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The paraventricular nucleus (PVN) of the hypothalamus is an important site for autonomic
and neuroendocrine regulation. Experiments in anesthetized animals and in vitro indicate
an interaction among gamma-aminobutyric acid (GABA), nitric oxide (NO), and glutamate in
the PVN. The cardiovascular role of the PVN and interactions of these neurotransmitters in
conscious animals have not been evaluated fully. In chronically instrumented conscious
rats, mean arterial pressure (MAP) and heart rate (HR) responses to microinjections
(100 nl) in the region of the PVN were tested. Bilateral blockade of ionotropic excitatory
amino acid (EAA) receptors (kynurenic acid, Kyn) in the PVN produced small but significant
decreases in MAP and HR. GABAA receptor blockade (bicuculline, Bic), and inhibition of
NO synthase [(NOS), N-(G)-monomethyl-L-arginine, L-NMMA] each increased MAP and
HR. The NO donor sodium nitroprusside (SNP) produced depressor responses that were
attenuated by Bic. NOS inhibition potentiated both pressor responses to the selective EAA
agonist, N-methyl-D-aspartic acid (NMDA), and depressor responses to Kyn. Increases
in MAP and HR due to Bic were blunted by prior blockade of EAA receptors. Thus,
pressor responses to GABA blockade require EAA receptors and GABA neurotransmission
contributes to NO inhibition. Tonic excitatory effects of glutamate in the PVN are tonically
attenuated by NO. These data demonstrate that, in the PVN of conscious rats, GABA,
glutamate, and NO interact in a complex fashion to regulate arterial pressure and HR
under normal conditions.
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INTRODUCTION
The paraventricular nucleus (PVN) of the hypothalamus is a
critical site of integration for autonomic- and neuroendocrine-
mediated cardiovascular responses (Swanson and Sawchenko,
1983). In addition to its role in the hypothalamoneurohy-
pophysial system, the PVN is involved in regulation of the auto-
nomic nervous system (Pyner and Coote, 2000; Patel et al., 2001;
Li and Patel, 2003; Coote, 2004). Morphological and electro-
physiological studies have shown that the PVN is reciprocally
connected to regions of the brain that are involved in cardiovascu-
lar regulation (Saper et al., 1976; Swanson and Sawchenko, 1983).
Importantly, the PVN projects to both the intermediolateral cell
column of the spinal cord and the rostral ventrolateral medulla

(RVLM), regions critical in control of the sympathetic nervous
system (Badoer, 1996; Pyner and Coote, 2000; Hardy, 2001).

Nitric oxide (NO) has been shown to act as a gaseous neuro-
modulator to influence synaptic function in the central nervous
system (Bredt et al., 1990; Hirooka et al., 1996; Martins-Pinge
et al., 1997; Zanzinger, 1999). NO synthase (NOS) is expressed in
the PVN (Zhang et al., 1998; Kantzides and Badoer, 2005; Mueller
et al., 2006) and NO appears to play a role in endocrine and
autonomic regulation of cardiovascular responses. In vitro stud-
ies indicate that neuronal activity within the PVN is modulated
by NO (Li et al., 2003; Stern, 2004). In addition, administra-
tion of an NO donor into the PVN decreases renal sympathetic
nerve discharge, arterial pressure, and heart rate (HR; Horn et al.,
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1994; Zhang and Patel, 1998). Conversely, microinjection of NOS
blockers into the PVN produces pressor and sympathoexcitatory
responses (Zhang and Patel, 1998; Wang et al., 2005). These data,
primarily from anesthetized animals, suggest that NO has a tonic
effect within the PVN to inhibit resting sympathetic activity and
arterial pressure.

The effects of NO within the PVN appear to involve a complex
interaction with the neurotransmitters glutamate and gamma-
aminobutyric acid (GABA). It has been proposed that activation
of the NMDA subtype of ionotropic glutamate receptors increases
release of NO in the PVN, which then negatively modulates
NMDA-mediated increases in sympathetic nerve discharge (Li
et al., 2001). Depressor and sympathoinhibitory responses to NO
donors are blocked by the GABAA receptor antagonist bicuculline
(Bic; Zhang and Patel, 1998). This is consistent with the concept
that NO may blunt responses to exogenous NMDA by increasing
GABA transmission. However, it is not known whether endoge-
nous NO tonically modulates basal excitatory effects of glutamate
within the PVN.

The role of NO is known to differ dramatically during differ-
ent levels of neuronal activity and under a variety of physiological
and pathophysiological conditions (Villar et al., 1994; DiCarlo
et al., 2002; Felder et al., 2003; Li and Patel, 2003; Mueller et al.,
2003, 2006; Heesch et al., 2009). However, the interactions among
NO, GABA, and glutamate have been studied primarily in anes-
thetized animals (Zhang and Patel, 1998; Li et al., 2001; Patel
et al., 2001; Akine et al., 2003). Anesthesia is well-known to
alter neurotransmission, including both GABAergic and gluta-
matergic neurotransmission (Franks and Lieb, 1982; Jin et al.,
2009; Olsen and Li, 2011), and autonomic and cardiovascu-
lar regulation (Schadt and Ludbrook, 1991; Moffitt et al., 1998,
1999; Araújo et al., 1999; Sakima et al., 2000; Machado, 2001).
Furthermore, anesthesia alters cardiovascular responses mediated
by the PVN (Kannan et al., 1987, 1989). Given this evidence, it is
apparent that GABA, glutamate, and NO function may differ in
the conscious state. Therefore, it is critical to evaluate the rela-
tive roles of GABA, glutamate, and NO, and their interactions, in
conscious animals in order to determine the importance of these
transmitters in the PVN in control of the cardiovascular system in
the conscious state.

This study in conscious rats tested the hypothesis that, in
regard to control of arterial pressure, both NO and GABA in the
PVN are tonically inhibitory, while glutamate is tonically exci-
tatory. We also hypothesized that the tonic inhibitory effects of
NO require GABAergic mechanisms within the PVN. Finally, we
tested the hypothesis that endogenous NO modulates the tonic
excitatory effects of glutamate.

EXPERIMENTAL PROCEDURES
All procedures were performed according to the guidelines stated
in the National Institutes of Health “Guide for the Care and
Use of Laboratory Animals.” All protocols were approved by
the University of Missouri-Columbia Animal Care and Use
Committee. Twenty-nine male Sprague-Dawley rats (280–350 g,
Harlan Sprague Dawley, Indianapolis, IN) were used in these
studies. The rats were allowed to adapt in house for at least 1 week
before any instrumentation. Rats were allowed access to water and

food (Formulab Diet, 0.28% sodium, Purina, St. Louis, MO) ad
libitum.

INSTRUMENTATION
Initially, rats were anesthetized with Isoflurane [AErane, Baxter,
Deerfield, IL (5% in 100% O2, 2 L per minute for induction and
maintenance at 2–2.5%)], placed in a stereotaxic apparatus (Kopf,
Tujunga, CA) and using aseptic technique bilateral guide cannu-
lae (22 gauge) directed to the region of the PVN were implanted.
Coordinates for cannulae placement were similar to previous
work (Kenney et al., 2001; Li et al., 2001; Zhang et al., 2002; Chen
and Toney, 2003): 1.8 mm posterior to bregma, 0.5 mm lateral to
midline, and 7.6 mm below the surface, with the incisor bar set to
5 mm above the interaural plane and the cannula vertical. Studies
from our laboratories have shown similar coordinates to produce
injections sites localized to the PVN (Kvochina et al., 2009; King
et al., 2012). Rats were allowed to recover for 12 days, anesthetized
again with Isoflurane and aseptically instrumented with arterial
and venous catheters for measurement of arterial pressure and
HR and injection of drugs, respectively. The catheters were routed
subcutaneously to the nape of the neck, exteriorized, and secured
to the skin with suture; catheters were filled with heparinized
saline (100 U/ml) and sealed with a stylet. Rats were allowed to
recover for 2 days before the beginning of experiments.

EXPERIMENTAL PROTOCOLS
On the day of experimentation, arterial pressure, mean arte-
rial pressure (MAP), and HR were monitored (PowerLab;
ADInstruments, Colorado Springs, CO) for at least 30 min to
ensure stable baseline parameters prior to any experimental
manipulation. Microinjections were made using stainless steel
injectors (33 gauge) connected by PE tubing to a 0.5 μl syringe
(Hamilton, Reno, NV). Injectors were filled with the appropriate
solution and inserted into the guide cannulae prior to injection.
Protocols designed to evaluate tonic effects of endogenous trans-
mitters utilized bilateral microinjections of appropriate agents
to block the effects of the specific transmitter. Because the time
course of the agonists used is relatively short, protocols examin-
ing effects of agonists utilized unilateral microinjections. As in
other studies (Chen and Toney, 2003; Chen et al., 2003; Li and
Pan, 2007a), the PVN initially was identified in all rats by pressor
responses to Bic (1 mM) with mild or no behavioral response.

Tonic excitation of the PVN
Tonic effects on MAP and HR of ionotropic glutamate recep-
tor activation in the PVN in conscious rats were evaluated by
examining responses to bilateral microinjection of kynurenic acid
[Kyn, 40 mM; 100 nl, (Li and Pan, 2007a)], a general ionotropic
glutamate receptor antagonist. In control experiments, similar
volumes of saline (0.9%) were injected bilaterally.

Tonic inhibition of the PVN
These protocols examined the tonic effects of NO and GABAA

receptor activation within the PVN on cardiovascular func-
tion. Bilateral microinjections (100 nl) of L-NMMA [N-(G)-
monomethyl-L-arginine, 2 mM (Li et al., 2001), a NOS inhibitor,
or Bic 1 mM, (Li et al., 2006)], a GABAA receptor antagonist, were
made in the PVN and hemodynamic responses monitored.
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Transmitter interactions
To examine the interactions among NO, GABA, and glutamate
in the PVN of conscious rats, the response to manipulation of
the different receptor systems was evaluated in the presence and
absence of other systems. Hemodynamic responses to unilat-
eral microinjection of the NO donor sodium nitroprusside [SNP,
1 M; 100 nl, (Zhang and Patel, 1998) were evaluated alone and
in the presence of Bic (1 mM; 100 nl), or saline (0.9%; 100 nl)].
Similarly, the effects of unilateral microinjections of the selec-
tive ionotropic glutamate receptor agonist N-methyl-D-aspartate
[NMDA, 1 mM; 100 nl, (Li et al., 2001)] were evaluated alone and
in the presence of the NOS inhibitor L-NMMA (2 mM; 100 nl).

To examine the interaction of tonic endogenous ionotropic
glutamate receptor activation with endogenous NO, the response
to bilateral PVN injection of Kyn (40 mM, 100 nl) was evaluated
in the presence and absence of inhibition of NOS with L-NMMA
(2 mM; 100 nl). Finally, the interaction of endogenous gluta-
mate and GABA was evaluated. Hemodynamic effects of bilateral
blockade of GABAA receptors by microinjection of Bic (1 mM;
100 nl) were examined alone and in the presence of blockade of
ionotropic glutamate receptors with Kyn (40 mM; 100 nl).

The time allowed for recovery following the initial administra-
tion of a specific agent was based on previous studies showing
recovery, as well as repeatable responses (Li et al., 2001; Chen
and Toney, 2003; Chen et al., 2003). The second administration
of each drug was made 5 min after antagonist administration.
A maximum of 3 drug administrations was performed in each
PVN and drugs were applied using a microsyringe connected by
PE tubing to an injector. At the end of the experiment, Pontamine
sky blue dye (2%; 100 nl) was microinjected into the experimen-
tal site of the brain for subsequent histological estimation of
injection sites.

At the end of the experiment, rats were euthanized by over-
dose of sodium pentobarbital; guide cannulae were detached from
their cemented position on the skull and brains were fixed in 4%
formaldehyde for at least 48 h. Serial coronal sections (40 μm)
were cut using a cryostat, thaw mounted on microscope slides
and stained with 1% aqueous neutral red. Figure 1 shows the
injection site within the PVN in one rat. Unfortunately, in most
rats removing the guide cannulae prior to fixation of the brains
produced non-specific damage. However, injection tracts, the
rostral-caudal spread of the dye and dye spots were confined to
the brain parenchyma in regions consistent with PVN injection
sites reported in previous studies from our laboratories and others
(Martin and Haywood, 1998; Kenney et al., 2001; Li et al., 2001;
Chen et al., 2003; Kvochina et al., 2009; King et al., 2012).

DRUGS
Bic methiodide, SNP, L-NMMA, and Kyn were obtained from
Sigma Chemical (St. Louis, MO). NMDA was obtained from
Tocris (St. Louis, MO). With the exception of Kyn, all drugs
were dissolved in sterile saline. Kyn was first dissolved in a few
drops of 1 N NaOH before being diluted in saline. All drugs were
pH adjusted to 7.3–7.5 and filtered before microinjection. Doses
of drugs for microinjection were taken from previous studies
(Martin et al., 1991; Zhang and Patel, 1998; Chen and Toney,
2001; Chen et al., 2003; Li et al., 2006; Li and Pan, 2007a,b). Most

FIGURE 1 | PVN injection site. Brightfield photomicrograph (Left) indicates
the location of an injection site within the PVN of an individual rat. 100 nl of
the dye Pontamine sky blue was injected at the conclusion of all
experiments. A schematic of the PVN (Paxinos and Watson, 2007) is
superimposed for reference.

drugs used for microinjection were relatively short-acting with
recovery typically within 30–45 min or less.

ANALYSIS OF DATA
All results are expressed as mean ± SEM. Responses to drugs are
expressed as the difference between the basal value and the peak
increase or decrease following each dose of drug. Student’s two-
tailed paired t-test was used for comparison of hemodynamic
parameters between baseline conditions and after drug. We also
used Student’s two-tailed paired t-test to compare the response
(change) to two different drugs or to a given drug in the presence
and absence of another perturbation in the same rat. P < 0.05
was considered to indicate statistical significance.

RESULTS
BASELINE HEMODYNAMIC PARAMETERS
There were no significant differences in baseline hemodynamic
parameters before any protocols involving microinjection of sub-
stances into the PVN in conscious rats (Table 1). Average baseline
MAP was 117 ± 2 mmHg, and HR was 347 ± 4 bpm (n = 29).
As described by others (Martin et al., 1991), after microinjection
of Bic and NMDA into the PVN, we often observed mild behav-
ioral responses, including alerting and facial grooming. These
behaviors were not aggressive and were distinctly different from
the defense responses described after activation of the posterior
hypothalamus (Shekhar and DiMicco, 1987; Wible et al., 1988).

TONIC IONOTROPIC GLUTAMATERGIC EXCITATION WITHIN THE PVN
Figure 2A is an original record showing MAP and HR responses
to bilateral microinjection of the broad spectrum excitatory
amino acid (EAA) receptor antagonist, Kyn, in the PVN of a
conscious rat. Bilateral blockade of ionotropic glutamate recep-
tors with Kyn (n = 4) produced a small but significant decrease
in MAP (−6 ± 2 mmHg) and HR (−15 ± 3 bpm); Table 1.
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Table 1 | Mean arterial pressure (MAP) and heart rate (HR) before and after drugs microinjected in the PVN.

Groups Before After

MAP (mmHg) HR (bpm) MAP (mmHg) HR (bpm)

Bic (n = 7) 119 ± 6 346 ± 9 141 ± 5* 467 ± 17*

L-NMMA (n = 6) 113 ± 5 332 ± 10 133 ± 2* 410 ± 23*

Kyn (n = 4) 128 ± 6 371 ± 7 121 ± 4* 354 ± 8*

SNP (n = 6) 120 ± 2 344 ± 16 107 ± 3* 385 ± 11*

SNP (after Bic; n = 6) 121 ± 4 355 ± 17 114 ± 5* 395 ± 21*

Bic (after Kyn; n = 6) 125 ± 4 357 ± 14 134 ± 5* 408 ± 15*

Kyn (after L-NMMA; n = 4) 134 ± 8 383 ± 8 121 ± 7* 354 ± 14

NMDA (n = 4) 124 ± 2 361 ± 12 135 ± 2* 446 ± 17*

NMDA (after L-NMMA; n = 4) 124 ± 3 364 ± 5.1 142 ± 2* 466 ± 11*

∗p < 0.05 compared to values before microinjection.

Bilateral microinjection of physiological saline (n = 5) pro-
duced no significant effect on MAP (−1 ± 1 mmHg) or HR
(−4 ± 17 bpm).

TONIC INHIBITION WITHIN THE PVN
Original tracings of hemodynamic responses to bilateral microin-
jection of the GABAA receptor antagonist, Bic, or the NOS
inhibitor, L-NMMA, into the PVN of individual conscious rats
are shown in Figures 2B,C, respectively. Group data (Figure 3,
Table 1) indicate that bilateral disinhibition of the PVN by
microinjection of Bic (n = 7) produced a significant increase
in both MAP and HR. Bilateral blockade of NOS in the PVN
with L-NMMA (n = 6) also induced a pressor response accom-
panied by an increase in HR. The pressor responses to Bic and
L-NMMA were not significantly different, but the HR effects were
significantly greater for Bic.

ACTIVATION OF GABAA RECEPTORS CONTRIBUTES TO INHIBITORY
EFFECTS OF NITRIC OXIDE IN THE PVN OF CONSCIOUS RATS
Initially, responses to two concentrations of the NO donor, SNP,
were determined and repeatability of the response to multiple
injections of SNP was tested. Unilateral microinjection of SNP
(0.5 M and 1 M; n = 5) into the PVN produced rapid dose-related
decreases in MAP (−11 ± 2 mmHg and −17 ± 3 mmHg, respec-
tively). The depressor response was associated with tachycardia
(51 ± 15 and 54 ± 3 bpm, respectively). Responses to unilateral
microinjection of SNP (0.5 M) were repeatable and not altered
after microinjection of saline into the PVN (MAP: −8 ± 2 vs.
−10 ± 2 mmHg; HR: 45 ± 5 vs. 32 ± 8).

In separate rats (n = 6) responses to SNP (1 M) were deter-
mined before and after injection of Bic (Figure 4, Table 1).
Unilateral blockade of GABAA receptors with Bic initially tended
to produce small increases in MAP and HR; however, 5 min later
hemodynamic parameters had returned to control. Importantly,
baseline MAP and HR before injection of SNP alone or injec-
tion after unilateral Bic were not statistically different (Table 1).
In the presence of Bic, the MAP response to SNP was attenuated
by ∼50% (Figure 4). The tachycardic response produced by SNP
was not altered by previous Bic microinjection.

NITRIC OXIDE ATTENUATES TONIC GLUTAMATERGIC EXCITATION OF
THE PVN
As in the previous experiments, bilateral microinjection of Kyn
into the PVN produced small but significant decreases in MAP
and HR (Figure 5). After a 45 min recovery period, bilateral
microinjection of Kyn was repeated in the presence of bilateral
NOS blockade (L-NMMA). The baseline MAP and HR 5 min
after L-NMMA, immediately before the second Kyn microin-
jection, were not different from the baseline before Kyn alone
(Table 1). L-NMMA enhanced the depressor effect of ionotropic
glutamate receptor blockade on MAP without significantly alter-
ing the HR responses (Figure 5).

Unilateral microinjection of the ionotropic glutamate agonist,
NMDA, into the PVN of conscious rats produced an increase
in MAP and HR (Figure 6, Table 1). Unilateral microinjection
of L-NMMA did not alter baseline cardiovascular parameters.
However, during NOS inhibition the pressor response to NMDA
was significantly augmented (Figure 6), consistent with a role
of NO to blunt the excitatory effects of NMDA receptor activa-
tion. The tachycardia in response to NMDA was not significantly
altered by L-NMMA.

TONIC GLUTAMATERGIC INPUT CONTRIBUTES TO EXCITATION OF THE
PVN DUE TO GABAA RECEPTOR BLOCKADE
Figure 7 contains mean data demonstrating responses to bilat-
eral Bic before and after ionotropic glutamate receptor block-
ade. Bilateral PVN microinjection of Bic produced significant
increases in MAP and HR. After recovery, Kyn was injected
bilaterally, and 5 min later Bic was injected a second time.
Following ionotropic glutamate receptor blockade, the pressor
and tachycardic responses to Bic were significantly attenuated.

DISCUSSION
PURPOSE
This study was designed to examine, in conscious rats, the influ-
ence of the PVN on arterial pressure and HR and to evaluate
potential interactions of NO, glutamate, and GABA in mediat-
ing these effects. We also tested the hypothesis that endogenously
released NO blunts the tonic excitatory effects of glutamate within
the PVN. The use of conscious rats is an important aspect of
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FIGURE 2 | Original records from individual conscious rats showing the

arterial pressure (AP), Mean AP (MAP), and heart rate (HR) responses

to bilateral microinjections (100 nl) into the PVN of: (A) Kynurenic acid

(Kyn, 40 mM); (B) Bicuculline (Bic, 1 mM); (C) L-NMMA (2 mM).

these studies in that anesthesia is well-known to alter neuro-
transmission, autonomic and cardiovascular function. Blockade
of ionotropic glutamate receptors with Kyn in the region of the
PVN produced a small but significant decrease in MAP and HR,
suggesting that, in conscious rats, ionotropic glutamatergic trans-
mission in the PVN participates in tonic excitatory drive to the
vasculature and heart. Furthermore, the increase in MAP and
HR due to bilateral blockade of either GABAA receptors or inhi-
bition of NOS indicates that in the conscious state, similar to
anesthetized animals, the PVN is under tonic inhibition by both
GABA via GABAA receptors and by NO. The inhibitory effects

FIGURE 3 | Effects of bilateral blockade in the region of the PVN of

GABAA receptors (bicuculline; Bic, 1 mM; open bars; n = 7), or NO

synthase (NOS) (L-NMMA; 2 mM, filled bars; n = 6) on MAP and HR in

separate groups of conscious rats. Bilateral microinjection of both Bic and
L-NMMA significantly increased MAP and HR. The pressor response to Bic
and L-NMMA was similar, while the tachycardic response to L-NMMA was
significantly less than the response to Bic (∗p ≤ 0.05).

of GABA and NO appear to be synergistic. Finally, these studies
demonstrate for the first time that under basal conditions in the
conscious rat, endogenous NO attenuates the tonic pressor effects
of glutamate within the region of the PVN.

In the PVN a number of excitatory and inhibitory neurotrans-
mitters converge to influence neuronal activity (Swanson and
Sawchenko, 1983). Studies in vitro and in anesthetized animals
suggest an interaction among glutamate, GABA, and NO in reg-
ulation of the PVN (Horn et al., 1994; Zhang and Patel, 1998;
Stern, 2004). The current experiments indicate that an interac-
tion between glutamate and GABA, as well as an interaction of
NO with both glutamate and GABA, contributes to PVN control
of arterial pressure in conscious rats. Taken together, the data sug-
gest that in conscious rats the influence of the PVN on arterial
pressure and HR reflects a complex balance among a variety of
excitatory and inhibitory inputs. A schematic of these potential
interactions is shown in Figure 8 and will be described below.
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FIGURE 4 | MAP and HR effects of unilateral microinjection of the NO

donor sodium nitroprusside (SNP, 1.0 M) into the PVN of conscious

rats (n = 6). SNP was injected before (open bars) and after (filled bars)
blockade of GABAA receptors with bicuculline (Bic, 1 mM). SNP alone
produced significant decreases in MAP, accompanied by tachycardia. Bic
significantly attenuated the depressor effect of SNP (∗p ≤ 0.05) without
altering the tachycardia.

TONIC EFFECTS OF THE PVN
The PVN is a critical site of neuroendocrine integration and plays
an important role in modulating sympathetic tone and arterial
pressure under a variety of physiological and pathophysiologi-
cal conditions including heart failure, diabetes, and hypertension
(Patel and Zhang, 1996; Martin and Haywood, 1998; Patel, 2000;
DiCarlo et al., 2002; Felder et al., 2003; Li and Patel, 2003; Mueller
et al., 2006; Heesch et al., 2009). However, its role in basal cardio-
vascular control is not entirely clear, although it likely reflects the
integration of both excitatory and inhibitory influences. Bilateral
inhibition of GABAA receptors with Bic in the PVN region of
conscious (Martin et al., 1991) or anesthetized (Zhang and Patel,
1998; Chen and Toney, 2003; Chen et al., 2003) rats increases
MAP and HR, suggesting that the PVN is under tonic GABAergic
inhibition (Figure 8A). The current study provides additional

FIGURE 5 | Effects of bilateral PVN blockade of ionotropic glutamate

receptors using kynurenic acid (Kyn, 40 mM) alone (open bars) or after

bilateral inhibition of NOS with L-NMMA (2 mM, filled bars) in

conscious rats (n = 4). Bilateral microinjection of Kyn produced small but
significant decreases in MAP and HR. Prior injection of L-NMMA
significantly enhanced depressor responses to Kyn (∗p ≤ 0.05) with no
significant effect on HR responses.

support for tonic GABAergic inhibition in conscious rats and
also indicates that the region of the PVN is under tonic inhi-
bition due to NO in the conscious state (Figure 8B). Similar to
experiments in anesthetized animals (Zhang and Patel, 1998),
bilateral microinjection of the NOS blocker L-NMMA increased
MAP and HR. In the present study, we also investigated the con-
tribution of EAAs in the region of the PVN to maintenance of
basal arterial pressure and in the response to inhibition of GABAA

receptors in conscious rats. In our experiments, bilateral blockade
of ionotropic glutamate receptors produced a small but signifi-
cant reduction in arterial pressure and HR, suggesting that the
balance of inputs is such that EAAs provide a small tonic excita-
tory effect within the PVN, which contributes to maintenance of
basal arterial pressure and HR (Figure 8C). Similar experiments
in anesthetized rats (Chen et al., 2003) and conscious rabbits
(Badoer et al., 2002) showed that blockade of ionotropic EAA
receptors in the PVN had no significant effect on baseline arte-
rial pressure. The difference in these studies may be due to the
presence of anesthesia, unilateral versus bilateral injections, and
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FIGURE 6 | MAP and HR effects of unilateral microinjection of the

selective ionotropic glutamate receptor agonist N-methyl-D-aspartic

acid (NMDA, 1 mM) into the PVN of conscious rats (n = 4). NMDA was
injected before (open bars) and after (filled bars) blockade of NOS with
L-NMMA (2 mM). NMDA alone produced significant increases in MAP and
HR. Pressor responses to NMDA were significantly enhanced by prior
injection of L-NMMA (∗p ≤ 0.05).

possible species differences. Alternatively, as previously suggested
(Badoer et al., 2002), the PVN may exert both excitatory and
inhibitory effects on sympathetic nerve activity, and the relative
influence of these effects may vary depending on species and state
of the animal. Nevertheless, the current data are consistent with
the hypothesis that the relatively small tonic excitatory effects
exerted by the PVN involve, at least in part, ionotropic gluta-
matergic transmission. Other potential sources of excitation in
the PVN (Figure 8D) were not evaluated in the current experi-
ments. However, previous studies in anesthetized rats suggest that
angiotensin II also contributes to excitation of the PVN under
both physiological and pathophysiological conditions (Chen and
Toney, 2003; Freeman and Brooks, 2007).

NITRIC OXIDE AND GABA
Unilateral microinjection of the NO donor SNP into the region of
the PVN of conscious rats decreased MAP, and blockade of NOS
with L-NMMA-induced pressor and tachycardic responses. These

FIGURE 7 | Effects of bilateral blockade within the PVN of GABAA

receptors with bicuculline (Bic, 1 mM) on MAP and HR in conscious

rats (n = 6) alone (open bars) or after blockade of ionotropic glutamate

receptors with kynurenic acid (Kyn, 40 mM; filled bars). Bilateral
microinjection of Bic alone produced significant increases in MAP and HR.
Pressor and tachycardic responses to Bic were significantly attenuated by
prior microinjection of Kyn (∗p ≤ 0.05).

sympathoinhibitory effects of NO in the conscious state are con-
sistent with previous work examining responses to SNP (Zhang
and Patel, 1998) or NOS blockade (Mastelari et al., 2011) in the
PVN. Other studies in conscious Wistar rats reported no effect
(Hashiguchi et al., 1997) or pressor responses (Busnardo et al.,
2010) to PVN microinjection of NO donors. While the reasons for
this discrepancy are not clear, differences including drug concen-
tration and strain could contribute. Taken together, the prepon-
derance of evidence suggests that NO is an inhibitory modulator
of cardiovascular control in the PVN in both conscious and
anesthetized animals. Microinjection of SNP into the region of
the PVN was associated with tachycardia in the present exper-
iments rather than bradycardia as previously reported (Zhang
and Patel, 1998; Wang et al., 2005). The mechanism for this
tachycardia is not completely clear. It is possible that it was a
baroreflex-mediated response to the decrease in arterial pressure.
Alternatively, it may be a direct effect of SNP in the PVN rather
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FIGURE 8 | Schematic representation of potential interactions of

inhibitory and excitatory inputs to the PVN. The cell in the schematic
represents a PVN neuron involved in control of sympathetic nervous
system activity. As described in the text, this neuron receives inhibitory
influences due to GABA, via GABAA receptors (A), and NO (B), which
appears to exert its effects at least in part through GABA (E). Excitatory
inputs include both excitatory amino acid (EAA, C) and non-ionotropic EAA
receptor mediated (non-EAA) (D) inputs. NO, likely acting through GABA,
both blunts the response to activation of NMDA receptors, and tonically
inhibits the effects of ongoing EAA excitation.

than baroreflex-mediated, because although the depressor effect
of SNP was diminished in the presence of Bic, the tachycardia was
unchanged. Thus, the tachycardia likely was not dependent on the
magnitude of the depressor response. Furthermore, it does not
appear to require GABAA receptors, because it was not altered by
pretreatment with Bic.

Full expression of the depressor effect of NO in the PVN
region of awake rats appears to require GABAergic transmission
(Figure 8E), since responses to SNP were attenuated ∼50% by
Bic. In previous work in anesthetized animals (Zhang and Patel,
1998), Bic abolished responses to SNP. Thus, it appears that in
the absence of anesthesia, a portion of the response to NO donors
is independent of GABA. Another possibility may be related to
the dose of Bic used. In the present study, we used a relatively
low dose of Bic (1 mM). As reported by others (Martin et al.,
1991), we observed that Bic injection into the PVN of conscious
rats resulted in mild behavioral responses (such as licking and
grooming). We found that higher doses tended to elicit locomotor
activity that interfered with measurements of arterial pressure and
HR. Therefore, we chose a dose within the lower range of those
previously used in an effort to circumvent this concern. It is pos-
sible that this relatively low dose of Bic did not completely block
GABAA receptors. Although previous studies in anesthetized rats
indicate that cardiovascular responses to 40 mM and 1 mM Bic
microinjected into the PVN were similar (Zhang and Patel, 1998;
Li et al., 2006), we cannot completely eliminate the possibility that

our GABAA receptor blockade was not complete in the current
study. Nonetheless, it appears that in conscious rats, NO exerts
primarily an inhibitory role in the PVN and this inhibition is
dependent at least in part on GABA. However, it is possible that
the contribution of GABA to NO-mediated effects may be less in
conscious compared to anesthetized animals.

NITRIC OXIDE AND GLUTAMATE
Excitatory responses to activation of the NMDA subtype of glu-
tamate receptors in the region of the PVN were significantly
enhanced by prior blockade of NOS. These data in conscious
rats extend previous findings in anesthetized rats (Li et al., 2001)
demonstrating that the excitatory effects of exogenously admin-
istered NMDA in the PVN are blunted by NO (Figure 8, dashed
line). Although not specifically examined in our study, this effect
of NO may also involve an effect mediated by GABA (Figure 8E)
rather than modulation of glutamatergic signaling, as NO appears
to increase directly glutamate release (Horn et al., 1994) and
AMPA-mediated currents (Roychowdhury et al., 2006) in the
PVN. The effects of NO to modulate GABA function appear to
predominate, possibly due to greater tonic GABAergic input on
PVN neurons.

We also examined the influence of NO on the effects of tonic
endogenous ionotropic glutamate receptor mechanisms within
the PVN. The NOS inhibitor L-NMMA enhanced the depressor
response to bilateral inhibition of ionotropic glutamate recep-
tors with Kyn. Importantly, the depressor response to Kyn was
enhanced even though L-NMMA would be expected to increase
arterial pressure over the same time period. These data sug-
gest that in conscious rats not only does NO blunt the response
to exogenously administered NMDA, but the endogenous, tonic
excitatory effects of glutamate in the PVN also are under tonic
negative modulation by endogenous NO. To our knowledge, this
is the first demonstration of an effect of endogenous NO on
tonic EAA-mediated excitation within the PVN. Since we also
found that the pressor response to exogenous NMDA is poten-
tiated following blockade of NOS, tonic effects of endogenous
NO also may involve the NMDA subtype of glutamate recep-
tors. Thus, the overall effect of NO within the PVN is inhibitory,
since NO attenuates tonic excitation due to both exogenous and
tonic endogenous glutamate, and facilitates inhibitory GABA
neurotransmission.

GABA AND GLUTAMATE
Endogenous GABA and glutamate also appear to interact in the
PVN of conscious rats. Bilateral removal of GABAA receptor-
mediated inhibition in the region of the PVN produced pres-
sor and tachycardic responses, effects observed in other studies
using conscious rats (Martin et al., 1991; de Abreu et al., 2009).
Experiments in anesthetized animals suggest that this response is
due to an unmasking of excitatory inputs, including glutamate
and angiotensin II (Chen and Toney, 2003; Chen et al., 2003;
Li and Pan, 2007a). In the current study, excitatory responses to
GABAA blockade were blunted during inhibition of ionotropic
glutamate receptors. These data suggest that in the conscious rat,
glutamate provides a substantial portion of the excitation that
is evident when GABAA inhibition is removed (Figure 8C), or
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glutamatergic inputs may be tonically inhibited by GABA. In this
regard, following Bic in the PVN, release of glutamate and the
frequency of glutamatergic EPSCs are increased (Li et al., 2006).
Alternatively, GABAergic neurons in the region of the PVN may
be excited tonically by glutamate. Although simultaneous disfa-
cilitation due to Kyn could contribute to the blunted response
to Bic, this most likely involves an interaction between glutamate
and GABA as previously suggested (Chen et al., 2003) because
the minor effects of Kyn alone are not sufficient to account for
the magnitude of the diminished response. Future experiments
are required to evaluate the cellular mechanisms of these inter-
actions, as well as a potential role for other transmitters such as
angiotensin II.

LIMITATIONS
As with any study our conclusions have certain caveats that
must be taken into consideration. For example, in the cur-
rent study we measured arterial pressure and HR in conscious
rats. It is most likely that responses to microinjections are due
primarily to changes in sympathetic nervous system activity.
Although this assumption is consistent with previous studies in
anesthetized animals (Zhang and Patel, 1998; Li et al., 2001),
numerous neural and humoral factors influence arterial pres-
sure, and the influence of the PVN on sympathetic activity
may vary depending on the specific sympathetic nerve evalu-
ated. Therefore, future experiments are necessary to confirm
the involvement of the sympathetic nervous system, includ-
ing effects on sympathetic activity to specific regions, vs. other
neurohumoral factors.

Also, because of non-specific damage during removal of guide
cannulae, we cannot say unequivocally that all injections were
centered in the PVN. However, injection sites were confined to the
brain parenchyma, and the primary cardiovascular region near-
est the injections was in fact the PVN. In all rats, consistent with

responses in the PVN, disinhibition (Bic) or excitation (NMDA)
produced pressor responses with limited behavioral activation. In
addition, our coordinates are consistent with those used previ-
ously by us, in which injection sites were confirmed (Kvochina
et al., 2009; King et al., 2012). Collectively, this evidence sug-
gests that responses were due primarily to changes in neuronal
activation in the region of the PVN.

SUMMARY
The combined data from these studies in conscious rats is
consistent with previous work in anesthetized animals and
suggests that the PVN is under tonic excitation due to endoge-
nous activation of ionotropic glutamate receptors. In addi-
tion, both NO and GABA have tonic inhibitory effects in
the region of the PVN in conscious rats and this inhibi-
tion masks the majority of tonic glutamatergic excitation.
Importantly, we found that in conscious rats, endogenous NO
appears to tonically blunt the ongoing activation of the PVN
by EAAs. The nature of these tonic effects involves a com-
plex interaction among glutamatergic, GABAergic, and NO
mechanisms.
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