
sensors

Article

User Characteristic Aware Participant Selection for
Mobile Crowdsensing

Dapeng Wu 1,2,3,*, Haopeng Li 1,2,3 and Ruyan Wang 1,2,3

1 School of Communication and Information Engineering, Chongqing University of Posts and
Telecommunications, Chongqing 400065, China; s160131070@stu.cqupt.edu.cn (H.L.);
wangry@cqupt.edu.cn (R.W.)

2 Key Laboratory of Optical Communication and Networks, Chongqing 400065, China
3 Key Laboratory of Ubiquitous Sensing and Networking, Chongqing 400065, China
* Correspondence: wudp@cqupt.edu.cn; Tel.: +86-137-5298-0824

Received: 10 October 2018; Accepted: 12 November 2018; Published: 15 November 2018 ����������
�������

Abstract: Mobile crowdsensing (MCS) is a promising sensing paradigm that leverages diverse embedded
sensors in massive mobile devices. One of its main challenges is to effectively select participants to perform
multiple sensing tasks, so that sufficient and reliable data is collected to implement various MCS services.
Participant selection should consider the limited budget, the different tasks locations, and deadlines.
This selection becomes even more challenging when the MCS tries to efficiently accomplish tasks
under different heat regions and collect high-credibility data. In this paper, we propose a user
characteristics aware participant selection (UCPS) mechanism to improve the credibility of task
data in the sparse user region acquired by the platform and to reduce the task failure rate. First,
we estimate the regional heat according to the number of active users, average residence time of users
and history of regional sensing tasks, and then we divide urban space into high-heat and low-heat
regions. Second, the user state information and sensing task records are combined to calculate the
willingness, reputation and activity of users. Finally, the above four factors are comprehensively
considered to reasonably select the task participants for different heat regions. We also propose
task queuing strategies and community assistance strategies to ensure task allocation rates and task
completion rates. The evaluation results show that our mechanism can significantly improve the
overall data quality and complete sensing tasks of low-heat regions in a timely and reliable manner.
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1. Introduction

With the rapid development of wireless communications and the explosive popularity of mobile
devices, the combination of mobile sensing, distributed computing, and crowd-sourcing has promoted
the Mobile Crowdsensing (MCS) paradigm [1,2]. Mobile devices serve as basic sensing units and
a crowd of them form a large-scale sensing network, used for completing some complex sensing
tasks that are impossible for individuals [3]. Due to the low deploying cost and high sensing
coverage, this new sensing paradigm has been supporting a broad range of applications, such as
map physical spatial fields [4], smart transportation [5], environmental monitoring [6] and digital
map [7]. In a general multi-task MCS system, each sensing task is first initiated and announced by a
task planner (task owner) via a service platform. Then, the task is assigned to a set of participants, who
are selected from a pool of mobile users. Participants use their devices to complete the corresponding
sensing tasks, and then upload the sensing data to the service platform through a mobile cellular
network or short-range wireless communication (e.g., Bluetooth or Wi-Fi) [8–11].
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In MCS applications, the service platform selects participants to complete sensing tasks. Because
the user candidate pool can be rather large, the service platform should allocate several tasks to selected
participants. Thus, participant selection becomes one of the main challenges in MCS [12–14]. In fact,
there are always limited budgets and time when the service platform selects participants [15–18].
At the same time, the service platform needs to have enough users to participate in sensing tasks.
The user distribution in urban areas obeys independent Poisson Scattering, or by scattering with
repulsion [19,20] or attraction [21,22], resulting in some so-called high heat with massive users at
a certain moment, where multiple users compete for the same task at the same time with a certain
probability. However, in other regions, the user arriving interval cannot be determined, and the task
completion time is uncertain. In addition, after the users are assigned sensing tasks, task failures may
occur due to the changes in environmental conditions, and it is difficult to guarantee the quality of
the data submitted by selfish mobile users [23]. Therefore, designing an efficient participant selection
strategy is necessary.

For user-centric MCS networks, users have obvious social characteristics, and their willingness to
participate will affect the task performance and number of enough participants to complete a sensing
task [24]. In addition, the user reputation is closely related to the reliability of sensing data and
evaluated by a reasonably designed model [25]. After receiving sensing tasks, high reputation users
can delegate the tasks to other users and still get paid, resulting in unreliable sensing data [26,27].
User activity also has a great impact on the task execution performance of the service platform. Users
with higher regional activity are more likely to visit more locations and thus able to accomplish more
sensing tasks [28,29]. Moreover, users interact with others from different communities to form a
sensing network covering the real-world communities. The users with a high level of social activity
have a wide covering range, are more stable and reliable, and can complete more sensing tasks. Hence,
the MCS participant selection process should fully consider the user characteristics and the difference
of the regional heat.

In this paper, we propose the UCPS mechanism to improve the credibility of task data in sparsely
populated regions and to reduce the task failure rate under limited budgets and time. Our main results
and key contributions are summarized as follows:

(1) First, we evaluate the heat of different regions in the MCS service scenario based on the number
of active users, their average residence time, and sensing tasks history. Then, the user state
information and sensing task records are combined to calculate the willingness, reputation and
activity of users, respectively. Furthermore, we analyze the influence of user characteristics on
the probability of completing sensing tasks, credibility of the submitted task data and ability of
participants to complete the task.

(2) Second, we design a task queuing strategy and a community assistance strategy. According to
users’ activity and willingness, the upper limit of queues is dynamically set. The participants
complete the tasks in the queue according to their priority. When a sensing task cannot be
performed by a participant due to the changes of the participants’ own conditions, it can be
assisted by the community to reduces the task failure rate. In addition, our designed community
assistance strategy attracts users to participate in the sensing tasks extensively and further
expands the MCS coverage.

(3) Finally, we propose UCPS-H and UCPS-L algorithms for high-heat and low-heat regions,
respectively. In the high-heat regions, we evaluate the comprehensive data quality by leveraging
user characteristics and task bidding, and then select participants for the maximum task data
quality. In the low-heat regions, we divide the participant selection process into multiple stages.
Within each stage, participants with reliable profits exceeding the dynamic threshold are selected
to guarantee the credibility of task data.

The rest of the paper is organized as follows: related work is reviewed and summarized in
Section 2 and Section 3 presents the system model. In Section 4, we quantify user characteristics and
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analyze their impacts on task completion probability, task data credibility, and ability of participants
to complete sensing tasks. In Section 5, participant selection strategies for different heat regions
are proposed and the performances of the proposed algorithms are analyzed in Section 6. Finally,
we conclude the paper and give some future directions in Section 7.

2. Related Work

Many researchers have conducted research on the participant selection and task allocation in
MCS. Karaliopoulos et al. propose two greedy heuristic algorithms to recruit some mobile users who
can perform location-related sensing tasks with a minimum cost [30]. Zhang et al. study how to select
participants to achieve the near-optimal space-time coverage under a limited budget [17]. However,
it does not consider the task deadlines and data credibility. Considering the selection of participants
with deadlines, especially for time-sensitive sensing tasks, Guo et al. design a greedy-enhanced genetic
algorithm that intentionally changes the path and selects participants who can reach the task location
with the least moving distance, and design another algorithm for delay-tolerant sensing tasks based on
the path coverage history [12]. Although [12] considers the task deadline, it cannot guarantee the data
credibility. In addition, a user completes multiple sensing tasks, but the ability of users to complete
sensing tasks is not assessed, resulting in a low task completion rate.

To improve the task completion rate, some researchers introduce redundancy to select several
participants for the same task [16,31]. Then, methods such as Bayesian inference [32] and majority
vote [25] are applied to obtain accurate results. While this solution reduces the impact of incorrect
answers on the end result, it increases the budget required to perform a given task. In addition, there is
no definition of data quality and the data quality is reported by the user himself/herself, and therefore
the data credibility cannot be guaranteed.

Some researchers consider the effect of user characteristics on sensing results in participant
selection. In terms of user preferences, Zhang et al. consider that the user has a task preference
and allocate tasks that match user preferences as the most valuable sensing tasks to maximize the
profits [33]. However, without the users’ willingness to participate and their ability to complete the
task accessed, there is uncertainty in the completion time of sensing tasks, and the credibility of the
data cannot be guaranteed. Fog computing framework is involved in [24] to evaluate the participant
selection factor according to the user’s location, social behavior and the device’s remaining power.
The cloud platform selects the participant with the minimum requirements to complete the sensing
task. This work considers the user willingness to participate, but it ignores the data credibility issues.
Estrada et al. analyze the user reputation, user confidence in completing tasks and the impact of
deadlines on data quality. A task allocation architecture based on location and time is proposed to
enhance the data quality [29]. However, the proposed architecture ignores the difference in user ability
to complete the task and the user willingness to participate, resulting in low task completion rate.

The above studies can achieve their individual optimization goals in high-heat regions. However,
these studies can be extended in terms of the wide search range, long waiting time, and low data
reliability. In the low-heat regions, the performance of above studies will deteriorate rapidly, resulting
in the low task allocation rate and high task failure rate. More importantly, the MCS system is
user-centric and users have social characteristics; therefore, the data quality of individual user can be
greatly promoted through community assistance. However, these important characteristics are seldom
considered by existing research. Therefore, we design a UCPS mechanism for sensing regions of
different heat levels to evaluate the completeness of sensing data, data credibility, and task completion
time, which can improve the overall data quality and ensure the timely and reliable task completion in
low-heat regions.

3. System Model

In order to select participants to effectively fulfill sensing tasks and collect sufficient and reliable
data, according to the responsibilities, the service platform is divided into three parts: information



Sensors 2018, 18, 3959 4 of 23

management module (IMM), participant selection module (PSM) and data service module (DSM).
The IMM is responsible for the user registration, real-time status information acquisition, assessment of
user willingness, and evaluation and management of user reputation. The PSM is responsible for task
publishing and participant selection. The DSM is responsible for receiving service requests, verifying,
integrating, and evaluating task data reports.

The process of MCS participant selection is shown in Figure 1. The MCS system mainly includes
service requesters, service platforms and mobile users. The service requester sends the sensing request
about certain regions to the service platform, and service requesters are also from users. Each request
has a clear type (e.g., photos, videos, and sounds) and deadline. Upon receiving a sensing request,
the service platform organizes and classifies the sensing requests, and then publishes a sensing task
set ϑ= {θ1, θ2, ..., θJ}, where the budget of each sensing task in the set is Bj. When a participant

completes the task, the payment is Y
θj
ni and cannot exceed the corresponding budget, and therefore

profit νθj gained by service platform is the budget minus the payment. The relevant information of

task θj is represented by a tuple
〈

lθj ; θ
typ
j ; θnum

j ; Dθj
cover ; t

θj
max

〉
, indicating the location, task type, required

number of participants, coverage radius, and deadline. The set of users in the region is represented
as N = {n1, n2, ..., nZ}. After receiving the task message, a user submits his/her profile to the service
platform and the uploaded file is represented as

〈
ln i , bθj

ni
, pdata, vni

〉
, which contains the user position,

bid, data cost, and speed. IMM evaluates the users’ willingness based on their real-time status
information, and PSM selects the set of participants with the highest comprehensive data quality in
the high-heat regions U = {u1, u2, ..., uz}. In the low-heat regions, the service platform selects the set
of participants who can complete the sensing task before deadline C =

{
c1, c2, ..., cy

}
.

Figure 1. User characteristic aware participant selection process.



Sensors 2018, 18, 3959 5 of 23

4. User Characteristics Awareness

The mobility and sociality of mobile users will bring new challenges to MCS services. The success
of MCS service depends on not only the service capacity of a provider but also the service environment,
including the location information of target regions, user willingness, reputation, and activity. In this
section, we first assess the regional heat, further divide the urban space into high-heat and low-heat
regions, and then evaluate the user willingness, reputation and activity.

4.1. Regional Heat Assessment

The regional heat in this paper indicates the number of users and the probability of completing
sensing tasks in a certain region at a given time [29]. Some regions maintain a large number of users
and a high probability to complete tasks, whereas other regions do not. According to this obvious
difference, urban spaces are divided into high-heat and low-heat regions.

When the sensing tasks are published to a region with a large number of users, the participants can
be selected easily and the task can be allocated quickly. However, when the sensing task is published
to a region with fewer users, the proper participants in this region are insufficient to complete all the
sensing tasks and new arriving users to this region are pending. Therefore, the number of users in a
region affects the selection of participants and the convergence of task allocation. Moreover, there are
differences in the residence time of users in the region, and the sensing task can only be completed
within a sufficient residence time. In addition, a region may have a large number of users, but most
of them are not willing to participate in sensing tasks. As a result, the task completion rate is poor.
On the contrary, a small number of active users in a given region can complete many sensing tasks and
reach a high task completion rate. Hence, the urban spaces are divided into regions with different heat
levels, and the regional heat is evaluated according to the number of active users, average residence
time of users and history of sensing tasks.

Number of active users PT is calculated by the average number of users in region Yregion of T
observations, and PT is given by

PT =

T
∑

i=1
Total

Yregion
ti

T
, (1)

where Total
Yregion
ti

is the total number of users in region Yregion of the ti-th observation and T is the total
number of observation times.

Next, the average residence time Uart(N, Yregion) of all N users in Yregion can be obtained by

Uart(N, Yregion) =

∑
ni∈N

[L(ni, Yregion)−=(ni, Yregion)]

N
, (2)

where =(ni, Yregion) and L(ni, Yregion) are the arrival and departure time of user ni.
In this paper, the history of sensing tasks is composed of the number of completed tasks and the

task completion rate, and both of them are closely related to the regional heat. In particular, the task
completion rate has a significant impact on the platform service performance. Meanwhile, there is a
huge difference in the number of active users and completed tasks, and the average residence time of
users. In addition, due to the marginal utility, as the values of these three parameters increase, their
impact on the regional heat gradually decrease. Therefore, the logarithmic method can be employed to
reflect regional heat Hregion. Assuming the total number of sensing tasks completed within the region

during T observations is θ
complete

Yregion
and the total number of tasks published by the service platform for

the region is ϑtotal
Yregion

, Hregion can be calculated by
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Hregion =
lg

PT×Udur(N,Yregion)×θ
complete
Yregion

lg(PT×Udur(N,Y)×θ
complete
Y )max

×
θ

complete

Yregion

ϑtotal
Yregion

, (3)

where lg(PT×Udur(N,Y)×θ
complete
Y )max is the maximum value that can be achieved by the product of the

average residence time, number of active users and number of completed tasks in all regions.
For the service platform, the proportion of completed sensing tasks and the timeliness of task

completion significantly affect the quality of service. Only when the number of completed tasks in a
region is less than an expected value can the quality of service of the platform be guaranteed. In all
regions that satisfy the number of completed tasks not less than the expected number of tasks, we select
the lowest regional heat from these regions compared to the highest regional heat, and use the ratio as
the dynamic equilibrium ponit Hdep

Hdep =
lg(PT×Udur(N,Y)×θ

complete
Y )min

lg(PT×Udur(N,Y)×θ
complete
Y )max

, θ
complete−timely

Y ≥ θ
exp ection
Y , (4)

where lg(PT×Udur(N,Y)×θ
complete
Y )min is the minimum value of lgPT×Udur(N,Y)×θ

complete
Y when the number of

tasks completed in all regions θ
complete−timely

Y is not less than the expected value θ
exp ection
Y . When Hregion is

larger than Hdep, this region is a high-heat region. When Hregion is smaller than Hdep, this region is a
low-heat region.

4.2. User Willingness

A user’s willingness to participate in a sensing task is usually related to the moving distance, data
transmission cost, and preference. Thus, we assess the user willingness as follows.

Tasks published by the service platform are tagged with locations and deadlines and a user
arrives at the designated location to complete the sensing tasks within deadlines. The relationship

w
ni ,θj
dis between the distance and user willingness to participate can be denoted by

w
ni ,θj
dis =


1,D

θj
ni ≤ Dθj

cover

1−max(log
(D

θj
ni−D

θj
cover )

Dm
, 0), Dθj

cover < D
θj
ni ≤ Dm

0, D
θj
ni > Dm,

, (5)

where D
θj
ni is the Euclidean distance between user location ln i and task location lθj , Dθj

cover is the task
coverage radius, and only users within the coverage can participate in the task, and Dm represents the
maximum acceptable distance.

The service platform is assumed to publish sensing tasks containing images and videos, and users
may also upload image and video data to the service platform at high data transmission expense. If a
user generates the high expense in traffic, the users’ profits will be reduced even to negative, which
also significantly affects the user willingness. Apparently, the higher user profits indicate the higher
user willingness to participate. Therefore, the users are divided into a user set φ1 with sufficient traffic
and a user set φ2 with restricted data traffic. A user with sufficient data traffic can directly upload data
without incurring additional costs, whereas a user with restricted data traffic has to pay for the data

uploading. The total cost C
ni ,θj
cos t of user ni to complete task θj includes data traffic cost Cdata, and power

consumption and memory consumption Celse. According to the profile submitted by user ni, the unit
traffic cost is pdata, and the consumed data traffic includes data traffic oθj generated by the allocated

task and the data traffic of uploading
∫ τtrans

0 otransdt, where oθj can be directly reported by the platform,
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∫ τtrans
0 otransdt is closely related to the accuracy of submitted data, and otrans is the data transmission

rate. Therefore, the total cost can be given by

C
ni ,θj
cos t =

{
celse ni ∈ φ1,
pdata(oθj +

∫ τtrans
0 otransdt) + celse ni ∈ φ2.

(6)

We assume that a user can receive payment Y
θj
ni after completing task θj and the relationship

between the user willingness and total cost C
ni ,θj
cos t can be denoted by

Wcos t = max[0,
Y

θj
ni − C

ni ,θj
cos t

Y
θj
ni

]. (7)

Obviously, users tend to complete their preferred tasks, thus a high similarity between the types
of published tasks and the preferred tasks signifies a high user inclination to participate. When a user
registers for the first time, the MCS system allows the user to rate task types according to the preference,
and then the project-based collaborative filtering is employed to recommend sensing tasks for the user.
The interested sensing tasks should be the highly rated task types. Hence, the key of collaborative task
type filtering lies in the similarity between tasks [34]. Mutual information can measure the similarity
between two subsets of data from the same data set. Each task type contains the class identifier and
belongs to the cluster. Therefore, the mutual information idea is employed to measure the similarity
between two clusters. We use σ1 as the user preference for task types, and σ2 as the sensing tasks
published by the service platform, and υι, ι ∈ {1, ..., δ} and vh, h ∈ {1, ..., φ} as the class identifiers for
σ1 and σ2, respectively, and then the similarity between σ1 and σ2 is given by

I(σ1, σ2) = ∑
υι∈σ1

∑
vh∈σ2

p(υι, vh) log
p(υι, vh)

p (υι) p (vh)
, (8)

where p(υι) = |υι| /n, p(vh) = |vh| /n, p(υι, vh) = |υι ∩vh| /n, n is the number of samples.
In fact, mutual information is biased toward variables with multiple values and the standardized

mutual information can correct this bias with a value range in [0, 1]. By combining information
entropies of σ1 and σ2 with their similarity, we can standardize the mutual information. The information
entropy can reflect the probability of certain task types appearance, and the standardized form of
mutual information can be given by

Ω(σ1, σ2) =
I(σ1, σ2)√

H(σ1) ∗ H(σ2)
, (9)

where H(σ1) and H(σ2) denote the information entropies of σ1 and σ2, respectively.
The similarity between σ1 and σ2 reflects the user willingness to participate in sensing tasks,

namely Wpre f erence = Ω(σ1, σ2).
In summary, the moving distance, data transmission cost, and task type preference affect the user

willingness. Users with higher willingness are more likely to participate in sensing tasks, and thus to
accomplish tasks. The data transmission cost inevitably affects the user willingness and the higher
payment also incurs the higher willingness. Even if the task type is not preferred, the user will still
participate in sensing tasks due to the incentive payments. Eventually, the user willingness can be
denoted by

Wni = w
ni ,θj
dis ×

1 + wpre f erence

2
× (ewcos t − 1). (10)
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4.3. User Reputation

Reputation is an important parameter to measure the credibility of sensing data [35]. However,
the existing MCS research reputation evaluates the user reputation only according to the task
participation records and ignores the experience of service requester, which is considered in this
paper as a metric to assess the provided service according to the actual experience and satisfaction.
Therefore, the user reputation should be comprehensively evaluated based on the scores from service
requesters and the task participation records.

In detail, the time span of user ni participating in the sensing task is counted by days and denoted
by Tday. When updating the cumulative scores, we should give more weight to the more recent
records. In addition, with the growing participation time, the participation records of the user also
increase accordingly. The more scoring stages lead to the more accurate cumulative scores. We use
the logarithm of Euler’s number

⌈
lnTday+`

⌉
to divide the participation records into Tmax

stage time periods,
which can update user reputation according to the impact of the recent and old records. Due to the
exponential attenuation, the participation records before five time periods have less weight. Thus,
the cumulative score of users can be denoted by

δni =

min(Tmax
stage ,5)

∑
Tstage=1

Q

∑
χ=1

(
1
2
)

Tstage

δ
Tstage ,χ
ni ,score , (11)

where Q represents the number of tasks completed by user ni in Tstage stages and δ
Tstage ,χ
ni ,score represents

the average score of ni in stage Tstage. The cumulative score is then compared with the average of all
registered users in the service platform. Furthermore, ratio α can be used as the reputation overlay
coefficient to more accurately measure the user reputation, α as defined by

α =
δni

Z
∑

i=1
δni /Z

. (12)

The larger value of α signifies the higher reliability. If a user has completed all tasks assigned by
the platform but his/her ratio is relatively low, the user probably submits some invalid data and the
ratio serves as the penalty factor to reduce the user reputation.

The participation records of users include the completed tasks acknowledged by the platform,
completed tasks with invalid data, and uncompleted tasks. To prevent users from repeatedly submitting
task data to improve their reputation in a short period of time for the later malicious attempts,
the increase of user reputation should be insensitive to the consecutive submissions of task data.
When a user submits invalid data, his/her reputation should be significantly reduced. The ratio of
completed tasks with invalid data acknowledged by the platform serves as the coefficient to attenuate
the user reputation. For uncompleted tasks, the service platform slows down the decline in reputation.
Combining the participation records of user ni and reputation overlay factor α, we can obtain the user
reputation of ni by

<reputetion
ni = min

1, α
ϑTrue

ni

ϑTotal
ni
× e

ϑInvalid
ni

ϑ
Complete
ni

 , (13)

where ϑTotal
ni is the total number of tasks accepted by user ni, ϑTrue

ni
is the number of completed tasks

acknowledged by the platform, ϑ
Complete
ni is the number of tasks completed by user ni, and ϑInvalid

ni
is

the number of completed tasks with invalid data.
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4.4. User Activity

We notice that the home communities of users include not only traditional offline communities
but also various online communities. Obviously, users may belong to multiple communities and
users with high regional activity are more likely to visit more locations and thus able to accomplish
more sensing tasks. Moreover, users interact with others from different communities and form a
sensing network covering the real-world communities. The users with a high amount of social activity
have a wide social sensing network, which are stable and reliable, and can help the user complete
more sensing tasks. Therefore, the regional activity and the social activity are combined to obtain the
user activity.

4.4.1. Regional Activity

According to the observations of users’ trajectories and behaviors, user movements are
event-driven [36]. The visiting times to region mk and the average residence time can reflect the
user activity in region mk. The more visits signify the greater probability of arriving at the region,
the longer average residence time and the enhanced possibility of completing the sensing task.

The probability P(ni, mk) of user ni visiting region mk can be obtained by comparing the visiting
times znum(ni, mk) to region mk with the total visiting times to all regions ∑

mj∈M
znum(ni, mj), as shown

as follows:

P(ni, mk) =
znum(ni, mk)

∑
mj∈M

znum(ni, mj)
. (14)

The residence time of user ni at mk can be expressed by the difference between departure time
e(ni, mk) and arrival time s(ni, mk) and the average residence time of user ni at mk in K visits can be
denoted by

Hdur(ni, mk) =

∑
mk∈M

[e(ni, mk)− s(ni, mk)]

T
. (15)

Specifically, both the visiting probability and the average residence time are highly related to the
users’ activity in a region. Therefore, the product of the visiting probability and the average residence
time in mk can be exploited as the regional activity factor, i.e.,

Rni
region=P(ni, mk)× Hdur(ni, mk). (16)

In order to intuitively reflect the regional activity of users and properly set its value range, we map
Rni

region with the Min-Max normalization into [0, 1]. Then, the regional activity can be obtained by

Rni =
Rni

region − Rmin
N

Rmax
N − Rmin

N
, (17)

where Rmax
N and Rmin

N are the maximum and minimum regional activity among N users.

4.4.2. Social Activity

Users interact with the service platform when participating in sensing tasks and the service
platform expects users to rapidly respond to and actively participate in sensing tasks. In daily life,
some users use their devices frequently and belong to multiple online communities, making them
ideal task participants, and we regard these users as high social activity users. User interactions in
social applications (e.g., Weibo, Facebook and Twitter) can be depicted by the session duration, data
usage and location detection information [37]. The social activity involved in this paper is determined
by the time spent on social applications, the number of established sessions during the time and the
number of online communities connected by these sessions.
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Generally speaking, user behavior changes as the social environment changes. Certain long-term
user behaviors can be maintained, and changes in social behaviors are triggered by recent short-term
events. Therefore, the social activity can be divided into the short-term and long-term social activity
according to user behaviors. The short-term social activity Sshort

ni
of user ni is closely related to the

change in social environment. In particular, when there is a significant change in the number of users
interacting with user ni and the number of communities in which user ni is active, we adopt the
relatively stable short-term social activity. Due to the event-driven impact, short-term changes in users
and online communities will significantly affect the social activity. After multiplying the user number
change by the community number change, we compare the result with the number of users with
sessions established or the number of active online communities. If the obtained product is greater
than any of them, it indicates a significant change in user status. Then, the time period before and
after the change can be exploited to statistically evaluate the short-term activity, and the latest period
is denoted by T1, the longest period is denoted by Tω short-term social activity STi−short

ni
of user ni in

period Ti can be obtained by

STi−short
ni

=
(∑ t

uu
ax

i )

Ti
× sTi−sessions

ni × sTi−SNGroup
ni , (18)

where ∑ t
uu

ax
i is the total time spent on social applications in period Ti, sTi−sessions

ni is total amount of

sessions of user ni in time period Ti, and sTi−SNGroup
ni is the number of communities within period

Ti with sessions established by user ni exceeding the average number of sessions of all his online
communities. After obtaining the short-term activity within each period, we further analyze the
correlation between the short-term and long-term activity. In fact, the longer update cycle signifies the
more stable short-term activity and the more accurate long-term activity. In addition, the update cycle
has a great impact on the long-term activity. On the contrary, the more frequently updated short-term
activity signifies the more unstable user activity, and less weight on the long-term user activity. Thus,
long-term user activity Slong

ni
can be calculated by

Slong
ni

=
ω

∑
i=1

Ti
ω

∑
i=1

Ti

STi−short
ni

. (19)

The logarithmic function does not change the nature and correlation of the data, but it compresses
the variable scale, facilitates calculation, and intuitively reflects the social activity. Thus, Sall

ni
is mapped

into [0, 1] using Min-Max normalization and logarithmic function, to obtain social activity Sni ,

Sni =
log Sall

ni
− log Smin

N

log Smax
N − log Smin

N
, (20)

where Smax
N and Smin

N are the maximum and minimum long-term social activity among N users,
respectively.

Analytically, the user activity includes regional activity and social activity. The influence of
regional activity and social activity on sensing tasks in regions with different heat levels vary largely.
Therefore, the regional activity and social activity should be analyzed comprehensively, as denoted by

Ani = γSni+(1− γ)Rni . (21)

Obviously, the weight factor is crucial to the measurement of user activity. There are more
potential participants in high-heat regions, and users with higher activity can reduce the interaction
time with the service platform. Therefore, the weight factor should be adjusted according to the
regional heat. In low-heat regions, sensing tasks have to be accomplished in a timely and reliable
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manner and the strong task completing ability of users with high regional activity should be fully
considered. Therefore, weight factor γ in this paper is assumed to be equal to regional heat Hregion.

5. Participant Selection Strategy

Participants can accept multiple sensing tasks and selectively perform tasks with short deadlines.
For tasks with long deadlines, participants store them in terminal devices and complete them according
to their priorities. The shorter deadline signifies the higher sensing task priority. Specifically, it is
difficult for platforms to select suitable participants from low-heat regions and selected participants
may also fail in completing the assigned tasks due to unexpected events. However, users form
online communities in a self-organizing manner and users in the same communities have stable and
relatively close social relationships. The social relationship of MCS systems can be exploited to expand
the sensing coverage. Therefore, the task queuing strategy and community assistance strategy are
introduced to ensure the efficient and reliable task performance [38,39]. Furthermore, the service
platform combines user characteristics and bid evaluation to enhance the data quality, and then selects
the user with the highest data quality as the participant in high-heat regions. In low-heat regions,
the service platform selects participants with profit exceeding the dynamic threshold.

5.1. Task Queueing Strategy and Community Assistance Strategy

Participants employ the task queuing strategy to complete the accepted tasks in order.
When designing the task queuing strategy, we consider that users with higher activity in the same
network community have close connection with other users. When users encounter an inevitable event
interrupting the task completion, they may recommend other users to assist in completing sensing
tasks, thereby ensuring the task completion rate. Correspondingly, the number of task queues is highly
related to the user activity. In addition, the service platform should set the upper and lower limits
based on the number of queued tasks to ensure the quality of service. For the case that users assist in
completing tasks, sensing tasks should be completed under the remaining budget and time constraints,
while ensuring the data quality.

5.1.1. Task Queueing Strategy

When a user participates in tasks, the service platform will set the minimum and maximum
number of tasks to be completed. In addition, due to the different ability, the number of tasks assigned
for each user varies. Therefore, the number of tasks accepted by users should be restricted accordingly.
The maximum number of consecutive tasks stored by user ni is denoted by Qmax

ni
. According to

Section 4.4, users with high activity are likely to complete more sensing tasks, and Qmax
ni

should change
linearly with user activity Ani . Therefore, Qmax

ni
can be represented by the minimum number of tasks a

user needs to complete plus the number of tasks completed due to user activity. In addition, in order
to reliably complete sensing tasks, the upper limit of sensing tasks that each user can accept is set to
Qmax and Qmax

ni
cannot exceed Qmax. Thus, Qmax

ni
, i.e.,

Qmax
ni

=
⌊

Qbase
ni

+ Ani (Q
max −Qbase

ni
)
⌋

. (22)

Obviously, when a user participates in tasks, his willingness will affect the number of
accomplished sensing tasks. Therefore, the service platform dynamically adjusts the upper limit
of the queue according to the user willingness and the number of queued sensing tasks cannot exceed
the adjusted upper limit Qr−max

ni
, i.e.,

Qr−max
ni

= Wni ×Qmax
ni

. (23)

Furthermore, we assume that the number of sensing tasks that user ni actually accepts is Q f act
ni

and the accepted sensing tasks are stored in the mobile device according to the deadlines and denoted
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by set ϑ′ni
. The payment Ytotal

ni
for completing tasks θj cannot exceed total budget

Q f act
ni
∑

j=1
Bj. Assume

that there are Q f act
ni sensing tasks in ϑ′ni

and the payment for completing task θj is Y
θj
ni , and then the

relationship between payment and budget can be denoted by

Ytotal
ni

=

Q f act
ni

∑
j=1

Y
θj
ni ≤

Q f act
ni

∑
j=1

Bj. (24)

Since the user uploads the sensing data to the platform after completing a task in the queue,
the total time that user ni completes the tasks in the queue cannot exceed the longest deadline,
satisfying

D
θj
ni +

Q f act
ni
∑

j=1
disθj

vni

+

Q f act
ni

∑
j=1

t
θj
ni ≤ Tmax

θj
, (25)

where
Q f act

ni
∑

j=1
disθj is the total moving distance to complete the queued tasks,

Q f act
ni
∑

j=1
t
θj
ni is the total time of

completing the queued tasks, and Tmax
θj

denotes the longest deadline for all accepted tasks.
Similarly, the service platform selects participants according to the task priority. If no participant

is performing a sensing task, the sensing task is queued until any participant is available. The shorter
task deadline signifies the higher task priority. If any queued task expires, it is removed from the
queue and marked as an uncompleted task.

5.1.2. Community Assistance Strategy

The community assistance strategy is designed in this paper to screen participants who are unable
to complete their assigned tasks due to unpredictable circumstances. We consider that participant
ui who is unable to complete the tasks can recommend one or a set of users from the social network
to complete his assigned tasks. Since the MCS system may not know the situation, the PSM selects
a set of participants Nappropriate

ui , who are registered in the system from and can meet the following
requirements from the recommended user set.

The maximum budget to be allocated to Nappropriate
ui should be less or equal to the remaining budget.

Y
Nappropriate

ui
≤

Q f act
ui

∑
j=1

Bj −
Q f act

nu

∑
j=1

Y
θj
ui . (26)

When community assistance is enabled, Nappropriate
ui may be located outside of the task coverage

area. However, they should reach the task location within the remaining response time, as restricted by

t
θj

Nappropriate
ui

≤ Tmax
θj
− (

D
θj
ui +

Q f act
ui
∑

j=1
disθj

vui

+

Q f act
ui

∑
j=1

t
θj
ui ). (27)

The data quality that Nappropriate
ui can achieve should not be lower than that of ui, and the data

quality evaluation is crucial. The probability of not completing tasks by Nappropriate
ui is exponentially

reduced, and therefore only one assistance is taken into account, which means that Nappropriate
ui are not

all allowed to assist. Thereby, ui can avoid the bad reputation for future tasks.
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5.2. Participant Selection Strategy for High-Heat Regions

We employ the method proposed in Section 4.1 to divide the urban spaces into sensing regions
with different heat levels. The service platform publishes sensing tasks in high-heat regions and there
are multiple users available to participate. However, the difference of users’ willingness incurs various
task completing probabilities. Moreover, the user reputation also varies and results in the different data
credibility. Therefore, the service platform employs the multi-attribute reverse auction method [40–42]
to select participants with the highest comprehensive data quality for different sensing tasks [43].

When the service platform selects participants for task θj, it firstly collects the submitted
user profiles and evaluates the user reputation and activity through methods proposed in
Sections 4.3 and 4.4, respectively. Subsequently, the comprehensive data quality is calculated according
to the bid, and the service platform allocates sensing tasks to selected participants and receives the
data uploaded by the participants, so as to ensure the data integrity. By selecting participants with
high reputation, the data accuracy can be guaranteed. Moreover, the selected participants can reduce
the overall payment, gain more profit, consume less time in task completion and achieve better data
timeliness and higher data reliability. Data quality QoCθj

ni
obtained by user ni can be calculated by

QoCθj
ni
=
<reputetion

ni

Y
θj
ni × t−total

, (28)

where Y
θj
ni is the payment for user ni completing task θj, the payment is equal to bid b

θj
ni , and t−total is

the total interaction time between user ni and the service platform for data uploading, which can be
calculated by

t−total = D
θj
ni /vni + t−interactive × Ani + t−collect, (29)

where t−interactive is the average interaction time between the user and the platform and t−collect is the
completion time of task θj.

According to the analysis in Section 4.2, the user willingness reflects the task completing
probability and the expected data quality of user ni can be obtained by

QoCθj
ni
= w

θj
ni ×

<reputetion
ni

Y
θj
ni × t−total

. (30)

In high-heat regions, user ni is considered to only participate in the auction of a single sensing
task at a time, so as to improve the data quality. If task θj is allocated to user ni who is participating in
task θk, the available time of user ni changes and the time to complete task θk increases to the time of
completing the two tasks. The comprehensive data quality of task θk by user ni can be obtained by

QoCθk
ni

= wθk
ni ×

<reputetion
ni

Yθk
ni ×

Q f act
ni
∑

j=1
ttotal

. (31)

When user ni is assigned no less than two sensing tasks, these tasks are completed in accordance
with the queuing strategy. The service platform evaluates the comprehensive data quality of sensing
tasks, and then selects participants according to the evaluation results. Particularly, the participant
selection problem can be transformed into finding a subset U in set N, which maximizes the overall
data quality when the sensing tasks in set ϑ are covered by set U. Furthermore, this problem was
proved to be the classic NP-hard set coverage problem [12]. For subset U in given set N, we can
define a utility function FU (ϑ) of U to show how much the selected participants in U can achieve data
quality. FU (ϑ) is non-negative, monotonic and submodular, and the corresponding proofs are given
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in Appendix A. The maximum data quality is highly related to the budget and deadline. According
to the nature of submodule functions, for any U ⊆ N, FU (ϑ) > 0. A greedy algorithm can find
the near-optimal solution [10]. Therefore, the service platform can exploit the greedy algorithm to
iteratively search and select participants. In each iteration, the user maximizing utility function FU (ϑ)

is selected. Specifically, selected participant ni during the i-th iteration satisfies the condition in

FUi (ϑ) = FUi−1 (ϑ) ∪
{

arg max ∆F(ni |Ui−1)
(ϑ)
}

, (32)

where ∆F(ni |Ui−1)
(ϑ) = F(Ui−1∪{ni})(ϑ)− FUi−1(ϑ). When the service platform allocates all sensing tasks

or the budget runs out, the participant selection process terminates, as shown in Algorithm 1.

Algorithm 1 User Characteristic Aware Participant Selection for High-Heat Regions (UCPS-H)

Input:

Task set ϑ, User set N;
Output:

1: Participant ui selected for task θj, the payment for participants Ytotal
ci

and participants set U;
2: ni ← 1 to |Z| , θj ← 1 to |ϑ|;
3: while bid

θj
ni ≤ B

θj
max do

4: Calculate the comprehensive data quality of users for task θj through Equation (31); and rank

the comprehensive data quality of users in descending order
5: Assign task θj to user ni with the highest comprehensive data quality;
6: U ← arg max QoC

θj
ni ;

7: Y
θj
ni ← bid

θj
ni ;

8: θj ← θj+1;
9: return to 3;

10: if task θj achieves the desired data quality then

11: remove it from ϑ;
12: end if
13: if all tasks are assigned or budget runs out then

14: stop the selection process;
15: end if
16: end while
17: return

〈
X

θj
ni , Y

θj
ni , U

〉
;

5.3. Participant Selection Strategy for Low-Heat Regions

When the service platform collects data from low-heat regions, there are fewer potential
participants, but most users in the low-heat regions have longer residence time and more locations
to visit, so the users who can complete multiple sensing tasks should be selected as participants.
In low-heat regions, the service platform faces challenges because users arrive at low-heat regions in
the random order must complete a certain number of tasks before the deadline, and have to upload the
credible sensing data. The multi-stage sampling-reception method can dynamically expand the number
of user sets and derive a threshold for each stage based on the user characteristic and platform budget.
After the selection of participants at each stage, the thresholds are dynamically updated to solve these
three challenges. Specifically, we divide the participant selection process into 1, 2, ...,

∣∣∣logT
2

∣∣∣ ,
∣∣∣logT

2

∣∣∣+ 1

stages, where stage k ends in Tk =
⌊

2k−1T/2[logT
2 ]
⌋

, and the budget of stage k is Bk =
⌊

2k−1B/2logT
2

⌋
.

In the initial stage, the observed profits come from users submitting profiles, and the threshold is set
according to the average profits to select participants in the subsequent stages.

According to Section 5.1, the proposed task queuing strategy and community assistance strategy
can motivate users with high activity to increase the number and probability of completing tasks
and ensure data credibility. When the number of tasks selected by the user does not exceed the
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number of remaining tasks in this stage, the number of tasks actually accepted by the user is Q f act
ni .

After completing the sensing task, a user will produce certain profit for the platform, and data of
higher credibility and integrity bring more profit. Thus, the total profit of user ni can be obtained by

ςni
total

= <reputetion
ni ×

Q f act
ni

∑
j=1

(θj × νθj). (33)

In this paper, the threshold is based on profiles submitted by k users during the initial stage,
as denoted by

ρ =

κ

∑
i=1

(ςni
total

)

κ
. (34)

The service platform dynamically adjusts the number of users and budget. When user ni submits
his/her profile at time t, the service platform checks the profit of users and then selects participants.
After the participant selection, the threshold is updated based on the average profit of all selected
participants at the given stage. Therefore, the service platform can collect sufficient and reliable sensing
data from low-heat regions, and reduce the total number of selected participants and the platform
overhead. The specific participant selection process is shown in Algorithm 2.

Algorithm 2 User Characteristic Aware Participant Selection for Low-Heat Regions (UCPS-L)

Input:
1: Task set ϑ, Budget B, Deadline T;

Output:
2: The task set ϑci allocated to participant ci, the payment Ytotal

ci
and participant set C;

3: (t, T′, B′, ρ, C, N)← (1, T/2blogT
2 c, B/2blogT

2 c, `, ∅, ∅);
4: if t ≤ T then

5: add user arriving at t to online active user set N;
6: N ← N ∪ {ni};
7: end if
8: while (24)&&(25) do

9: Compute threshold according (34);
10: if ςni

total
> ρ then

11: ϑci ← {θ′1, θ′2, ..., θ′
Q f act

ci

}; Ytotal
ci
←

Q f act
ci
∑

j=1
Y

θ′j
ci ; C ← C ∪ {ui});

12: end if
13: if there are still remaining tasks in stage logT

2 then

14: return to 10;
15: else

16: all tasks in stage logT
2 are allocated, remove the allocated tasks;

17: end if
18: according (34) update threshold ρ;
19: end while
20: if t = bT′c then

21: T′ ← 2T′; B′ ← 2B′;
22: t← t + 1;
23: end if
24: return

〈
ϑci , Ytotal

ci
, C
〉

;

6. Numerical Results

In this paper, we employ datasets derived from Brightkite (Los Angeles, CA, USA), a location-
based social network service provider. Users can share their locations by signing in and the service
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provider can collect user information through public API and form an undirected friendship network,
which consists of 58,228 users and 214,078 sides. The user information includes user number, access
time, latitude, longitude, and check-in location ID. The 100-location subset and 1224-user subset are
extracted to represent task locations and participants in an actual MCS scenario. The main simulation
parameters are given in Table 1.

Table 1. Scenario parameters.

Description Value

Region size 1–2 km2

Regional heat 0–1
Task deadline 5–45 min

Number of participants required for single task 1–5
Number of tasks accepted by each participant 0–8

Number of tasks published by the service platform 1–100
Task coverage radius 200 m–1600 m
Participant reputation 0–1

Participant activity 0–1
Participant speed 10–50 km/h

Task types 5
The maximum budget for each sensing task 50

The maximum price per sensing task 10

To evaluate the performance, we add some constraints to benchmark algorithms including
secure user recruitment (SUR) [44] and greedy-enhanced genetic algorithm for intentional movement
(GGA-I) [12]. The SUR algorithm selects the user with the highest data quality, whereas the GGA-I
preferentially selects the user with the shortest moving distance to perform sensing tasks.

6.1. The Impact of User Characteristics on Task Allocation Rate and Task Completion Ratio

To evaluate the users’ behaviors and their impacts on reputation, we divide participants into
always positively sensing, always negatively sensing and intermittently negative sensing participants,
and give participants No. 25, No. 58 and No. 96 for instance. The initial reputation of participants is
set to 0.5. As shown in Figure 2, the participant reputation changes along with the participation times
and the number of completed tasks. Participant No. 25 is always positively sensing from task 0 to 16
and the reputation rises smoothly from 0.5 to 0.96. Since participant No. 25 does not participate in
tasks 16 to 21, his/her reputation is attenuated to 0.95. As participant No. 25 continues to participate
in task 22 to 24, his/her reputation slowly increases. Since participant No. 96 has six consecutive
negative sensing, his/her reputation declines sharply from 0.5 to 0.35, and participant No. 96 is never
selected as a participant again. Participant No. 58 is intermittently negative sensing, and his/her
reputation fluctuates with his sensing behaviors. However, with the increasing number of invalid
data submitted by the participant, the service platform gradually heightens the penalty. Apparently,
the decline in participant reputation results in the gradually increased reputation recovery period
because the reputation update mechanism proposed in this paper punishes negative sensing behaviors.
The more negative sensing behaviors signify the faster reputation drop. In addition, the attenuation
factor is introduced and the participant reputation attenuates over time.

In terms of the relationship between the user characteristics and task failure rate, Figure 3
illustrates the task failure rates of the three algorithms as the total number of tasks increases in
low-heat regions. The task failure rate in this paper is derived from the number of uncompleted tasks,
the number of unallocated tasks and the total number of tasks. When the total number of tasks is less
than 80, the task failure rate of GGA-I is always higher than those of SUR and UCPS-L. When the
total number of tasks reaches 90, the performance of SUR deteriorates sharply and its task failure rate
exceeds 16.7% because GGA-I exploits only a single participant to complete multiple sensing tasks.
When the number of tasks is small and the sensing region is wide, the moving distance of users is
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long and the task failure rate increases. However, when the service platform publishes more than
80 tasks, SUR spends more budgets to select high-quality participants in the early stage, resulting
in some unallocated tasks and the rapidly increased failure rate. On the contrary, the proposed
UCPS-L analyzes the user ability to complete tasks and selects reliable participants based on the user
reputation to ensure the completion of tasks. When the total number of allocated tasks by the service
platform reaches 100, the failure rate of UCPS-L is 66.7% and 50.6% lower than those of SUR and
GGA-I, respectively.
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Figure 2. Participant reputation under a various number of tasks.
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Figure 3. Failure rate under a various total number of tasks.

Due to the limited platform budget, only 10 of the 100 tasks are video tasks. As shown in Figure 4,
both willingness and reputation positively contribute to the task completion rate. However, when
a single characteristic attribute is at a high level, the task completion rate is much lower than that
when both characteristic participant attributes are at high levels. When participant willingness and
reputation are both 1, the task completion rate reaches 96%.

Figure 5 shows that, when the service platform publishes 50 sensing tasks, the task allocation rate
of the three algorithms present an upward trend with the increasing regional heat and the growth rate
gradually decreases. In low-heat regions, the performance of the proposed UCPS-L is notably better
than those of the other two algorithms because the community assistance strategy motivates other
users to complete more allocated tasks. The SUR always selects the user with the highest data quality
and only allocates a few tasks to low-heat regions, resulting in poor performance. When the regional
heat is high, UCPS-H attracts more users to participate in the MCS tasks and has better performance
than GGA-I. The allocation rate of SUR changes lightly after the regional heat exceeds 0.8. Because
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SUR always selects participants with the highest data quality without any payment constraints, more
budgets are involved in the early stage of participant selection and the remaining budget is insufficient
to select more participants, and therefore 17.4% of tasks cannot be allocated.
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Figure 4. The influence of participant willingness and reputation on the task completion rate.
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Figure 5. Task allocation rate under various regional heat.

6.2. The Effect of Task Coverage Radius and Deadline on the Task Allocation Rate

As shown in Figure 6, the task allocation rate changes with the task coverage radius when the
service platform publishes 50 sensing tasks for low-heat regions. The task allocation rate of SUR is
always lower than those of the other two mechanisms because SUR only selects participants with the
highest quality, and does not consider the situation where a single participant accomplishes multiple
sensing tasks through storage and movements. In addition, because SUR always selects the participant
with the highest quality and does not consider the user bid, the remaining budget is insufficient
to select new participants and the task allocation rate is always lower than those of the other two
algorithms. GGA-I selects the participant with the shortest moving distance to the task location and
the participant can accept multiple sensing tasks, and therefore more tasks can be allocated to selected
participants when the coverage radius is small. Similarly, participants in UCPS-L also accept multiple
sensing tasks, and complete tasks through the community assistance strategy, which can allocate
86% of tasks when the coverage radius is 1200 m. When the coverage radius is more than 1400 m,
the overhead for users to complete sensing tasks will increase dramatically; therefore, few users are
willing to participate in sensing tasks.
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Figure 7 illustrates the relationship between task deadlines and task allocation rates in low-heat
regions and there are 50 sensing tasks published by the service platform. The longer deadline signifies
more time for the participant to complete the task. As a result, the task allocation rate increases with
the deadline. When the deadline is 10 min, the participant can only complete tasks that are close to
him and the allocation rate is relatively low. With the increase of deadline in SUR, more users meet
the requirements and the task allocation rate keeps growing until the budget is insufficient. In GGA-I,
participants can complete more tasks due to task queuing. Similarly, in UCPS-L, participants use the
queue mechanism to accept more tasks and the community assistance strategy to complete multiple
tasks simultaneously. Thus, the UCPS-L algorithm can allocate 91% of tasks when the deadline is
30 min, shortening the time for receiving data reports.

200 400 600 800 1000 1200 1400

Coverage radius

45

50

55

60

65

70

75

80

85

90

T
a

s
k
 a

llo
c
a

ti
o

n
 r

a
te

 

SUR

GGA-I

UCPS-L

Figure 6. Task allocation rate under various task coverage radius.
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Figure 7. Task allocation rate under various deadlines.

6.3. Analysis of Average Task Completion Time and Service Platform Satisfaction

As shown in Figure 8, the average task completion time varies with the increasing total number
of tasks in-high heat regions. The task completion time in this paper starts from accepting the task
to uploading the data report to the service platform. When the number of tasks is small and the
task sensing region is wide, SUR selects participants with the highest data quality from the user set,
does not consider the time overhead, and increases the average task completion time. GGA-I selects
participants with the shortest moving distance, but a single participant has to complete multiple
sensing tasks, which also increases the average task completion time. With the increase in the number
of tasks, tasks distributed within the region are more intensive and participants only select nearby
tasks, and therefore the completion time is gradually reduced. UCPS-H considers the user willingness
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as an influence parameter on the comprehensive data quality, and selects nearby users to complete
sensing tasks, which can reduce the time for completing sensing tasks. However, as the total number
of sensing tasks increases, the number of potential participants per task decreases. To ensure the
quality of service, the service platform has to wait for some busy participants to become idle and then
participate in the sensing tasks again, and the task completion time increase.

Figure 9 illustrates the change in overall data quality satisfaction of the three algorithms as task
deadlines increase in high-heat regions. The satisfaction in this paper is evaluated based on the
number of tasks that meet the requirements. With the increase of task deadlines, GGA-I can obtain
more sensing results and the satisfaction of the service platform is gradually increasing. However,
its growing stops because GGA-I does not consider the data quality obtained by participants in
completing tasks. As more sensing tasks are completed, task reports with poor data quality also
increase, slowing the upward trend. However, SUR and UCPS-H allocate one task for each participant
at a time and complete most of the tasks in a short time, so that the higher satisfaction can be achieved
in the initial stage. For the 45-min task deadline, the satisfaction of UCPS-H is 13.1% and 22.7% higher
than those of SUR and GGA-I.
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Figure 8. Comparison of average task completion time under total number of different tasks.
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Figure 9. Comparison of data satisfaction at different deadlines.

7. Conclusions

In this paper, we have made an in-depth study on the problem of participant selection for
MCS. We have proposed the User Characteristic aware Participant Selection mechanism for MCS,
namely UCPS. Specifically, we estimate the regional heat according to the number of active users,
average residence time of users and sensing tasks history. In addition, the user state information
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and sensing task records are combined to calculate the willingness, reputation and activity of users.
Finally, the above four factors are comprehensively considered to reasonably select participants.
We also propose task queuing and community assistance strategies to ensure task allocation rates
and completion rates. The evaluation results have shown that UCPS has good performance, in terms
of the task allocation rate, task completion rate, average task completion time, and data satisfaction.
In future work, we will continue to study other factors affecting the participant selection in multi-task
MCS scenarios and further analyze the relationship between user bids and data quality.
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Appendix A

Problem A1. For a given task set ϑ and user subset U(U ⊆ N), the utility function FU (ϑ) of the selected
participant set U is a non-negative, non-reducing submodule.

Proof. It is straightforward that F∅ (ϑ) = 0, consider N′s two arbitrary subsets U′ and U, U′ ⊆ U ⊆ N,
we have FU′ (ϑ) ≤ FU (ϑ) (the equality hold if KS′−S=∅ ), and hence FU (ϑ) is nondecreasing. Consider

that a participant u ∈ N −U,
∣∣∣KU∪{u}

∣∣∣− |KU | is the number of covers ϑ in Ku that instead of KU , then
∪nj∈U′Knj is at least as large as ∪nj∈UKnj . The utility function FU (ϑ) is associated with the sum of the
data quality obtained by ϑ in KU , thus existing: FU′∪{u} (ϑ)− FU′ (ϑ) ≥ FU∪{u} (ϑ)− FU (ϑ). In this
rule, the difference in adding an element to the set U′ is at least as great as the difference in adding the
same element to the superset U. Thus, FU (ϑ) is a monotone submodule.
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