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Abstract
High-grade serous ovarian cancer (HGSOC) represents the majority of ovarian cancers

and accounts for the largest proportion of deaths from the disease. A timely detection of low

volume HGSOC should be the goal of any screening studies. However, numerous transva-

ginal ultrasound (TVU) detection-based population studies aimed at detecting low-volume

disease have not yielded reduced mortality rates. A quantitative invalidation of TVU as an

effective HGSOC screening strategy is a necessary next step. Herein, we propose a mathe-

matical model for a quantitative explanation on the reported failure of TVU-based screening

to improve HGSOC low-volume detectability and overall survival.We develop a novel in sil-
icomathematical assessment of the efficacy of a unimodal TVUmonitoring regimen as a

strategy aimed at detecting low-volume HGSOC in cancer-positive cases, defined as cases

for which the inception of the first malignant cell has already occurred. Our findings show

that the median window of opportunity interval length for TVUmonitoring and HGSOC

detection is approximately 1.76 years. This does not translate into reduced mortality levels

or improved detection accuracy in an in silico cohort across multiple TVUmonitoring fre-

quencies or detection sensitivities. We demonstrate that even a semiannual, unimodal TVU

monitoring protocol is expected to miss detectable HGSOC. Lastly, we find that circa 50%

of the simulated HGSOC growth curves never reach the baseline detectability threshold,

and that on average, 5–7 infrequent, rate-limiting stochastic changes in the growth parame-

ters are associated with reaching HGSOC detectability and mortality thresholds respec-

tively. Focusing on a malignancy poorly studied in the mathematical oncology community,

our model captures the dynamic, temporal evolution of HGSOC progression. Our mathe-

matical model is consistent with recent case reports and prospective TVU screening popu-

lation studies, and provides support to the empirical recommendation against frequent

HGSOC screening.
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Introduction
Ovarian cancer is a relatively rare disease, representing 2.6% of all new cancer cases in US
women [1]. However, ovarian cancer is the most fatal gynecologic cancer with approximately
35% five-year overall survival rate; in 2015, it is estimated that 21,290 new cases of ovarian can-
cer with an estimated 14,180 deaths related to this disease will occur [2]. The inability to detect
aggressive, early stage ovarian cancer has substantial implications for the reported low post-
diagnosis survival rates. This is possibly, in part, due to the natural history of ovarian cancers,
since most women with localized disease present vague symptoms such as pelvic or abdominal
pain, abdominal bloating, urinary urgency or frequency and early satiety [3]. A recently pro-
posed morphomolecular characterization of ovarian cancers underscores the importance of
clear separation between the various subtypes of ovarian cancers with respect to the appropri-
ate future therapeutic targeting [4]; therein, it is reported that epithelial ovarian cancers
account for 85–90% of ovarian cancers, with a subset of epithelial ovarian cancers, high-grade
serous ovarian cancers (HGSOCs) representing nearly 70% of all ovarian cancer cases.

Focusing on HGSOC, clinical features of its progression prior to detection are difficult to
observe. Only circa 15% of HGSOC are solely localized to the ovary or fallopian tubes at the
time of diagnosis [1, 5] and about 35% of what is thought to be a malignant mass is actually an
adnexal benign mass [6]. Moreover, the normal tubo-ovarian environment is regarded as tem-
porally heterogeneous in both pre- and postmenopausal stages with respect to hormonal fluc-
tuations, growth factor and reactive O2 species, making a departure from healthy homeostasis
difficult to observe [7]. HGSOC causality, initiation and duration of its pre-diagnosis stage
thus remain difficult to study in vivo or estimate in vitro.

Existing early detection screening strategies for other cancer types, including prostate,
colon, breast and cervical cancers, raise the question of whether HGSOC is amenable to similar
screening strategies. Emerging insights into HGSOC’s disease progression suggest that early
detection of low volume advanced stage, rather than large volume early stage HGSOC, may be
a more clinically actionable goal of screening studies, since five-year relative survival rates for
advanced stage cancers at diagnosis are significantly lower than for early stage cancers at diag-
nosis [2, 3, 5, 6, 8–10]. Moreover, HGSOC does not follow a clearly distinguishable pathologic
continuum of neoplasia compared to, for instance, subtypes of breast, bowel or cervical cancers
[6, 11], and detecting HGSOC in its non-specific early stage phase remains challenging [5, 10,
12]. These findings are especially relevant when evaluating the efficacy of transvaginal ultra-
sound (TVU)-based HGSOC detection, as TVU represents an integral part of all reported
major ovarian cancer screening trials, despite its well-recognized limitations (e.g. bilateral dis-
ease, or multiple foci spread throughout the peritoneal cavity) [13]. TVU is accurate in detect-
ing abnormalities in ovarian volume and morphology, but is less reliable in differentiating
benign from malignant tumors [7, 8, 14–18]. As a result, whether HGSOC constitutes a valid
target for ovarian cancer screening remains unanswered and highly contentious with respect to
either general-risk or high genetic-risk women, such as germline BRCA1 and BRCA2mutation
carriers, or women with a significant family history of breast or ovarian cancer.

So far, evidence of a mortality benefit continues to elude HGSOC screening. Several studies
have evaluated the efficacy of uni- or multi-modal TVU screening in general-risk populations
and their impact on mortality benefit for several ovarian cancer histologies [14–16, 19, 20]. For
example, in cohorts comprising of high genetic-risk women, multimodal conventional screen-
ing strategies failed to detect microscopic, early stage HGSOC tumor volumes [21–23]. In the
Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO), simultaneous TVU
and CA-125 screening in a general-risk population of women did not reduce overall mortality
rates, compared to a group offered their usual medical care [14, 15]. This randomized
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controlled trial demonstrated that abnormal screening results led to unnecessary surgical pro-
cedures performed on false-positive women, a significant proportion of which subsequently
experienced serious complications. More recently, data from the UK Collaborative Trial of
Ovarian Cancer Screening (UKCTOCS), the largest ever such screening study performed to
date, underscored the failure of unimodal TVU examinations to improve ovarian cancer
detectability and overall survival rates [8, 24]. The study, comprising of 202,638 general risk
women, demonstrated that multimodal screening including serial TVU and CA125 level test-
ing yielded a 15% mortality reduction rate compared with a 0% no screening or 11% unimodal
TVU-based screening cohort mortality reduction rate over 0–14 follow-up year. Lastly, the US
Preventive Services Task Force (USPSTF) has recently reconfirmed their previous recommen-
dation against ovarian cancer screening in asymptomatic women without known genetic muta-
tions that increase their risk for ovarian cancer [25].

A wide variety of mathematical models on cancer and tumor growth exist, e.g. [26–29],
however, few investigations have been concerned with any of the ovarian cancer subtypes.
Current mathematical models address primary ovarian cancer tumor growth [30–32],
sequencing of surgery and chemotherapy [33–35] or optimal characteristics of biomarkers
[36], but there are limited data on ovarian cancer subtypes and the corresponding mathemat-
ical modeling of their growth kinetics. Although these models aim to reproduce HGSOC
dynamics, HGSOC carcinogenesis is limited to being modeled as an exponential or logistic
growth process [30, 31, 36]. Furthermore, the existing mathematical efforts conducted
towards modeling ovarian carcinogenesis or estimating the efficacy of screening strategies do
not properly across for the considerable inter-patient heterogeneity in malignancy initiation
and progression. Lastly, none of the existing models includes a potential mechanism that cor-
relates with the in vitro temporary cessation of tumor growth, or provides a quantitative
assessment of the feasibility of frequent TVU monitoring with respect to HGSOC low-vol-
ume detectability and overall survival. It is precisely this absence of inferences from mathe-
matical modeling regarding HGSOC progression that motivated this study of TVU-based
detection strategies.

Herein, we propose a novel in silicomathematical model that provides a quantitative expla-
nation behind the reported failure of TVU to improve HGSOC low-volume detectability and
overall survival rates. We develop a mathematical assessment of the efficacy of a unimodal
TVU monitoring regimen as a strategy aimed at detecting low-volume HGSOCs in cancer-pos-
itive cases, defined as cases in whom the inception of the first HGSOC malignant cell has
already occurred. Our model captures the dynamic, temporal evolution of HGSOC growth and
progression, and provides quantitative estimates of otherwise unknown clinical parameters
such as the duration of HGSOC’s pre-diagnosis stage and the screening window of opportunity
interval length.

Methods
We develop an in silicomathematical framework modeling incipient HGSOC growth kinetics
in an untreated scenario, subject to stochastic heterogeneous fluctuations. Herein, we refer to
an untreated HGSOC as a radiographically detected, clinically asymptomatic, treatment-free
malignancy in which no surgery and/or other systemic therapies has yet been performed/
administered. Inspired by a stochastic numerical model of breast cancer growth [37], we follow
a similar approach to model HGSOC natural history and progression until clinical TVU detect-
ability. The key feature of this model incorporated in the present work involves modeling
HGSOC progression as Gompertzian growth kinetics that is further characterized by infre-
quent, rate-limiting stochastic changes in the growth parameters.
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HGSOC growth rate estimation
To estimate a lower bound for the initial HGSOC growth rates, we identified the existing
TVU-based screening study with the largest cohort of ovarian cancer patients [17]. In this
study, data concerning ovarian volumes were obtained from 13,963 patients who were under-
going annual TVU examinations from 1 to 11 years. We define abnormal ovarian enlarge-
ment as two standard deviations above normal ovarian volume in pre- and postmenopausal
women, see [38]. Based on 58,673 ovarian volume observations, the upper limit for normal
ovarian volume therein was found to be 20 cm3 for pre- and 10 cm3 for postmenopausal
women [38]. Menopause is defined as occurring 12 months after a woman’s last menstrual
cycle and confirmed by follicle stimulating hormone levels > 40 IU/L [39]. We subsequently
assume that any HGSOC tumor volume larger than the difference between the two pre-
defined thresholds (i.e. 10 cm3) would represent a suspicious TVU finding, and subsequently
be diagnosed as a radiographically detectable HGSOC case. The data points illustrated in Fig
1 represent estimated lower bounds for the initial HGSOC rates used to initialize our model.
They correspond to 9 reported HGSOC clinical findings based on TVU examinations of
adnexal ovarian regions available 12 months or fewer prior to the preoperative diagnosis
time of the malignancy [40]. The reported cases showed no apparent ovarian volume abnor-
malities 2 to 12 months prior to TVU diagnosis. We note that, to the best of our knowledge,
these findings represent the only available temporal data on the progression of previously
occult, radiographically detected HGSOCs.

HGSOC-growth curve time is measured from the inception of the first malignant cell until
the time needed to reach the baseline TVU detection threshold, or until the baseline life-threat-
ening tumor volume is reached. Herein, we assume that the minimum, baseline TVU detect-
ability threshold for a cancer-positive case is 10 cm3 (equivalent to 1010 cells, or to a 2.673 cm
spherical HGSOC tumor diameter. Similarly, we follow the definition of the life-threatening
untreated HGSOC tumor volume to be 103 cm3 (equivalent to 1012 cells, or to a 12.407 cm
spherical tumor diameter), as previously published [41]. The two thresholds can be adjusted if
more sensitive diagnostic techniques are developed, or if different life-threatening untreated
HGSOC tumor volume values are used. We assume the cell number-to-volume conversion to
be 1 cm3 = 1 cc = 109 HGSOC cells [42]. The baseline thresholds were chosen to estimate con-
servative lower bounds for the time of TVU diagnosis and time of reaching the life-threatening
tumor volume distributions. Herein, we define the window of opportunity interval as the differ-
ence between the two thresholds based on the growth curves that reach both endpoints.

Modeling equations
We use the incipient HGSOC growth kinetics model to study the timing of HGSOC initiation
relative to reaching TVU detectability and the life-threatening untreated tumor volume sizes,
as defined above, and its subsequent implications on TVU monitoring protocols. We choose to
use the terminology ‘TVU monitoring’ in lieu of ‘TVU screening’, as the latter would be a more
appropriate term for a detection strategy focused on a cohort of cancer-negative, general or
high-risk otherwise asymptomatic healthy women [18], as opposed to a pre-selected, biased in
silico cancer-positive cohort, for which the former term is more appropriate.

A main study end point for this model was HGSOC-specific mortality, specifically the num-
ber of in silicoHGSOC growth curves that would be missed even under frequent TVU moni-
toring. To this end, we developed a mathematical framework modeling incipient untreated
HGSOC volume growth in order to satisfy two purposes: one, to simulate the natural history of
the malignancy, and two, to quantify the relationship between TVUmonitoring frequency and
detection time of a non-life-threatening HGSOC volume.
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To obtain a temporal estimate of the effective growth behavior of a simulated HGSOC
growth curve, we let N(t) be the total HGSOC tumor volume, i.e. the number of HGSOC cells
located in the primary tumor site (e.g. one of the ovaries, or the fallopian tubes), at time t. N0

represents the initial, pre-diagnosis HGSOC cell count, set as 1 for computational convenience,
and time t is measured since the inception of the first malignant cell. If we let kgrowth represent
the initial HGSOC growth rate constant and kdecay describe the growth saturation rate, where
both parameters have the dimension of inverse time (e.g. in our case, day-1), the Gompertz
function modeling tumor growth can be expressed as

NðtÞ ¼ N0e
kgrowth
kdecay

ð1�e
�kdecay t Þ

; Nð0Þ ¼ 1: ð1Þ

The normalized N (t) thus satisfies the following differential equation:

dN
dt

¼ NðtÞ � ½kgrowth � kdecay � ln NðtÞ�: ð2Þ

The carrying capacity N(1) = N1 is assumed to be finite and nonzero. It follows that kdecay

Fig 1. Estimated lower bounds for HGSOC initial tumor growth rates–derived from reported TVU findings of 9 previously undetected HGSOC
primary tumor sizes [40]. Reported bi-dimensional measurements of 9 incidental, previously undetected HGSOC tumor sizes (length, width) were
converted into a weighted, one dimensional measurement (i.e. spherical radius): weighted radius r ¼ ffiffiffiffiffiffiffiffiffi

a � bp
, where a and b are the radii of the minor and

major axes of an ellipsoid, respectively. r represents the weighted radius of the reported HGSOC tumor sizes (as derived from Table 1 in [40]). To compute
HGSOC initial tumor volumes, we assume tumors to be spherical and compute their volume according to the formula 4p

3
� r3 ðcm3Þ. We assume normal ovarian

volumes were 20 cm3 for the pre- and 10 cm3 for the postmenopausal women reported in Table 1 of [37]. We estimate the lower bounds for the initial HGSOC
growth rates according to the following formula: initial growth rate ¼ lnðtumor volume at diagnosisÞ �lnðnormal ovarian volumeÞ

T , where T represents the number of days between the
timing of the previous, non-suspicious TVU examination and the malignancy diagnosis, converted from the number of months corresponding to each patient
case as reported in [40] (median HGSOC initial growth rate = 0.0133 day-1, range = 0.0014–0.0448). Each point plotted (case number, estimated lower
bound for initial growth rate) corresponds to case number (3–11) reported in Table 1 of [40].

doi:10.1371/journal.pone.0156661.g001
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> 0, and that Nð1Þ ¼ e
kgrowth
kdecay > 1. To find the inflection point of N(t), that is Ni(ti), we require

d2N
dt2

¼ ðkgrowth � kdecay⋅ ln NðtÞ � kdecayÞ �
dN
dt

¼ 0;

i.e., the derivative of the change in HGSOC growth rate is set as 0. Since N(t)> 0 for finite t,
then

ln Ni ¼
kgrowth

kdecay

� 1; ti ¼
1

kdecay

� ln kgrowth

kdecay

: ð3Þ

It thus follows that Ni ¼ e
kgrowth
kdecay

�1
;N1 ¼ e Ni: ð4Þ

In this case, the tumor cell burden can outgrow its size at the inflection point by a factor of
e. The inflection point represents a turning point in the dynamics when the observed growth
trend starts decelerating. Nonetheless, while the Gompertz equation describes a density-depen-
dent growth rate, it does not account for any stochastic irregularities, e.g. stepwise growth pat-
terns, also see [37]; such temporary Gompertzian plateaus (i.e. cessation in tumor growth) may
be correlated, as reported in vitro, with tumor dormancy in ovarian cancer spheroids [43, 44],
human ovarian cancer cell lines [45, 46], or in vivo with tumor xenografts implanted in mice
[45], and may be associated with dormancy in untreated, undetectable HGSOC. A constant
growth rate might not be feasible to model progression. To this end, by incorporating rare but
relatively large jumps in the growth saturation rate kdecay, we assume that HGSOC growth
slows down due to adverse environmental conditions (e.g. reactive O2 presence, nutrient deple-
tion). The irregular tumor growth kinetics illustrated in our model accounts for the observed
heterogeneity in the progression of clinical HGSOCs [47] and highlights the differential
HGSOC natural histories that lead to identical clinical outcomes or presentations (e.g. see case
numbers (4) and (11) reported in Table 1 of [40]). The tumor growth kinetics represented
herein could thus be phenomenologically valid both in vivo and in vitro.

Modeling assumptions
We assume the inception of the first HGSOC malignant cell occurs sometimes during premen-
opausal years, and thus we increment time in intervals of 28 days (the average length of a men-
strual cycle [48]) for a total number of 460 menstrual cycles, the average cumulative length of a

lifetime menstrual cycle. We set the initial kdecay to be initial
kgrowth

2
. Varying this initial parame-

ter would not yield substantially different median or range values for the estimated cdf’s. We

Table 1. Definitions used throughout the model.

Term Definition

Occult growth curve in silico HGSOC growth curve that never reaches TVU detectability.

Succumbed growth
curve

in silico HGSOC growth curve that reaches both a TVU detectable and life-
threatening tumor volume, see [41], in between consecutive TVU monitoring
events.

Cancer-positive growth
curve

in silico HGSOC growth curve in which the inception of the first HGSOC
malignant cell has already occurred.

Untreated growth curve in silico HGSOC growth curve described as a radiographically detected,
treatment-free malignancy in which no surgery/therapy has yet been performed/
administered.

doi:10.1371/journal.pone.0156661.t001
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then implement the changes in the initial growth saturation rate, kdecay, in a two-step manner.
First, we generate a number α* ln N(10−2, 25 � 10−2), that is log-normally distributed with
mean = 10−2, variance = 25 x 10−2, and range = 0.0094 − 0.150 (0.01 mean probability of
change in each 28-day period, or 26% mean probability of change in 2 years). Herein, α refers
to the probability of random change in kdecay. In order to implement conservative estimates for
the clinically occult random variable α, we choose an asymmetric, right-skewed probability dis-
tribution function. Second, we check whether α is less than a randomly generated number
between 0 and 1. If that is the case, we then generate a second random number between 0 and 1
and compute the updated kdecay as

kdecay ¼
previous kdecay

1þ random number
: ð5Þ

We then allow the number of HGSOC cells, N(t), to follow the Gompertzian growth law until
the probability of a random change in kdecay occurs again, which leads to another update.

Given a fixed carrying capacity, varying either kgrowth or kdecay makes little qualitative differ-
ence from a mathematical perspective; we can thus infer that modifying either parameter yields
similar qualitative effects. From a molecular perspective, we chose to focus on changes in the
initial HGSOC growth saturation rate, kdecay, as these infrequent, rate-limiting changes could
be associated in part with the several (epi)genetic alterations in tumor suppressor genes and/or
changes in genes involved in DNA damage repair pathways. Reducing the growth saturation
rate, kdecay, of the HGSOC tumor cell burden the program increases the current HGSOC carry-

ing capacity, Nð1Þ ¼ e
kgrowth
kdecay , in a stochastic fashion. Changes are globally implemented, mean-

ing that once a stochastic jump in kdecay occurs, cells proliferate according to the newly updated
Gompertz-type growth law. Simulation time continues until the untreated HGSOC life-threat-
ening tumor volume threshold is reached (e.g. corresponding to 1012 HGSOC cells), or until
38.5 years since the inception of the first HGSOC cell have elapsed. If the respective HGSOC
growth curve reaches TVU detectability, we compute the time since the inception of the first
HGSOC cell until clinical detection is reached. Similarly, we compute the time until clinical
life-threatening HGSOC tumor volume is reached if the respective HGSOC growth curve
reaches that stage. For an individual growth curve, the initial kgrowth is uniformly sampled from
the values illustrated in Fig 1. Calculations are performed for n = 1000 simulated growth
curves. A flowchart of the computational model is shown in Fig A in S1 File. The definitions
and assumptions used throughout the implementation of the HGSOC carcinogenesis, growth
and progression model are provided in Tables 1 and 2, respectively.

Results

Model simulation of HGSOC in silico growth curves
Based on the HGSOC clinical findings reported in [40] upon TVU examinations 12 months or
fewer prior to the diagnosis time of the malignancy, we computed a median HSGOC initial
growth rate of kgrowth = 0.0133 day-1 (range = 0.0014–0.0448). The data points illustrated in Fig
1 represent estimated lower bounds for the initial HGSOC rates used to initialize our model.
Five representative growth curves generated by the HGSOC model in our simulated cancer-
positive cohort are illustrated in Fig 2. The same baseline parameter set and cell-number-to-
volume and tumor diameters conversions were used (Tables A–B in S1 File). By incorporating
rare but relatively large jumps in the growth saturation rate kdecay, we illustrate how a HGSOC
volume grows in stepwise patterns and may not increase for relatively large amount of time
(Fig 2), as opposed to exhibiting a constant doubling time. This approach also enables us to
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generate a distribution of heterogeneous pre-clinical HGSOC natural histories in an in silico
cancer-positive cohort. Statistics generated from one representative simulation of the HGSOC
growth and progression model using n = 1000HGSOC growth curves are reported in Table B
in S1 File. Therein, the generated data illustrate the time needed to reach the baseline TVU-
detectable HGSOC volume of 10 cm3, the baseline life-threatening tumor volume of 103 cm3,
and the window of opportunity interval length. The number of HGSOC growth curves that
never reach the TVU baseline detectability threshold (occult), or the life-threatening threshold
(succumbed) are also reported therein. Subsequent results reported below are based on the
same computation that yielded the data generated in Table B in S1 File.

Number of HGSOC carcinogenetic events leading to HGSOC growth
and progression
Computational results indicate that for the 491 sample HGSOC growth curves that reach the
baseline TVU detection threshold, the number of infrequent, rate-limiting events associated
with changes in the initial growth saturation rate, kdecay is around 7 (median = 7, mode = 6,
range = 3–10, Fig 3A). Interestingly, for this representative simulation, the mode number of
required events was 5, and the reported maximum of such events was 10. Note also the sub-
stantial heterogeneity in the number of events required to lead to a TVU-detectable HGSOC
tumor volume. Similarly, for the 418 growth curves that reach the baseline life-threatening
tumor volume threshold, the number of rate-limiting events associated with changes in the ini-
tial growth saturation rate, kdecay, is around 7 (median = mode = 7, range = 4–10, Fig 3B), and

Table 2. Assumptions used throughout the model.

Assumption

1 Patients under 50 years of age are assumed premenopausal; conversely, patients over 50
are assumed postmenopausal. Herein, menopause is defined as occurring 12 months
after a patient’s last menstrual cycle, and confirmed by follicle stimulating hormone
levels > 40 IU/L [39, 48].

2 The average length of a woman’s menstrual cycle is 28 days [48]; the lifetime cumulative
number of menstrual cycle a woman with two full-term pregnancies experiences is 460,
equivalent to a cumulative lifetime period of 38.5 years.

3 Ovarian volumes >20 cm3 in premenopausal and >10 cm3 in postmenopausal women are
defined as abnormal [38], and are assumed in this model to be indicative of positive
disease.

4 HGSOC cells are assumed to exhibit indefinite proliferative potential [49]; for simplicity, we
assume no explicit spatial constraints.

5 The initial TVU monitoring event for each simulated HGSOC growth curve occurs at a time
point randomly distributed between 0 and 5 years since the inception of the first HGSOC
cell; times needed to reach TVU detectability, the life-threatening untreated volume and
window of opportunity interval length are recorded from subsequent monitoring events
until the end of simulation time.

6 The TVU monitoring algorithm has 100% specificity and 100% positive predictive value.

7 All HGSOC growth curves are compliant with the TVU monitoring protocol (i.e. perfect
detection times are reported).

8 Contamination at TVU monitoring is 0 (i.e. no incidental TVU examinations are performed
between consecutive monitoring events).

9 All simulated HGSOC growth curves refer to untreated cases. This enables us to provide an
estimate of the window of opportunity interval length in the absence of any treatment.

10 If left untreated, all HGSOCs detected by the TVU monitoring events can potentially lead to
a life-threatening tumor volume load; HGSOC growth curves defined as occult are
assumed to remain clinically dormant and non-life-threatening for the entire duration of
simulation timeframe.

doi:10.1371/journal.pone.0156661.t002
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the reported maximum of such events was 10. Note again the substantial heterogeneity in the
number of events required to lead to a life-threatening, untreated HGSOC tumor volume since
the inception of the first malignant cell. One or two extra events are required in order for a
detectable HGSOC tumor volume to become life-threatening.

Estimating the window of opportunity interval length
To produce estimates of the duration of HGSOC’s pre- and post-diagnosis phases, we report
the generated value ranges (median, range), with median values of the times needed to reach
baseline TVU detection threshold, baseline life-threatening tumor volume, and the window of
opportunity interval length; we chose to report median values as the median was a more robust
statistic compared to the mean throughout all sample model simulations, and thus constitutes
a more accurate descriptor of the aggregate cancer-positive HGSOC population dynamics. The
model-generated empirical cumulative distribution functions (cdf’s) for reaching the baseline
detection threshold, the baseline life-threatening tumor volume and the window of opportunity
length interval are reported in Fig 4A–4D. For this representative simulation, a total of 498
growth curves reach the baseline TVU detection threshold (median = 26.7 years, range = 4.52–

Fig 2. Representative simulation of the in silicoHGSOC growth and progression model generating five HGSOC growth curves. This sample
simulation of the HGSOC progression model illustrating five representative growth and progression curves is generated using the same baseline parameter
set outlined in Tables A-B in S1. Each of the representative growth curves is an independent realization of the HGSOC stochastic growth and progression
model, initialized with the same parameter value set. Values the baseline TVU detectability and life-threatening untreated tumor threshold are as reported
previously. In this representative simulation, two curves reach the detection threshold (lower solid line) in 16.4 and 31.2 years, respectively, and life-
threatening tumor volume threshold (upper solid line) in 19.3 and 32.6 years, respectively. The calculated window of opportunity interval length is thus 2.9
and 1.4 years, respectively. One curve reaches only the detection threshold, in 35.0 years, and two curves remain below both thresholds. Time is measured
since the inception of the first HGSOC cell. The curves are sorted from left to right. Note that the probability that a random change in kdecay occurs is
independent of whether current carrying capacity is reached or not.

doi:10.1371/journal.pone.0156661.g002
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38.5), a total of 418 growth curves reach the baseline life-threatening tumor volume threshold
(median = 27.65 years, range = 7.28–38.6), and a total of 418 growth curves reach both thresh-
olds, and are thus included in the window of opportunity interval length computation and cdf
estimation (median = 1.76 years, range = 0.3–14, Fig 4C). As an alternative to Fig 4C, we illus-
trate in Fig 4D the fraction of radiographically detected, treatment-free HGSOC growth curves
that progress to the life-threatening volume threshold is illustrated. Increasing the number of
simulated HGSOC growth curves (n> 1000) does not yield substantially different median or
range values for the estimated cdf’s.

Assessing the feasibility of multiple frequency TVUmonitoring protocols
Fig 5 illustrates the relative proportions of HGSOC curves that remain occult (first, black hori-
zontal column), that are detectable in the first or subsequent TVU monitoring events (second,
grey horizontal column), and lastly, that are succumbed (third, white horizontal column) out
of n = 1000 simulated HGSOC growth curves. Semiannual monitoring HGSOC progression
via TVU performs the best (0.9% of total HGSOC curves succumb [see Table 1 for definitions])
despite the frequent TVU monitoring, compared to a 4.2% succumb rate when monitored
annually, or 10.7% when monitored biannually. It is also worth noting the relatively large pro-
portion of HGSOC curves that remain occult (50.9% of the total n = 1000 growth curves in this

Fig 3. Number of HGSOC carcinogenetic events leading to HGSOC growth and progression. In one representative simulation of the model generating
1000 cancer-positive initially clinically occult HGSOC growth curves, (A) 491 sample HGSOC growth curves progress to reach the detectability threshold and
(B) 418 reach the life-threatening volume threshold. (A) We record the frequency of rate-limiting events associated with changes in the initial growth
saturation rate, kdecay out of the n = 491 growth curves. For this representative simulation, the mode and median number of such events are 5, and 7
respectively. (B) We record the number of rate-limiting events associated with changes in the initial growth saturation rate, kdecay, out of n = 418 growth
curves. For this representative simulation, the mode and median of the number of such events are 7, and 7 respectively. A maximum number of 10 events
associated with changes in the initial growth saturation rate, kdecay, is recorded in both panels.

doi:10.1371/journal.pone.0156661.g003
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representative simulation, Fig 5). This representative simulation was performed using the base-
line parameters outlined in Tables A-B in S1 File.

TVU Sensitivity Analysis
We conducted a sensitivity analysis with respect to the TVU detection thresholds, set at 0.5, 1
or 1.5 cm3, to determine whether the percentages reported above would drastically vary. We
demonstrate that the percentage of HGSOC growth curves that reach the updated baseline
detection and life-threatening tumor volume thresholds in between the same monitoring
events increases with less frequent TVU monitoring events (Fig 6A) and decreases with more
sensitive TVU detection thresholds (Fig 6B). Our findings confirm that more sensitive TVU
detection thresholds and more frequent TVU monitoring improve diagnostic accuracy
(decreasing the number of succumbed HGSOC growth curves). These plots were generated
from one representative simulation using a total number of n = 1000 simulated growth curves
and performed using the same baseline parameter set and cell-number-to-volume and tumor

Fig 4. Empirical cumulative distribution functions for (A) time until baseline TVU detection threshold is reached (TD); (B) time until life-threatening
tumor volume is reached (TLV); (C) the window of opportunity interval length; (D) the fraction of radiographically detected, treatment-free HGSOC
cases that progressively reach the life-threatening threshold starting from the baseline detection threshold time. The progression of n = 1000
HGSOC growth curves is simulated in order to determine typical empirical cumulative distribution functions for (A) time until baseline TVU detection threshold
is reached (median = 26.7 years, range = 4.52–38.5); in this sample simulation, a total of 498 growth curves reach this threshold; (B) time until life-threatening
tumor volume is reached (median = 27.65 years, range = 7.28–38.6). In this sample simulation, a total of 418 growth curves reach this threshold; (C) window
of opportunity interval length (median = 1.76 years, range = 0.3–14). In this sample simulation, a total of 418 growth curves reach both the baseline detection
and life-threatening volume thresholds, and are thus included in the window of opportunity interval length calculation. Statistics generated from one sample
simulation of the HGSOC growth and progression model illustrating the time needed to reach the baseline TVU detection threshold, the baseline life-
threatening tumor volume (TLV), the window of opportunity interval length (WOP), and the number of HGSOC growth curves that never reach TVU baseline
detectability (occult), or the life-threatening threshold (regressed) volumes, respectively, during one sample simulation are given in Table C in S1 File.

doi:10.1371/journal.pone.0156661.g004
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diameters conversions as reported in Tables A-B in S1 File. The data used to produce Fig 6 is
given in Table D in S1 File.

Discussion
HGSOC constitutes an attractive target for early detection strategies if detected before reaching
large volume advanced stage, when overall survival rates are grim [50]. The validation of any
HGSOC tumor volume clinical detection strategy is thus whether frequent screening is capable
of lowering mortality rates. However, numerous transvaginal ultrasound (TVU) detection-
based population studies aimed at detecting low-volume ovarian cancer have not yielded
reduced mortality rates and thus challenge the effectiveness of TVU as a HGSOC monitoring
strategy aimed at improving overall survival rates [7, 8, 14–17, 20–23, 40, 51]. A quantitative
invalidation of TVU as an effective HGSOC screening strategy is a necessary next step. Our
mathematical modeling approach proposes a quantitative explanation for the reported failure
of TVU to improve HGSOC low-volume detectability and overall survival.

We develop a novel in silicomathematical assessment of the efficacy of a unimodal TVU
monitoring regimen as a strategy aimed at detecting low-volume HGSOCs in cancer-positive
cases; our model captures the dynamic, temporal evolution of HGSOC progression, and is
characterized by several rare rate-limiting events, which can be associated in part with (epi)
genetic alterations in tumor suppressor genes and DNA damage repair pathways. We chose to

Fig 5. Feasibility of HGSOC unimodal TVUmonitoring acrossmultiple monitoring frequencies.We report the relative proportions of HGSOC curves
that remain occult (first, black horizontal column), that are detectable in the first or subsequent TVUmonitoring events (second, grey horizontal column), and
lastly, that are succumbed (third, white horizontal column) out of n = 1000 initial HGSOC growth curves. The proportions reported vary for different TVU
monitoring frequencies, i.e. every 5, 4, 3, 2 years, every 1 year (annually) or every 6 months (semiannually). Importantly, the last horizontal column
represents the percentage of HGSOC growth curves that would be missed even under frequent TVUmonitoring.

doi:10.1371/journal.pone.0156661.g005
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focus on an unimodal, ultrasound-based HGSOC detection method (i.e. TVU), rather than on
blood biomarker levels (i.e. CA-125 or HE4 levels), pelvic examinations or simultaneous TVU
and CA-125 detection. Despite its well-recognized detection limitations in detecting localized
or distant metastatic burden, TVU examinations are routinely performed when assessing ovar-
ian volume, while the latter are either not recommended as low HGSOC volume detection
unimodal prognostic markers [7, 15, 25] or have not been shown to confer a mortality benefit
[15, 16]. Our results suggest that multiple frequency TVUmonitoring across various detection
sensitivities does not significantly improve detection accuracy of HGSOCs in an in silico can-
cer-positive population. Specifically, despite the fact that semiannual monitoring HGSOC pro-
gression via TVU performs, as expected, the best compared with annual or biannual
monitoring (0.9% succumbed cases versus 4.2% and 10.7%, respectively), a nonzero percentage
of succumbed cases is reported in all subsequent simulations of the HGSOC growth and pro-
gression model. Given that our TVU monitoring algorithm is assumed to have 100% specificity
and 100% positive predictive value, the actual percentage of such succumbed HGSOC cases
might be substantially higher. This invalidates the use of TVU as an effective HGSOC screening
strategy aimed at lowering mortality rates in general-risk or high genetic-risk women. Our
mathematical model thus represents a novel attempt to explain why multiple, large-scale TVU-

Fig 6. Percentage of HGSOC growth curves that are not detected by TVUmonitoring for (A) varying monitoring frequencies and (B) varying TVU
detection thresholds. (A) Fewer HGSOC growth curves reach the succumbed status with more frequent TVUmonitoring events (x-axis) and more sensitive
TVU detection thresholds (0.5 cm3, black vertical columns; 1 cm3, dark grey vertical columns; 1.5 cm3, light grey vertical columns; 10 cm3, white vertical
columns). In this panel, vertical columns indicate the percentage of additional HGSOC growth curves that are missed by decreasing TVU detection
thresholds relative to the baseline TVU detection threshold set at 10cm3, out of a total of 1000 simulated HGSOC growth curves. (B) Fewer HGSOC growth
curves reach the succumbed status with more sensitive TVU detection thresholds (x-axis) and more frequent TVUmonitoring events ranging from six months
to five years. In this panel, vertical columns indicate the percentage of additional HGSOC growth curves that are missed by decreasing the frequency of TVU
monitoring events relative to a baseline 6-month frequency, out of a total of 1000 simulated HGSOC growth curves.

doi:10.1371/journal.pone.0156661.g006
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based HGSOC detection screening studies have not proven significant mortality benefits, and
focuses on a malignancy that has received very little attention by the mathematical oncology
community.

We find that the median time until baseline TVU detection from the inception of the first
HGSOC cell is 26.7 years. Given that an average patient’s age at diagnosis of ovarian cancer is
55–65 years [1], our findings suggest that the first HGSOC cell may appear on average around
28–38 years of age, during a patient’s premenopausal period. This may be due to a number of
factors, including reproductive history, oral contraceptive use and family history of breast or
ovarian cancer [52, 53]. Furthermore, simulation results suggest that once a HGSOC tumor
volume becomes clinically detectable, it takes an additional median number of 1.7 years to
reach the baseline life-threatening tumor volume threshold; this implies that for a radiographi-
cally detected, treatment-free malignancy in which no surgery and/or systemic therapies have
yet been performed/administered, the patient would succumb to the disease relatively quickly
after initial diagnosis. Since 90% of the diagnosed HGSOC patients do not have abnormal clini-
cal findings based on TVU performed 12 months or more prior to HGSOC diagnosis [40], the
reported median window of opportunity interval length (1.76 years) reflects a bias towards the
more aggressive and fast-growing HGSOCs. This is a key prediction of our model, provided by
computer simulations in the absence of clinical/experimental estimates of the period of time
needed to reach the life-threatening tumor volume threshold or window of opportunity inter-
val length. This does not, however, translate into reduced mortality levels in an in silico cohort
across multiple TVU monitoring frequencies or detection sensitivities. Our findings suggest
that even a semiannual, unimodal TVU monitoring protocol is expected to miss detectable
HGSOCs. We also find that circa 50% of the simulated HGSOC growth curves never reach the
baseline detectability threshold, and that on average, 5–7 rate-limiting events are associated
with reaching HGSOC detectability and life-threatening untreated HGSOC volumes
respectively.

The predictions obtained with our HGSOC model are consistent with other published can-
cer progression chronologies reported for colorectal [54] or pancreatic cancers [54, 55].
Yachida et al. analyzed genomic sequencing data of metastatic tumors from 7 patients with
metastatic pancreatic cancer and calculated that the first parental (non-metastatic) founder
cancer cell may require 6.8 years to generate sub-clones with metastatic potential [55]. These
sub-clones could give rise to distant metastases within 2.7 years, with clinical diagnosis occur-
ring 18–20 years after the genesis of the founder cell. Jones et al. also reported that a benign
colorectal tumor might require 17 years to develop into an advanced carcinoma [56]. On a
larger timescale,Meza et al. reported that the average time from an initial premalignant muta-
tion to the ultimate conversion of a detectable cancer in pancreatic and colorectal cancers may
take up to 50 years [54]. While tumor progression timelines may vary for different cancers,
these studies share the implications that a period of at least 20 years since inception of the first
malignant cell should pass before a primary tumor becomes detectable.

Our modeling results can also be correlated with published comprehensive genomic studies
of clinically annotated HGSOC samples. For example, The Cancer Genome Atlas Research
Network examined 489 HGSOC tumor samples, and provided the most comprehensive and
integrated catalogue of (epi)genomic changes associated with HGSOC progression to date [57].
An outcome of our model is that an estimated 5 to 8 infrequent, rate-limiting events associated
with changes in the initial growth saturation rate, kdecay are required to reach a baseline TVU
detectable or life-threatening untreated HGSOC tumor volume. Additionally, we note the sub-
stantial heterogeneity in the number of such genomic aberrations predicted by our model, and
observe that on average, one or two extra events are required in order for a detectable HGSOC
tumor volume to become life-threatening. Our modeling findings align with the reported
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heterogeneity and number of the HGSOC-associated pathways altered in clinical HGSOC sam-
ples, as identified in [57] (see Fig 3 therein).

Our mathematical modeling approach also represents a novel in silico framework aimed at
modeling HGSOC growth and progression. Surprisingly, few similar mathematical modeling
inferences regarding the evolution of ovarian cancers or estimating the efficacy of various ovar-
ian cancer screening strategies have been published to date. Durrett et al. developed a multi-
type branching processes model for ovarian cancer growth and progression to estimate the
window of opportunity for screening, which they define as the time during which TVU-based
tumor detection can result in a significantly reduced chance of mortality [30]. Based on their
mathematical analysis, it is predicted a window of opportunity of 2.9 years, thus ovarian cancer
screening should occur at least biannually. In another example, Brown and Palmer used a
Monte Carlo method to fit an exponential in silicomodel for tumor growth, with separate
growth rate parameters for early and advanced stage serous ovarian cancers [31]. The Brown
and Palmer study was based on occult tumor size data collected from healthy germline BRCA1
mutation carriers who had their ovaries and Fallopian tubes prophylactically removed. They
estimated the window of opportunity for TVU detection of early stage occult serous cancers to
be 4.3 years, and predicted that most serous cancers would progress to an advanced stage a
median of 0.8 years prior to clinical, surgical detection. Nonetheless, these existing mathemati-
cal efforts, conducted towards modeling ovarian carcinogenesis or estimating the efficacy of
various ovarian cancer screening strategies, do not properly account for the considerable
degree of heterogeneity of the disease [57, 58] and correlate primary tumor size with metastatic
potential, disregarding clinically reported findings of low primary tumor volume advanced-
stage HGSOCs or large primary tumor volume early-stage HGSOCs [6]. In contrast, our math-
ematical investigation focuses specifically on modeling HGSOC growth and progression, and
does not link primary tumor volume to metastatic potential. Moreover, our findings show that
multiple frequency TVUmonitoring across various TVU detection sensitivities does not signif-
icantly improve the detection of HGSOC tumor volumes in an in silico cancer-positive
HGSOC population.

Several limiting assumptions were made in our model. First, we do not distinctly address
the underlying mechanism behind either HGSOC initiation or its progression, but it is well
known that many factors may contribute to HGSOC carcinogenesis and progression (e.g. loss
of function of tumor suppressor gene p53 and the disruption of the homologous recombination
repair pathway via somatic or germline mutations of the BRCA1 and BRCA2 genes [11, 57,
58]). Second, we assume that the initiation of HGSOC occurs at some point during a woman’s
premenopausal stage, and we increment time in intervals of 28 days (the average length of a
menstrual cycle), to reflect subsequent potential changes in the growth saturation rate. A clini-
cally recognized risk factor for HGSOC progression is the number of ovulatory events during a
woman’s lifetime [5, 10]. Third, we do not associate a direct cost to a more rapid cell cycle time
(or faster doubling time), even though one probably does exist in vivo. Given the model sensi-
tivity to initial conditions (the initial tumor growth rates), we chose conservative baseline TVU
detection and life-threatening volume thresholds. Variation in the model parameters or base-
line thresholds would only result in a faster or delayed HGSOC progression, but would not
yield substantially different median or range values for the estimated cdf’s. A reasonable
parameter set range would, however, enable us to obtain sharper estimates. Finally, it is possi-
ble that HGSOC rates of cellular division may vary within different subcellular populations
belonging to the tumor volume. For simplicity, we do not distinguish between the various sub-
population growth rates, as such values are difficult to quantify empirically.

The HGSOC growth and progression model presented here represents an initial and novel
attempt to model in silico a clinically occult pathological process, and obtain quantitative
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estimates of otherwise unknown statistics that are impossible to obtain even in large-scale pro-
spective cohort screening studies (i.e. time needed to reach baseline TVU detectability, time
needed to reach baseline life-threatening untreated tumor volume, and window of opportunity
interval length). Our mathematical model provides a quantitative mathematical explanation
that supports clinical findings such as the ones reported in [40] and results from prospective
TVU screening trials such as the UKTOCS or PLCO, and thus represents a novel attempt to
explain why multiple, large-scale TVU-based HGSOC detection screening studies have not
proven significant mortality benefits. Our model is consistent with case reports and prospective
TVU screening population studies in that a key prediction of our model is that HGSOC detec-
tion is not amenable to frequent TVU monitoring. The mathematical model provides support
to the empirical recommendation against frequent HGSOC monitoring or screening [25].

Supporting Information
S1 File. Fig A.Workflow behind the HGSOC growth model. Table A. The baseline parameter
values used in the model simulations. Table B. Cell-number-to-volume and tumor diameter
conversion. Table C. Statistics generated from one sample simulation of the HGSOC growth
and progression model illustrating the time needed to reach the baseline TVU detection thresh-
old, the baseline life-threatening tumor volume (TLV), the window of opportunity interval
length (WOP), and the number of HGSOC growth curves that never reach TVU baseline
detectability (occult), or the life-threatening threshold (regressed) volumes, respectively, during
the sample simulation. Table D. The data used to produce Fig 6A and 6B.
(DOCX)
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