)

where x0(t) is a ramp signal, expressed as

x0(t) = exp
(

j2π
(

fct +
µ

2
t2
))

, for 0 ≤ t ≤ T, (2)
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where fc is the center frequency and µ is the sweep rate of the ramp signal. Let B and T
denote the system bandwidth and the time duration of the ramp signal x0(t), respectively.
Hence, µ is calculated as µ = B/T. The TX signal x(i)(t) is reflected on M targets and is
then received by the RX antenna. Let r(i)l (t) denote the RX signal corresponding to the lth
ramp signal, expressed as follows:

r(i)l (t) =
M

∑
m=1

ã(i)m,l x
(i)(t− τ

(i)
m ) exp(j2π f (i)D,m(lT + iTF)) + z̃(i)l (t)

for 0 ≤ l ≤ L− 1 and 0 ≤ i ≤ NF − 1, (3)

where ã(i)m,l is the complex amplitude component corresponding to the mth target, f (i)D,m is

the Doppler frequency due to the movement of the mth target, τ
(i)
m is the time delay due to

the distance between the radar and the mth target, and z̃(i)l is the complex additive white
Gaussian noise (AWGN) component. By multiplying the conjugate of x0(t) (i.e., x∗0(t)) by

r(i)l (t), the beat signal y(i)l (t) is obtained and expressed as [37]

y(i)l (t) = x∗0(t)× r(i)l (t)

=
M

∑
m=1

ã(i)m,l exp
(

j2π f (i)D,m(lT + iTF)
)

︸ ︷︷ ︸
Doppler term, ,v(i)lm

exp(−j2πµτmt)︸ ︷︷ ︸
range term,,η

(i)
m (t)

+ w̃(i)
l (t)x∗0(t)︸ ︷︷ ︸

noise term, ,z(i)l (t)

. (4)

After analog/digital conversion (ADC), y(i)l (t) changes into the sampled beat signal

y(i)l [n] with a sampling time interval ts, expressed as

y(i)l [n] =
M

∑
m=1

ã(i)m,l exp(j2π f (i)D,m(lT + iTF))exp
(
−j2πµτ

(i)
m nts

)
+ z(i)l [n]

=
M

∑
m=1

ã(i)m,l exp(j2π f (i)D,m(lT + iTF))exp
(
−j2π f (i)b,mnts

)
+ z(i)l [n]

=
M

∑
m=1

ã(i)m,lv
(i)l
m η

(i)
m [n] + z(i)l [n], (5)

where fb,m is the beat frequency (i.e., fb,m = µτ
(i)
m ). Here, the number of total samples is

denoted by Ns, and is expressed as

Ns = bT · fsc, (6)

where fs is the sampling frequency (i.e., fs = 1/ts) and b·c is the floor operator. From
Equation (6), it can be shown that the number of total samples Ns is determined by the
sampling frequency fs and T. In addition, fs is determined by the maximum detectable
distance dmax. Using the relation between fs and dmax [40,41], the minimum sampling
frequency fs,min is as follows:

fs,min =
4µdmax

c
≤ fs, (7)
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where c is the speed of the electromagnetic wave. Hence, the minimum number of samples
is denoted by Ns,min, expressed as

Ns,min =

⌊
4µdmax

Tc

⌋
=

⌊
4Bdmax

c

⌋
. (8)

For simplicity, the sampled beat signals are considered for only one frame; thus, the
frame index i is omitted. For example, f (i)b,m, τ

(i)
m , and η

(i)
m are changed to fb,m, τm, and ηm,

respectively. By redefining the coefficient term am,l (i.e., am,l = ã(i)m,lv
(i)l
m ), the sampled beat

signal can be simply expressed as [37]

yl [n] =
M

∑
m=1

am,lηm[n] + zl [n]. (9)

To effectively denote the variables, the variable is expressed, in vector form, as [37]

yl = Hal + w, (10)

where yl ∈ CNs×1 is a vector form of yl [n] (i.e., yl = [yl [0], yl [1], yl [2], ..., yl [Ns − 1]]T),
where (·)T is the transpose operator, and H ∈ CNs×M and al ∈ CM×1 are the matrix and
vector corresponding to the beat signal η[n] and amplitude am,l , respectively, where CN×L

and RN×L are denoted by N× L complex and real matrices, respectively, and w ∈ CNs×1 is
an AWGN vector. The beat signal matrix, H, is composed of M beat signal column vectors
hm ∈ CNs×1 = [ηm[0], ηm[1], ..., ηm[Ns − 1]]T for 1 ≤ m ≤ M, and is expressed as

H = [h1, h2, ..., hM]

=


η1[0] η2[0] · · · ηM[0]
η1[1] η2[1] · · · ηM[1]
...

...
. . .

...
η1[Ns − 1] η2[Ns − 1] · · · ηM[Ns − 1]

. (11)

The lth amplitude vector al and amplitude matrix A are expressed as

al = [a1,l , a2,l , ..., aM,l ]
T, (12)

A = [a1, a2, ..., aL]. (13)

As the range of the target is estimated based on the time delay τm, the range of the
target can be obtained in the FMCW radar system by estimating the beat frequency of
ηm[n], which is denoted by fb,m. Let d̂m denote the estimated range, which is calculated
using the time delay as follows:

d̂m =
τm

2
. (14)
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By substituting τm = fb,m/µ into Equation (14), d̂m can be obtained by estimating
fb,m, such that:

d̂m =
fb,m

2µ
. (15)

The range resolution, dM, is inversely proportional to the TX waveform bandwidth,
B, as follows [42]:

dM =
c

2B
. (16)

By substituting Equation (8) into Equation (16), the range resolution, dM,
can be expressed as

dM =
2dmax

Ns

=
2dmax

T fs
. (17)

In pulsed radar systems, which is one of the representative radar systems, since
bandwidth is a factor that determines the range resolution, increasing T or Ns could not
improve the range resolution. From Equation (17), however, in order to improve the
resolution performance in FMCW radar systems, an increase in the duration of the FMCW
TX signal T or an increase in the number of samples Ns is required for a given fs (i.e., to
decrease dM). [40,41] This implies that the computational complexity inevitably increases
when improving the resolution performance.

3. Proposed Super-Resolution Algorithm Using FFT-Estimated Ranges

This section describes the proposed low-complexity super-resolution FMCW radar
algorithm. Figure 2 shows a block diagram of the proposed algorithm. The proposed
algorithm consists of two steps: first, simple clutter is rejected and the ranges are coarsely
estimated using the FFT; second, the computational complexity of the super-resolution
algorithm is reduced using the estimation results from the first step, thus reducing the con-
sidered number of samples used as input to the super-resolution algorithm. For this study,
we employed the MUSIC algorithm, which is a representative super-resolution algorithm,
for comparative purposes. The details of each step are provided in each subsection.
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Figure 2. Block diagram of the proposed super-resolution algorithm.

3.1. Simple Clutter Rejection and Coarse Range Estimation Using FFT

As mentioned above, the proposed algorithm performs simple clutter rejection and
coarse range estimation using the FFT. To achieve simple clutter rejection, the proposed
algorithm determines the difference between y1st and y2nd, which are the partial matrices
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composed of yl for l = 0, 1, ..., L − 2 and l = 1, 1, ..., L − 1, respectively. Let y4 denote
the difference between the two partial matrices; that is, y4 = y1st − y2nd. In general,
the clutters that do not move do not generate Doppler. This means that yl is the same,
regardless of l, ignoring the effect due to the noise component. Therefore, in y4, only the
signals corresponding to targets whose velocity is not zero remain. Then, the FFT operation
is performed on the sampled beat signal, y4, in order to estimate the range of targets. For
the convenience of notation, the lth ramp signal of y4 is denoted as yl [n]. The kth FFT
output of yl [n] is represented by Yl [k], and is calculated as

Yl [k] =
N−1

∑
n=0

yl [n] exp(−j2πnk/N) for 0 ≤ k ≤ N − 1, (18)

where N is the size of the FFT, which is a power of 2. The FFT output Yl [k] is expressed, in
vector form, as

Yl,FFT = Dỹl , (19)

where D is an N × N matrix for the discrete Fourier transform operation, which consists of
L column vectors; that is, D = [D0, D1, ..., DL−1], where Du is the uth column vector of D
(i.e., Du = [1, exp(−j2πu/N), exp(−j4π2u/N), ..., exp(−j2πu(N − 1)/N)]T for 0 ≤ u ≤
N − 1). Furthermore, ỹl ∈ CN×1 is vector concatenating yl and 0N−Ns for zero-padding
(i.e., ỹl = [yT

l 0T
N−Ns

]T = [yl [0], yl [1], ..., yl [Ns − 1]︸ ︷︷ ︸
Ns

, 0, 0, ..., 0︸ ︷︷ ︸
N−Ns

]T, where 0N−Ns ∈ R(N−Ns)×1

is a zero vector). By peak detection of the magnitude of the FFT outputs, the estimated
beat frequency, f̂b,m, can be obtained. By substituting f̂b,m into Equation (15), the estimated
range, d̂FFT

m , is obtained.

3.2. Fine Range Estimation Using MUSIC

As shown in Figure 2, after coarse range estimation using the FFT, fine range estimation
is performed by the MUSIC algorithm, which can achieve a higher resolution, compared
with the FFT. The MUSIC algorithm achieves significantly higher resolution performance
than the FFT by using the orthogonality between the noise and signal subspaces. The
matrix form of the beat signal is denoted by: Let y ∈ CNs×L denote the matrix form
of the beat signal (i.e., y = [y1, y2, ..., yL]). Let R denote the correlation matrix of y,
expressed as follows [18]:

R = yyH

= [y0, y1, ..., yL−1][y0, y1, ..., yL−1]
H

=



y0[0] · · · yL−1[0]
y0[1] · · · yL−1[1]
...

. . .
...

y0[Ns − 1] · · · yL−1[Ns − 1]




y0[0]∗ · · · y0[Ns − 1]∗

y1[0]∗ · · · y1[Ns − 1]∗
...

. . .
...

yL−1[0]∗ · · · yL−1[Ns − 1]∗



=


R0,0 R0,1 · · · R0,L−1
R1,0 R1,1 · · · R1,L−1
...

...
. . .

...
RNs−1,0 RNs−1,1 · · · RNs−1,L−1

,

(20)
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where (·)H is the Hermitian operator and Ri,j is the element at the ith row and jth column
of R. By performing SVD on R, the signal and noise subspaces can be separated as [18]

R = UΣUH

= UMΣMUH
M︸ ︷︷ ︸

subspace of signal

+ σ2
nU−M︸ ︷︷ ︸

subspace of noise

, (21)

where UM is the subspace of the signal (i.e., UM = [u1, u2, ..., uM]); U−M corresponds
to the subspace of the AWGN component (i.e., U−M = [uM+1, uM+2, ..., uNs ]); and Σ is
a diagonal matrix based on Ns eigenvalues (i.e., Σ = diag(λ1, λ2, ..., λNs), where λp is
the pth eigenvalue of R and diag(·) is the diagonal matrix operator). The ith eigenvalue,
λi, is given as

λi =

{
ρi + σ2

n 1 ≤ i ≤ M
σ2

n M + 1 ≤ i ≤ Ns,
(22)

where ρi corresponds to the ith eigenvalue of the considered signal part and σ2
n corresponds

to the noise variance. The region of the beat frequency fb,m ∈ [ f (min)
b,m , f (max)

b,m ] is divided into

a grid of NB values (i.e., d ∈ [ f (0)b,m, f (1)b,m, ..., f (NB−1)
b,m ]), where f (min)

b,m and f (max)
b,m are the consid-

ered minimum and maximum values of the beat frequency, respectively. Hence, the steering
vector is denoted by h( fb,m) and expressed as h( fb) = [η1( fb,m), η2( fb,m), ..., ηM( fb,m)]

T,
where ηm( fb,m) = exp(−j2π fb,mnts) for 1 ≤ m ≤ M. We employ the orthogonal property
between the steering vector h( fb,m) and the subspace of the noise term U−M, as follows:

hH( fb,m)U−MUH
−Mh( fb,m) = 0. (23)

Therefore, using Equation (23), the pseudo-spectrum of the MUSIC algorithm, PMUSIC,
is calculated as

PMUSIC =
1

hH( fb,m)U−MUH
−Mh( fb,m)

. (24)

By using Equation (15) and the estimated beat frequency with high resolution in
Equation (24), close targets that could not be distinguished in the FFT-based estimation can
be successfully distinguished.

In this procedure, the proposed algorithm performs the MUSIC algorithm for only
a part of yl , instead of performing the MUSIC algorithm for all samples of yl . As shown
in Equation (7), the sampling frequency, fs, is determined by dmax. However, as this is
based on the worst case (i.e., dmax), fs can be reduced if the target is not dmax. The proposed
algorithm employs the reduced sampling frequency f ′s based on d̂FFT

m , instead of dmax. The
reduced sampling frequency, f ′s , is calculated as

f ′s =
4µd̂FFT

m
c

. (25)

As d̂FFT
m ≤ dmax in most cases, f

′
s is smaller than fs. In Equation (17), by setting the

ratio of d̂FFT
m and f ′s equal to the ratio of dmax and fs, the proposed algorithm achieves the

same dM as the case based on dmax with fs.
Figure 3 compares the waveforms of yl [n] between f ′s (reduced) and fs. The ranges of

the two targets are 7 and 7.2 m in Figure 3a and 17.7 and 17.8 m in Figure 3b, respectively.
In this simulation, the considered maximum range dmax was set to 50 m and the range
estimated by FFT d̂FFT was 7.1 m in Figure 3a. Hence, f ′s can be set to be about to 2.82 times
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lower than fs. In the case of Figure 3b, as FFT d̂FFT was 17.75 m, f ′s can be set to about
1.94 times lower than fs.
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Figure 3. Comparison of waveforms between yl [n] with f ′s (reduced) and fs ((a)[d1, d2] =

[7.0 m, 7.2 m], (b)[d1, d2] = [17.7 m, 17.8 m]).

Figure 4 compares the range estimation results by PMUSIC between the conventional
MUSIC algorithm and the proposed algorithm with a reduced sample, where
[d1, d2] = [17.7 m, 17.8 m] and dFFT = 17.75 m. In Figure 4, as can be observed from
the power spectral density (PSD) result using the FFT, they were estimated as one target,
even though there were two targets. Compared with the FFT, the conventional MUSIC
algorithm and the proposed MUSIC algorithm could estimate the two adjacent targets. In
Figure 4b, the proposed MUSIC algorithm achieved similar estimation performance as the
conventional MUSIC algorithm, despite using a reduced number of samples.
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Figure 4. Comparison of PMUSIC between the conventional MUSIC algorithm and the reduced-sample
MUSIC algorithm((a)conventional MUSIC algorithm, (b) reduced MUSIC algorithm).

4. Performance Evaluation
4.1. Simulation Results

Here, we discuss the results of our simulations, in order to verify the improvement
in the performance provided by the proposed super-resolution algorithm. For the sim-
ulations, the parameters f0 and the maximum distance dmax were set to 24 GHz and
50 m, respectively. The number of targets was set to 2 (i.e., M = 2) and the ranges of
the two targets of each target, d1 and d2, were selected to be independent and uniformly
distributed between 1 and dmax. For the initial estimate, we performed 1024-point FFT.
To generate various sample sizes, the bandwidth B was set to 1.54 GHz, 768 MHz, and
384 MHz (leading to Ns = [1024, 512, 256]). To calculate the RMSE, we performed 104

simulations. As a measure to observe the performance difference between the conventional
high-complexity algorithm and the proposed low-complexity algorithm, we calculated the
root mean square error (RMSE) of the estimation of the range. The RMSE was calculated as

RMSE =
√

1
M×104 ∑104

i=1 ∑M
m=1(dm − d̂m)2.

Figure 5 shows the RMSE of the range estimations by the conventional and proposed
MUSIC algorithms. In the low-SNR region (i.e., SNR = 0 dB), the RMSE of the proposed
algorithm was about 4.5% higher, compared with that of the conventional MUSIC algo-
rithm. However, the RMSE results of the two algorithms were almost the same when
SNR ≥ 0 dB, despite the significantly lower computational complexity of the proposed
MUSIC algorithm.
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Figure 5. RMSE comparison for various sample sizes: Ns = [1024, 512, 256].
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4.2. Complexity Comparison

In this section, the computational complexity of the proposed and conventional MUSIC
algorithms was analyzed and compared. To measure the complexity of each algorithm,
we compared the required number of multiplications for the generation of noise subspace
and the SVD operation [43]. Let Cconventional and Cproposed denote the required number of
multiplications in the conventional MUSIC algorithm and the proposed MUSIC algorithm,
respectively. The case of the conventional algorithm, Cconventional, was calculated as follows:

Cconventional =
16
5

N3
s +

1
2

Ns(Ns −M)(Ns + 1). (26)

For the proposed MUSIC algorithm, the number of samples decreases with the ini-
tial estimated range d̂; however, for the initial range estimation, the FFT operation is
additionally required. Hence, Cproposed was calculated as

Cproposed =
NR

2
log2 NR +

16
5

N
′
s
3
+

1
2

N
′
s(N

′
s −M)(N

′
s + 1), (27)

where N
′
s is the reduced number of samples (i.e., N

′
s =

d̂
dmax
× Ns).

Figure 6 shows Cconventional and Cproposed, with respect to the initial estimation of
the range. In the worst case (i.e., d̂ = dmax), the complexity of the two algorithms was
almost the same. However, as d̂ decreased, compared with dmax, the complexity drastically
decreased. In the case d̂ = 10 m, the proposed algorithm achieved a 99.17% complexity
reduction, compared with the conventional algorithm. In addition, when d̂ = 20 m,
the proposed algorithm achieved a 93.33% complexity reduction, compared with the
conventional algorithm. In the general case, as d is smaller than dmax, the complexity of the
proposed algorithm was expected to be significantly lower, compared with the existing
MUSIC algorithm. Assuming that the target distance was uniformly distributed between
1 m and dmax = 50 m, the average range was dmax/2. Assuming these conditions, the
complexity of the proposed algorithm was reduced by about 88%, compared with the
conventional algorithm.
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Figure 6. Required number of multiplications, according to the estimated range d̂.

5. Experiments

In this section, we describe the experiments we conducted using a real FMCW radar
system, in order to verify the performance of the proposed MUSIC algorithm in a practical
environment. First, we introduce the modules and equipment used in the experiment and
their specifications; then, the measurement results are provided and analyzed.
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5.1. Experimental Set-Up

Figure 7a,b show photos of the actual structure of the front-end module (FEM). As
shown in Figure 7a,b, the FEM was composed of two parts, a TX part and an RX part. Two
TX antennas were located on the top of FEM, with gains of 15 and 20 dBi. The azimuth and
elevation angles of the RX antennas were 99.6◦ and 9.9◦, respectively. A power amplifier
(PA), voltage-controlled oscillator (VCO), phase-locked loop (PLL), oscillator at 20 MHz,
and a micro-controller unit (MCU) were included in the TX part. The frequency synthesizer
with the PLL was controlled by the MCU, and one of the two TX antennas was selected.
The azimuth angles of the first and second TX antennas were 26◦ and 12◦, respectively. The
RX part was located at the bottom of the FEM. There were 8 RX antennas, and the distance
between two adjacent RX antennas was half a wavelength. In the RX part, low-noise
amplifiers (LNAs) were included for noise reduction. In addition, a mixer to obtain the
beat signals and two kinds of filters—that is, high-pass filters (HPFs) and low-pass filters
(LPFs)—were included. The amplifier (AMP) was used to amplify the weak signal, and
the variable-gain amplifier (VGA) was used to control the gain, according to the input.
The RX signals from the RX antennas passed through the LNA and thus, the noise terms
in the RX signals were reduced. Then, the output of the LNA was multiplied by the TX
signal, synchronized by the PLL. The mixed signals were input to the (150 kHz) HPFs and
then amplified by the AMPs. Finally, the outputs of the AMPs were passed through the
(1.7 MHz) LPF.

Figure 8 shows a photo of the back-end module (BEM). As shown in Figure 8, a field-
programmable gate array and digital signal processing were included in the BEM. The
analog signal from the FEM to the analog input was converted into a digital signal, with a
20 MHz sample rate, using an analog-to-digital converter. The converted signal was stored
as data in two external memory banks with 512 Mbytes for DSP, called DDR2 SDRAMs.
When the two DDR2 SDRAMs were filled with data, the stored data were moved to a
personal computer (PC) using an ethernet cable.

Figure 9 shows the scenario and environment used for the experiment. As shown in
Figure 9a,b, the targets were two people, who were d1 and d2 meters away from the radar,
respectively. As mentioned above, the data of the sampled beat signal transformed by the
ADC were transmitted to the PC by an ethernet cable. By employing software installed for
the experiment, as shown in Figure 9b, we easily set and selected the parameters, such as
the sampling rate, number of ramps, and so on. Then, the performance of each algorithm
was verified by applying the proposed algorithm and the conventional algorithm to the
same data.
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Figure 8. Photo of the BEM.
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Figure 9. Scenario and environment used for the experiment ((a)experiment scenario (b) photograph
of experiment environment).

5.2. Experimental Results

Figure 10 shows the estimation results using FFT with the clutter rejection algorithm.
The two targets were located at the same range of 3.5 m, and each angle was located at
±20◦. The two targets were not stationary objects but humans, and thus there is movement
of the chest by breathing. Therefore, a Doppler change occurs due to the respiration of the
targets and thus the clutters are easily canceled. In the case without the clutter rejection
algorithm, we observed dominant peaks at 0 and 2.2 m, as shown in Figure 10. Hence, the
ranges without clutter rejection were estimated as 1 m and 2.2 m. In contrast, according
to the results of the clutter rejection algorithm, the dominant peaks at 0 and 2.2 m were
removed. The result of the range estimation was almost identical to the actual range.
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Figure 10. Comparison with the algorithm without clutter rejection.

Figures 11 and 12 show the results of the range estimation experiment using the
proposed and conventional MUSIC algorithms. The simple clutter rejection algorithm was
applied to both algorithms. In Figure 11, the ranges of the two targets, d1 and d2, were 2.7
and 3.2 m, respectively. From these results, we observed that the two adjacent targets were
properly distinguished by the proposed algorithm, despite its low complexity.
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Figure 11. Comparison of the range estimation experiment results (d1 =2.7 m and d2 =3.2 m).

Figure 12 shows the experimental results when the distance between the two targets
was closer than that in Figure 11 (i.e., [d1, d2] = [2.4 m, 2.6 m]). From these results, we found
that two adjacent targets could be distinguished by the proposed algorithm, similarly to
the conventional algorithm, even when the two targets were very close.
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Figure 12. Comparison of the range estimation experiment results (d1 =2.4 and d2 =2.6 m).
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6. Conclusions

We constructed a low-complexity MUSIC algorithm based on the FFT-estimated beat
frequency, and analyzed and compared the complexity of the proposed and conventional
MUSIC algorithms. The proposed algorithm achieved a complexity reduction of 10 to
100 times, while producing similar performance to the conventional MUSIC algorithm. In
addition, we experimentally confirmed the performance improvement provided by the
proposed algorithm in a practical environment.
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