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Abstract: Endometrial cancer (EC) is the most common gynecologic malignancy, and it arises in the
inner part of the uterus. Identification of serum biomarkers is essential for diagnosing the disease at
an early stage. In this study, we selected 44 healthy controls and 44 type I EC at tumor stage 1, and
we used the Immuno-oncology panel and the Target 96 Oncology III panel to simultaneously detect
the levels of 92 cancer-related proteins in serum, using a proximity extension assay. By applying this
methodology, we identified 20 proteins, associated with the outcome at binary logistic regression,
with a p-value below 0.01 for the first panel and 24 proteins with a p-value below 0.02 for the second
one. The final multivariate logistic regression model, combining proteins from the two panels,
generated a model with a sensitivity of 97.67% and a specificity of 83.72%. These results support the
use of the proposed algorithm after a validation phase.
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1. Introduction

Endometrial cancer (EC) arises in the inner part of the uterus and represents the
fourth most common female malignancy in Europe [1]. Unlike other cancers, the inci-
dence and mortality of EC are rapidly increasing worldwide, especially in North America
and Western Europe (incidence 12.9–20.2 per 100,000 women and mortality 2.0–3.7 per
100,000 women) [2]. Although genetic predisposition and racial background might pro-
mote EC development, the most important EC-predisposing factors seem to be associated
with health and lifestyle conditions (e.g., obesity, metabolic syndrome, diabetes, polycystic
ovary syndrome, high estrogen levels) [3–6].

EC is classified into two subtypes with distinct clinical, pathological and molecular
features. Commonly, type I ECs display a low grade (I or II) endometrioid morphology
and are estrogen-dependent; thus, they are associated with a good prognosis. Type II ECs
include non-endometrioid adenocarcinomas, serous clear cell, undifferentiated carcinomas
and carcinosarcomas, usually hormone-receptor negative high-grade tumors, with poor
prognosis [7].

Type I EC comprises the large majority of endometrial cancers, ~90%, while type II EC
comprises ~10%. In type I EC, stage 1 is the most frequent [8]. In EC, 80% of patients are
in the early stages, while 20% are in more advanced phases [9]. At stage I, the five-year
survival rate is 95%, and the survival decreases dramatically to 14% for stage IV [10]. The
identification of biomarkers at an early stage would lead to a prompt diagnosis, reduce
inappropriate and invasive examinations and improve patient care and prognosis [11].
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Patients in more advanced stages require more specific care, such as radio therapy or
chemotherapy. For this purpose, identification of biomarkers at an early stage is important.
Harsh treatment can be avoided for many patients when EC is discovered at an early
stage [12].

Growing pieces of evidence showed that, by releasing soluble mediators and ex-
tracellular vesicles, EC cells are able to recruit stromal cell, immune system cells and
macrophages [13,14], which, in turn, favor tumor growth.

Interestingly, inflammation can exert a double role in cancer development. On one
hand, triggers of inflammation activate immune cells that, in turn, produce suppressive
tumor growth cytokines [15]. Thus, inflammation can induce the response of the immune
system against cancer. On the other hand, inflammation is involved in the promotion of
tumorigenesis [16], for example, several cytokines such as IL-6 [17], TNFα [18], TGF-β [19],
and IFNs [20] are involved in cancer development and progression.

Cytokines’ profiles are promising in the diagnosis and prognosis of pancreatic [21],
colorectal [22] and ovarian cancers [23]. Multi-omics approaches allowed us to understand
several tumor mechanisms and, of note, the identification of diagnostic and prognostic
markers [24]. The proteomic approach allowed for the identification of several candidate
biomarkers in the serum of EC patients, such as CLU, C1R, and SERPINC1 [25], SBSN [26],
and PAK1 [27].

In this study, we used proximity extension assays (PEAs) for target biomarker analysis
in serum from EC patients. Such technology uses high-multiplex matched pairs of anti-
bodies, labelled with unique DNA oligonucleotides, which bind to their specific/relative
proteins in the samples [28]. Several studies used PEA for targeted biomarker analysis
in different types of cancers, such as esophageal squamous cell carcinomas [29], cervical
cancer [30] and ovarian cancer [31]. The Olink PEA platform is a high-multiplex protein
biomarker platform with a high-throughput capacity with high specificity and sensitivity
in combination with minimal sample volume [32]. This powerful technology has been
applied for the screening of proteins in blood [33,34], and on other matrices, e.g., cells [35],
urine [36], peritoneal fluid [37], and exosomes [38]. Moreover, recently it has been ap-
plied to study immunological mechanisms in the multisystem inflammatory syndrome in
children with COVID-19 [39].

Our study aims to apply the PEA technology to screen candidate serum protein
markers of early-stage of type I EC.

2. Materials and Methods
2.1. Patients

For this study, a total of 88 women (44 suffering from EC and 44 non-EC controls)
were recruited at the Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”
(Trieste, Italy) from 2019 to 2021. All EC patients had type I endometrioid adenocarcinomas
at tumor stage 1. Type I EC comprises the large majority of endometrial cancers, ~90%,
while the type II EC comprises ~10%. In type I EC, stage 1 is the most frequent. For this
reason, in this study we focused on type I EC at stage 1 patients to identify candidate serum
protein biomarkers.

All procedures complied with the Declaration of Helsinki and were approved by
the Institute’s Technical and Scientific Committee. All patients signed informed consent
forms. In Supplementary Table S1, we describe the clinical and pathological characteristics
of the patients. The median age of patients was 67 years (Inter quartile range 55–71),
with a minimum of 44 and a maximum of 81, while the median age of controls was
35 years (IQR 27–51), with a minimum of 22 and a maximum of 77 years. Controls were
chosen excluding oncologic patients, human immunodeficiency virus (HIV), hepatitis B
virus (HBV), hepatitis C virus (HCV) seropositive subjects, and patients with leiomyomas
or adenomyosis. For EC cases, we ruled out women with other oncologic pathologies,
human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV)
seropositive patients, and patients with leiomyomas or adenomyosis. We excluded control
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patients with benign tumors (myoma), chronic inflammatory disease (adenomyosis) or
viral infections because these pathologies may influence the abundance of several proteins
in serum and, consequently, affect the proteomic analysis.

2.2. Serum Sample Collection and the PEA

To obtain serum, blood was centrifuged at 5000 rcf × 5 min. Once obtained, the serum
was preserved at −80 ◦C. Sera were shipped to Olink® Proteomic (Dag Hammarskjölds
väg 52B, SE-752 37 Uppsala, Sweden). In total, 40 µL of serum was used for PEA analysis in
the Immuno-oncology panel and the Target 96 Oncology III panel with 96-wells, in which
92 oligonucleotide-labeled antibody probe pairs bind to their specific targeted proteins.
The protein names, gene names, and abbreviations for the 92 proteins of the Immuno-
oncology panel and Target 96 Oncology III panel are reported in Tables S2 and S3. The PEA
technology includes three core steps. It starts with an overnight incubation of 16–22 h. The
92 antibody pairs, labelled with DNA oligonucleotides, bind to their respective protein
in the samples. During the second step, we have 2 h of extension and amplification.
Oligonucleotides that are brought into proximity hybridize, and are extended using a
DNA polymerase. This newly created piece of DNA barcode is amplified by PCR. In the
last step, we have 4.5 h of detection. The amount of each DNA barcode is quantified by
microfluidic qPCR.

Negative Control for Olink Explore is also included in triplicate on each plate and
consists of buffer run as a normal sample. These are used to monitor any background noise
generated when DNA-tags come in close proximity without prior binding to the appropriate
protein. The negative controls set the background levels for each protein assay and are
used to calculate the limit of detection (LOD) and to assess the potential contamination of
the assays. The Plate Control was another control included in triplicate on each plate. The
median of the Plate Control triplicates is used to normalize each assay and compensate
for the potential variation between runs and plates. Once the data were obtained from the
plate reading, they were analyzed, including normalization and linearization, by protocols
of the manufacturer. The protein level is expressed as NPX, Normalized Protein eXpression,
an arbitrary unit in Log2 scale. It is calculated from Ct values, and data pre-processing
(normalization) is performed to minimize both intra- and inter-assay variation. NPX data
allow users to identify changes in individual protein levels across their sample set, and
then use these data to establish protein signatures.

Olink Target 96 Immuno-oncology panels include proteins associated with biological
functions linked to immune response and immuno-oncology diseases. The biomarkers
in this panel include proteins involved in processes such as promotion and inhibition of
tumor immunity, chemotaxis, vascular and tissue remodeling, apoptosis and cell killing and
metabolism and autophagy. The Olink Target 96 oncology III panel comprises 92 human
proteins that participate in biological mechanisms that are central to the initiation and
progression of cancer, e.g., angiogenesis, cell communication, cellular metabolic processes,
apoptosis, cell proliferation/differentiation, etc. In Supplement Tables S2 and S3, all the
proteins that make up the two panels are reported. These panels do not focus on specific
malignancies. The categorization of the proteins included in the panel was carried out via
referral to widely used public-access bioinformatic databases, including Uniprot, Human
Protein Atlas, Gene Ontology (GO) and DisGeNET.

2.3. Bioinformatic Analysis

Proteins used for statistical analysis for both the panels were analyzed by gProfiler [40]
(https://biit.cs.ut.ee/gprofiler/gost) accessed on 4 July 2022 classification systems and
categorized according to their: molecular function involvement, biological processes, and
protein class. Pathway analysis was done by REACTOME tool [41] (https://reactome.org/
PathwayBrowser/#TOOL=AT) accessed on 4 July 2022.

https://biit.cs.ut.ee/gprofiler/gost
https://reactome.org/PathwayBrowser/#TOOL=AT
https://reactome.org/PathwayBrowser/#TOOL=AT
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2.4. Statistical Analyses

Each of the two panels comprised 92 proteins. We first excluded all proteins with more
than 25% values below the limit of detection (LOD). Olink suggests excluding assays in
the range of less than 25–50% of samples above LOD (https://www.olink.com/faq/how-
is-the-limit-of-detection-lod-estimated-and-handled/) accessed on 4 July 2022, but we
adopted a more restrictive approach and chose to have at least 75% of samples above the
LOD. After excluding these, for each of the remaining proteins, we calculated the median
value, and the interquartile range. We carried out binary logistic regressions to study the
association with the outcome. Before proceeding to the multivariate logistic regression, for
each panel, we selected the proteins more strongly associated with the dependent variable,
on the basis of the binary logistic regression p-value result. Our first approach was to
carry out a first selection of proteins with a least absolute shrinkage and selection operator
(LASSO) multivariate logistic regression approach, but the results were unfortunately not
comparable with a traditional binary logistic regression approach. For each panel separately,
the selected proteins were simultaneously considered in a multivariate logistic regression
model. A downward selection was applied to exclude, one at a time, the proteins with the
highest p-value, if p ≥ 0.05. We thus obtained two final predictive models which included
only proteins significantly and simultaneously associated with the outcome. For each
model, we reported the Pseudo-R-squared value, the Area under the Receiver Operating
Characteristic (ROC) Curve (AUC), sensitivity and specificity. Finally, we decided to
consider the two final models together in a multivariate logistic regression model. we
hypothesize that improving the predictive models we might obtain a group of proteins
that could be included in an ad hoc panel. Again, we adopted a stepdown procedure and
obtained a third model.

3. Results

In the first panel—the Immuno-oncology panel—ten proteins had more than 25%
values below the LOD (IL_1_alpha, FGF2, IL2, IL33, CD28, IL5, PTN, CXCL12, IL4, IL13)
and were excluded from further analyses. Of the remaining proteins, median values and
interquartile ranges are reported for cases and controls, as well as the odds ratios, 95%
confidence intervals and p-values of the binary logistic regression (Table 1).

Table 1. Immuno-oncology panel: result of descriptive analysis, and binary logistic regression against
the outcome.

Immuno-Oncology Cases Controls Binary Logistic Regression

Proteins Median (IQR) Median (IQR) OR (95% CI); p-Value

IL8 6.044 (5.629–6.517) 5.66 (5.336–6.106) 1.291 (0.817–2.039); 0.274

TNFRSF9 6.485 (6.147–6.626) 6.043 (5.905–6.246) 17.67 (3.931–79.432); 0.000

TIE2 7.485 (7.269–7.708) 7.487 (7.229–7.572) 1.45 (0.302–6.968); 0.643

MCP-3 2.057 (1.847–2.303) 1.762 (1.402–2.24) 2.264 (1.031–4.975); 0.042

CD40-L 8.018 (7.329–8.390) 7.889 (6.814–8.276) 1.195 (0.808–1.766); 0.372

CD244 6.385 (6.192–6.586) 6.299 (6.128–6.476) 1.542 (0.395–6.020); 0.533

EGF 9.054 (7.886–9.7600) 9.146 (7.360–9.413) 1.164 (0.829–1.634); 0.381

ANGPT1 9.769 (9.487–9.968) 9.811 (9.624–9.877) 0.588 (0.129–2.691); 0.494

IL7 5.952 (5.601–6.553) 6.095 (5.696–6.534) 0.889 (0.450–1.756); 0.735

PGF 8.295 (8.186–8.506) 8.051 (7.945–8.245) 16.516 (3.089–88.316); 0.001

IL6 3.539 (3.022–4.38) 2.462 (1.888–3.612) 1.850 (1.263–2.708); 0.002

ADGRG1 1.796 (1.570–2.764) 1.627 (1.364–1.878) 3.126 (1.410–6.930); 0.005

https://www.olink.com/faq/how-is-the-limit-of-detection-lod-estimated-and-handled/
https://www.olink.com/faq/how-is-the-limit-of-detection-lod-estimated-and-handled/


Biomedicines 2022, 10, 1857 5 of 22

Table 1. Cont.

Immuno-Oncology Cases Controls Binary Logistic Regression

Proteins Median (IQR) Median (IQR) OR (95% CI); p-Value

MCP-1 11.488 (11.293–11.832) 11.147 (10.71–11.44) 4.318 (1.689–11.038); 0.002

CRTAM 5.762 (5.335–5.985) 5.473 (5.131–5.894) 2.086 (0.928–4.692); 0.075

CXCL11 7.766 (6.873–8.155) 7.388 (6.871–7.799) 1.568 (0.864–2.845); 0.139

MCP-4 11.037 (10.626–11.529) 10.638 (10.213–10.873) 2.116 (1.073–4.176); 0.031

TRAIL 8.094 (7.763–8.288) 7.870 (7.551–8.133) 3.787 (1.134–12.65); 0.030

CXCL9 7.049 (6.571–7.811) 6.054 (5.777–6.732) 3.690 (1.932–7.049); 0.000

CD8A 9.223 (8.884–9.765) 9.497 (9.191–9.789) 0.642 (0.321–1.286); 0.211

CAIX 4.500 (4.237–4.932) 4.241 (3.967–4.693) 3.354 (1.274–8.826); 0.014

MUC-16 2.053 (1.785–2.757) 2.034 (1.758–2.585) 1.118 (0.626–1.994); 0.707

ADA 5.288 (4.916–5.892) 5.109 (4.856–5.507) 1.755 (0.903–3.408); 0.097

CD4 3.475 (3.261–3.727) 3.279 (3.094–3.446) 8.973 (1.963–41.013); 0.005

NOS3 2.06 (1.689–2.355) 1.782 (1.580–1.988) 3.899 (1.392–10.92); 0.010

Gal-9 7.903 (7.443–8.121) 7.358 (7.162–7.523) 15.109 (4.003–57.025); 0.000

VEGFR-2 8.229 (8.034–8.477) 8.24 (8.119–8.532) 0.542 (0.137–2.143); 0.383

CD40 9.506 (9.302–9.752) 9.302 (9.059–9.508) 4.179 (1.224–14.262); 0.022

IL18 8.915 (8.372–9.222) 8.539 (8.198–8.891) 3.243 (1.311–8.024); 0.011

GZMH 3.875 (3.185–4.346) 3.207 (2.837–4.018) 1.885 (1.094–3.249); 0.022

KIR3DL1 1.930 (0.995–2.674) 1.789 (0.567–2.509) 1.098 (0.753–1.601); 0.628

LAP TGF-beta-1 9.665 (9.136–9.978) 9.599 (9.333–9.889) 1.080 (0.429–2.716); 0.871

CXCL1 9.135 (8.801–9.48) 8.988 (8.716–9.405) 1.239 (0.532–2.888); 0.619

TNFSF14 6.359 (5.559–6.991) 6.250 (5.312–7.117) 1.112 (0.740–1.672); 0.609

TWEAK 8.485 (8.272–8.749) 8.600 (8.291–8.790) 0.505 (0.147–1.741); 0.279

PDGF subunit B 10.638 (10.589–10.686) 10.636 (10.595–10.674) 1.665 (0.009–302.191); 0.848

PDCD1 4.551 (4.369–4.836) 4.682 (4.410–4.853) 0.640 (0.188–2.175); 0.475

FASLG 6.765 (6.439–6.969) 7.175 (6.813–7.377) 0.171 (0.058–0.505); 0.001

CCL19 10.521 (9.986–11.038) 10.327 (9.858–10.934) 1.305 (0.857–1.988); 0.215

MCP-2 8.183 (7.845–8.681) 8.031 (7.578–8.473) 1.880 (0.904–3.909); 0.091

CCL4 6.813 (6.568–7.372) 6.626 (6.289–6.890) 3.144 (1.268–7.794); 0.013

IL15 5.212 (4.91–5.463) 5.029 (4.797–5.233) 4.885 (1.306–18.273); 0.018

Gal-1 6.801 (6.594–6.966) 6.455 (6.234–6.597) 353.644 (27.173–4602.582); 0.000

PD-L1 5.647 (5.414–5.886) 5.497 (5.374–5.740) 4.928 (0.994–24.444); 0.051

CD27 8.181 (7.874–8.406) 7.902 (7.697–8.119) 6.518 (1.706–24.899); 0.006

CXCL5 12.024 (11.577–12.602) 11.966 (11.315–12.334) 1.246 (0.687–2.260); 0.469

HGF 9.226 (8.754–9.662) 9.115 (8.600–9.356) 2.108 (0.977–4.548); 0.057

GZMA 7.127 (6.771–7.371) 6.933 (6.514–7.267) 2.623 (0.952–7.226); 0.062
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Table 1. Cont.

Immuno-Oncology Cases Controls Binary Logistic Regression

Proteins Median (IQR) Median (IQR) OR (95% CI); p-Value

HO-1 12.008 (11.764–12.304) 11.886 (11.619–12.107) 2.405 (0.865–6.693); 0.093

CX3CL1 4.005 (3.683–4.300) 3.842 (3.615–4.053) 3.479 (0.971–12.459); 0.055

CXCL10 9.027 (8.522–9.557) 8.389 (7.868–8.740) 2.746 (1.454–5.186); 0.002

CD70 3.865 (3.46–4.199) 3.511 (3.26–3.760) 3.926 (1.433–10.756); 0.008

IL10 3.752 (3.312–4.120) 3.383 (3.105–3.858) 1.877 (0.994–3.543); 0.052

TNFRSF12A 4.851 (4.528–5.126) 4.456 (4.168–4.656) 11.654 (3.29–41.277); 0.000

CCL23 10.191 (9.773–10.574) 10.088 (9.936–10.469) 0.775 (0.302–1.991); 0.597

CD5 6.029 (5.763–6.276) 5.816 (5.612–6.044) 2.649 (0.892–7.865); 0.079

CCL3 6.250 (5.928–6.685) 5.864 (5.431–6.112) 4.251 (1.715–10.538); 0.002

MMP7 12.696 (12.569–12.849) 12.256 (12.061–12.455) 481.625 (36.262–6396.808); 0.000

ARG1 5.561 (5.000–6.640) 5.198 (4.880–6.030) 1.634 (1.002–2.666); 0.049

NCR1 3.714 (3.431–3.922) 3.509 (3.253–3.769) 2.378 (0.725–7.804); 0.153

DCN 4.535 (4.37–4.725) 4.315 (4.206–4.437) 111.093 (8.317–1483.879); 0.000

TNFRSF21 7.544 (7.398–7.662) 7.522 (7.373–7.628) 2.68 (0.361–19.901); 0.335

TNFRSF4 6.205 (5.943–6.493) 5.912 (5.759–6.194) 6.216 (1.657–23.316); 0.007

MIC-A/B 4.905 (4.395–5.533) 4.978 (4.537–5.412) 0.842 (0.590–1.200); 0.340

CCL17 10.277 (9.562–10.915) 10.105 (9.632–10.604) 1.377 (0.812–2.335); 0.235

ANGPT2 5.975 (5.62–6.302) 5.885 (5.634–6.270) 2.031 (0.675–6.116); 0.208

IFN-gamma 6.359 (5.913–6.877) 5.964 (5.427–6.330) 1.471 (0.931–2.324); 0.098

LAMP3 4.745 (4.284–5.43) 4.358 (4.113–4.677) 2.183 (1.12–4.255); 0.022

CASP-8 5.047 (4.103–6.314) 3.851 (3.396–4.414) 2.019 (1.338–3.048); 0.001

ICOSLG 5.940 (5.659–6.089) 5.983 (5.875–6.218) 0.608 (0.175–2.111); 0.433

MMP12 7.046 (6.772–7.771) 6.780 (6.33–7.309) 2.181 (1.171–4.063); 0.014

CXCL13 8.299 (8.071–8.524) 8.269 (7.877–8.605) 0.698 (0.307–1.588); 0.392

PD-L2 3.200 (2.792–3.464) 3.000 (2.794–3.283) 1.953 (0.613–6.22); 0.258

VEGFA 9.720 (9.345–10.084) 9.558 (9.332–9.887) 1.768 (0.723–4.326); 0.212

LAG3 4.523 (4.258–4.77) 4.462 (4.112–4.672) 4.164 (1.31–13.237); 0.016

IL12RB1 1.888 (1.711–2.114) 1.725 (1.565–1.934) 9.144 (1.67–50.067); 0.011

CCL20 5.710 (5.477–6.405) 5.499 (5.049–5.740) 2.036 (1.119–3.705); 0.020

TNF 3.914 (3.620–4.217) 3.831 (3.571–4.143) 1.515 (0.623–3.679); 0.359

KLRD1 6.55 (6.182–6.934) 5.953 (5.63–6.409) 5.074 (2.083–12.36); 0

GZMB 2.507 (2.139–2.804) 2.410 (2.135–2.804) 1.462 (0.623–3.429); 0.383

CD83 2.814 (2.665–3.039) 2.671 (2.523–2.903) 5.185 (1.065–25.239); 0.042

IL12 7.326 (6.955–7.723) 7.135 (6.782–7.510) 2.032 (0.928–4.447); 0.076

CSF-1 10.421 (10.227–10.561) 10.270 (10.083–10.440) 4.818 (0.927–25.049); 0.062

Note: IQR = Interquartile Range (25th and 75th centiles); OR = Odds Ratio; CI = Confidence Interval.

The binary logistic regression analyses allowed us to identify the proteins more
strongly associated with the outcome. For the first panel, we selected 20 proteins with a
binary logistic regression p-value below 0.01. These 20 proteins were considered together
in a multivariate logistic regression model (Table 2). After applying a downward selection



Biomedicines 2022, 10, 1857 7 of 22

as described in the Methods section, four proteins remain, significantly and simultaneously
associated with the outcome (Table 3).

Table 2. Multivariate logistic regression model including all variables from the immune-oncology
panel with p < 0.01 at binary logistic regression.

Protein OR (95% CI) p-Value

TNFRSF9 13.785 (0.014–1.38 × 104) 0.457

CXCL9 2.164 (0.198–23.641) 0.527

Gal-9 5.09 × 10−5 (6.36 × 10−10–4.073) 0.086

Gal-1 2.82 × 108 (93.752–8.50 × 1014) 0.011

TNFRSF12A 0.245 (0.003–20.627) 0.534

MMP7 7348.889 (3.198–1.69 × 107) 0.024

DCN 0.472 (2.88 × 10−5–7731.066) 0.880

KLRD1 0.644 (0.015–27.749) 0.819

PGF 0.001 (1.75 × 10−8–20.145) 0.163

IL6 2.910 (0.509–16.642) 0.230

ADGRG1 2.162 (0.156–29.909) 0.565

MCP-1 0.082 (0.001–7.585) 0.279

CD4 638.942 (0.106–3.84 × 106) 0.146

FASLG 2.32 × 10−4 (8.23 × 10−8–0.655) 0.039

CD27 1.740 (0.011–268.23) 0.829

CXCL10 1.066 (0.073–15.616) 0.963

CD70 5.843 (0.194–175.917) 0.310

CCL3 2.238 (0.128–39.183) 0.581

TNFRSF4 1.107 (0–2636.098) 0.979

CASP-8 0.791 (0.184–3.402) 0.753
Note: OR = Odds Ratio; CI = Confidence Interval.

Table 3. Immuno-oncology panel: result of the stepdown procedure applied to the saturated multi-
variate logistic regression model.

p-Value OR (95% CI) Coefficient (95% CI)

Gal-9 0.025 0.035 (0.002–0.652) −3.352554 (−6.277541–−0.4275675)

Gal-1 0.001 18657.14 (60.882–5717447) 9.833984 (4.108936–15.55903)

MMP7 0.001 243.809 (9.623–6177.328) 5.496387 (2.264132–8.728641)

FASLG 0.003 0.047 (0.006–0.358) −3.052633 (−5.07917–−1.026096)

Constant 0.000 1.5 × 10−38 (8.12 × 10−59–2.79 × 10−18) −87.09041 (−133.7588–−40.42205)

Note: OR = Odds Ratio; CI = Confidence Interval; Coefficient = logistic regression model coefficient.

This model has a Pseudo R-squared = 0.605, an AUC = 95.4% (95% CI 91.5–99.3%),
reaching a sensitivity of 97.67% with a specificity of 74.42% (Table 4 and Figures 1 and 2).
For regression coefficients reported in Table 3 and predicted probability cut points reported
in Table 4, the following model will identify cases and controls with the specified sensitivity
and specificity:
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Table 4. Immuno-oncology panel: sensitivity/specificity plot for the resulting multivariate logistic
regression model, and for sensitivity levels higher than specificity levels.

Predicted Probability Cut Point Sensitivity Specificity

≥0.1696234 100.00% 67.44%

≥0.2097338 97.67% 74.42%
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In the second panel—the Target 96 Oncology III panel—there were 19 proteins with
more than 25% values below the limit of detection (TBL1X, IL17F, TPMT, KLK4, NT5C3A,
GAMT, HEXA, TNFAIP8, AIF1, CNPY2, SEPT9, CDC27, CXCL14, LAP3, SPINK4, YTHDF3,
ACTN4, GGA1, TPT1) so they were excluded from further analyses. Of the remaining
proteins, in Table 5 we report median values and interquartile ranges for cases and con-
trols, as well as the odds ratios, 95% confidence intervals and p-values of the binary
logistic regression.

Table 5. Oncology panel: result of descriptive analysis, and binary logistic regression against
the outcome.

Oncology Cases Controls Binary Logistic Regression

Proteins Median (IQR) Median (IQR) OR (95% CI): p-Value

CD22 5.633 (5.371–5.891) 5.945 (5.565–6.088) 0.355 (0.126–1.003); 0.051

INPP1 1.444 (1.124–1.907) 1.144 (0.934–1.456) 1.607 (0.834–3.095); 0.156

ALPP 6.802 (5.775–7.713) 5.836 (4.828–6.321) 1.637 (1.172–2.287); 0.004

CGB3 5.052 (4.473–5.432) 3.732 (2.946–4.752) 2.642 (1.627–4.291); 0.000

NAMPT 2.006 (1.525–3.161) 1.557 (1.194–2.358) 1.334 (0.957–1.859); 0.089

VMO1 2.266 (1.916–2.404) 1.919 (1.522–2.236) 2.874 (1.156–7.142); 0.023

IFNGR2 4.891 (4.646–5.139) 4.775 (4.582–5.196) 1.478 (0.679–3.217); 0.325

ERP44 5.901 (5.621–6.108) 5.612 (5.318–5.899) 3.633 (1.156–11.418); 0.027

CBLN4 3.444 (3.298–3.680) 3.698 (3.314–3.977) 0.343 (0.120–0.985); 0.047

ACAA1 2.427 (1.879–3.125) 1.923 (1.734–2.484) 1.704 (1.033–2.808); 0.037

S100A16 2.739 (2.354–3.118) 2.937 (2.509–3.202) 0.732 (0.405–1.326); 0.304

PSPN 2.927 (2.576–3.874) 3.335 (2.624–3.773) 0.885 (0.523–1.498); 0.649

DCTPP1 4.963 (4.706–5.173) 4.683 (4.342–4.924) 6.91 (2.082–22.935); 0.002

MANSC1 5.962 (5.765–6.178) 6.081 (5.803–6.264) 0.843 (0.226–3.149); 0.800

GFER 3.559 (3.172–4.142) 3.329 (3.056–3.578) 2.775 (1.291–5.967); 0.009

RP2 1.799 (1.344–2.267) 1.534 (1.200–1.905) 1.886 (0.988–3.603); 0.055

JCHAIN 3.420 (3.081–3.917) 3.483 (3.202–3.705) 1.173 (0.474–2.903); 0.730

RAB6A 4.359 (3.629–5.391) 4.064 (3.434–4.728) 1.211 (0.879–1.669); 0.242

C1QA 6.135 (6.007–6.325) 6.205 (5.946–6.351) 1.273 (0.259–6.243); 0.766

AKR1B1 3.743 (3.193–4.232) 3.273 (2.876–4.084) 1.204 (0.763–1.902); 0.425

SCG2 3.605 (3.291–3.910) 3.677 (3.424–3.875) 0.805 (0.286–2.268); 0.681

RFNG 2.5100 (2.276–2.715) 2.280 (2.130–2.463) 9.739 (2.099–45.182); 0.004

MLN 3.789 (2.327–4.461) 2.639 (1.850–3.436) 1.771 (1.210–2.593); 0.003

ARHGAP25 1.381 (0.660–2.393) 1.111 (0.614–1.910) 1.283 (0.848–1.942); 0.238

IL1B 1.013 (0.548–1.575) 0.638 (0.309–1.319) 1.207 (0.844–1.726); 0.304

CCT5 0.806 (0.558–1.347) 0.492 (0.387–0.782) 3.433 (1.389–8.483); 0.008

CASP2 1.619 (1.216–2.204) 1.465 (0.942–2.340) 0.987 (0.686–1.420); 0.943

ELOA 1.234 (0.766–2.042) 0.905 (0.584–1.308) 1.384 (0.933–2.052); 0.106
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Table 5. Cont.

Oncology Cases Controls Binary Logistic Regression

Proteins Median (IQR) Median (IQR) OR (95% CI): p-Value

NCS1 8.279 (8.000–8.556) 7.923 (7.704–8.144) 9.272 (2.593–33.153); 0.001

LSP1 4.291 (3.626–4.770) 4.224 (3.446–4.731) 1.198 (0.676–2.126); 0.536

AFP 5.767 (5.330–6.316) 5.373 (4.979–5.866) 2.166 (1.133–4.141); 0.019

GOPC 1.306 (0.968–1.783) 1.042 (0.833–1.247) 2.382 (1.071–5.302); 0.033

USO1 2.507 (1.866–3.311) 2.011 (1.725–2.592) 1.705 (1.067–2.723); 0.026

AIMP1 2.507 (1.830–3.010) 1.935 (1.625–2.538) 1.513 (0.925–2.476); 0.099

SCGN 2.439 (2.033–2.646) 2.173 (1.948–2.525) 1.858 (0.801–4.311); 0.149

TXNDC15 6.925 (6.815–7.071) 6.932 (6.830–7.047) 1.132 (0.142–9.049); 0.907

ICAM5 5.189 (4.957–5.424) 5.321 (4.973–5.628) 0.731 (0.254–2.110); 0.563

FUS 3.247 (2.068–4.311) 2.673 (1.860–3.261) 1.328 (0.943–1.871); 0.104

PTP4A1 1.073 (0.871–1.364) 1.078 (0.838–1.420) 1.105 (0.457–2.670); 0.825

FOXO3 1.495 (1.120–1.875) 1.126 (0.885–1.530) 1.709 (0.928–3.150); 0.086

VWA1 5.145 (4.880–5.544) 4.985 (4.497–5.479) 1.605 (0.748–3.445); 0.225

FLT3 2.666 (2.469–2.914) 2.890 (2.611–3.112) 0.198 (0.053–0.741); 0.016

COL9A1 1.159 (0.880–1.520) 1.595 (1.043–2.031) 0.398 (0.184–0.861); 0.019

BRK1 1.457 (1.167–1.692) 1.324 (1.118–1.458) 4.147 (1.076–15.988); 0.039

NELL1 8.846 (8.385–9.075) 8.883 (8.633–9.226) 0.492 (0.188–1.29); 0.149

SFTPA1 1.152 (0.889–1.426) 1.079 (0.835–1.282) 1.01 (0.539–1.895); 0.974

VPS37A 0.873 (0.615–1.420) 0.555 (0.395–0.919) 2.768 (1.249–6.135); 0.012

DRG2 1.151 (0.601–1.674) 0.721 (0.434–1.236) 1.878 (1.037–3.400); 0.037

HMBS 3.947 (3.284–4.464) 3.489 (2.393–4.040) 1.840 (1.121–3.017); 0.016

CLIP2 2.185 (1.866–2.682) 2.286 (1.661–2.622) 0.966 (0.584–1.597); 0.891

HSPB6 6.899 (6.393–7.351) 6.128 (5.733–6.771) 5.084 (2.308–11.198); 0.000

ATP6V1D 1.075 (0.881–1.581) 0.950 (0.771–1.149) 3.140 (1.198–8.230); 0.020

LACTB2 4.843 (4.193–5.294) 4.115 (3.522–4.703) 1.955 (1.205–3.171); 0.007

HBQ1 4.388 (3.830–4.951) 3.911 (2.598–5.099) 1.440 (1.029–2.016); 0.033

SCLY 6.124 (5.682–6.764) 5.778 (5.538–6.111) 3.588 (1.504–8.56); 0.004

MYO9B 1.528 (1.094–2.021) 1.251 (0.923–1.775) 1.401 (0.815–2.408); 0.223

CD300E 4.070 (3.832–4.544) 3.779 (3.583–4.164) 4.269 (1.611–11.311); 0.004

CDHR2 2.589 (1.804–3.275) 1.132 (0.693–2.067) 2.820 (1.712–4.644); 0.000

CPVL 4.479 (4.015–4.876) 4.811 (4.555–4.915) 0.295 (0.110–0.791); 0.015

ICAM4 5.253 (4.979–5.448) 5.229 (4.960–5.545) 1.229 (0.536–2.818); 0.626

PSMD9 3.598 (2.964–4.455) 3.048 (2.400–3.848) 1.693 (1.121–2.557); 0.012

VPS53 0.483 (0.167–1.176) 0.221 (−0.016–0.712) 1.542 (0.917–2.592); 0.102

CALCOCO1 6.179 (5.618–6.844) 5.753 (4.989–6.350) 1.285 (0.892–1.850); 0.178

UBAC1 3.990 (3.465–4.495) 3.645 (3.041–4.149) 2.162 (1.154–4.053); 0.016

PTPRM 4.227 (3.989–4.393) 4.210 (4.138–4.367) 0.562 (0.117–2.706); 0.473

GALNT7 4.344 (4.166–4.576) 4.505 (4.259–4.645) 0.497 (0.129–1.915); 0.310
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Table 5. Cont.

Oncology Cases Controls Binary Logistic Regression

Proteins Median (IQR) Median (IQR) OR (95% CI): p-Value

FLT1 4.235 (4.075–4.415) 4.157 (4.064–4.266) 3.489 (0.56–21.742); 0.181

VAT1 4.014 (3.678–4.483) 3.801 (3.528–4.051) 3.569 (1.323–9.627); 0.012

L1CAM 6.812 (6.638–7.042) 6.801 (6.658–6.970) 3.636 (0.589–22.451); 0.165

GPA33 6.351 (5.596–7.801) 6.893 (5.512–8.086) 0.952 (0.710–1.276); 0.743

HLA-E 0.831 (0.757–0.955) 0.775 (0.611–0.863) 13.044 (1.56–109.096); 0.018

PCDH1 5.926 (5.777–6.047) 5.837 (5.742–5.953) 18.508 (1.399–244.885); 0.027

NPY 3.913 (3.519–4.458) 4.042 (3.690–4.556) 0.758 (0.416–1.381); 0.365

Note: IQR = Interquartile Range (25th and 75th centiles); OR = Odds Ratio; CI = Confidence Interval.

With the results of the binary logistic regression, for the second panel, we selected
24 proteins with a binary logistic regression p-value below 0.02, as we only had 11 proteins
with a p-value below 0.01 (Table 6). These 24 proteins were considered together in the
multivariate logistic regression model. After applying a downward selection, we were left
with five proteins, significantly and simultaneously associated with the outcome (Table 7).

Table 6. Multivariate logistic regression model including all variables from the oncology panel with
p < 0.02 at binary logistic regression.

Protein OR (95% CI) p-Value

CGB3 1.938 (0.586–6.415) 0.586

HSPB6 0.626 (0.062–6.360) 0.062

CDHR2 2.752 (0.937–8.085) 0.937

NCS1 41.559 (0.371–4649.940) 0.371

DCTPP1 1.713 (0.016–178.523) 0.016

LMLN 3.302 (0.987–11.044) 0.987

ALPP 0.739 (0.262–2.078) 0.262

SCLY 41.021 (0.694–2425.919) 0.694

CD300E 1.863 (0.125–27.774) 0.125

rfng 91.252 (0.288–28,947.58) 0.288

LACTB2 0.478 (0.022–10.402) 0.022

CCT5 0.003 (4.95 × 10−6–1.415) 0.000

GFER 0.156 (0.010–2.423) 0.010

VPS37A 0.352 (0.033–3.791) 0.033

VAT1 3.957 (0.053–296.511) 0.053

PSMD9 67.170 (1.007–4479.84) 1.007

KLK4 3.246 (0.433–24.334) 0.433

CPVL 0.103 (0.007–1.423) 0.007

FLT3 0.002 (9.21 × 10−6–0.398) 0.000

HMBS 0.500 (0.012–21.041) 0.012

UBAC1 0.998 (0.013–74.526) 0.013

HLA-E 0.252 (0.001–62.466) 0.001

AFP 0.771 (0.138–4.319) 0.138

COL9A1 0.054 (0.004–0.774) 0.004
Note: OR = Odds Ratio; CI = Confidence Interval.
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Table 7. Oncology panel: result of the stepdown procedure applied to the saturated multivariate
logistic regression model.

p-Value OR (95% CI) Coefficient (95% CI)

CDHR2 0.002 2.368 (1.372–4.085) 0.8618858 (0.3165523–1.407219)

NCS1 0.001 30.429 (4.28–216.339) 3.415408 (1.45397–5.376846)

MLN 0.026 1.914 (1.082–3.384) 0.6490679 (0.0790204–1.219115)

FLT3 0.011 0.054 (0.006–0.507) −2.915442 (−5.151296–−0.6795876)

COL9A1 0.034 0.285 (0.089–0.909) −1.256405 (−2.417216–−0.0955934)

Constant 0.002 3.52 × 10−10 (4.36 × 10−16–2.84 × 10−4) −21.76806 (−35.36822–−8.167891)

Note: OR = Odds Ratio; CI = Confidence Interval; Coefficient = logistic regression model coefficient.

This model has a Pseudo R-squared = 0.436, an AUC = 88.9% (82.1–95.6%), reaching
a sensitivity of 95.45% with a specificity of 69.77% (Table 8 and Figures 3 and 4). For the
regression coefficients reported in Table 7 and predicted probability cut points reported
in Table 8, the following model identified cases and controls with the specified sensitivity
and specificity:

Table 8. Oncology panel: sensitivity/specificity plot for the resulting multivariate logistic regression
model, and for sensitivity levels higher than specificity levels.

Predicted Probability Cut Point Sensitivity Specificity

≥0.1731692 100.00% 55.81%

≥0.2520203 97.73% 62.79%

≥0.3550157 95.45% 69.77%

≥0.5128943 88.64% 76.74%

≥0.5453203 84.09% 79.07%
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Predicted probability = 1/(1 + exp(−(−21.76806 + 0.8618858 × CDHR2 + 3.415408 ×
NCS1 + 0.6490679 ×MLN − 2.915442 × FLT3 − 1.256405 × COL9A1))).

The third model was generated by considering in a multivariate logistic regression all
proteins included in the two final models, i.e., Gal-1, Gal-9, MMP7. FASLG, CDHR2, NCS1,
MLN, FLT3 and COL9A1 (Table 9). After the stepdown procedure, the final model included
all variables previously included in the immune-oncology final model, plus COL9A1
(Table 10). This model has a Pseudo R-squared = 0.691, an AUC = 96.9% (93.9–99.9%),
reaching a sensitivity of 97.67% with a specificity of 83.72% (Table 11, Figures 5 and 6). Re-
gression coefficients are reported in Table 10. Predicted probability cut points for specificity
higher than sensitivity are reported in Table 11. The predicted probability can be calculated
from the following model:

Table 9. Multivariate logistic regression model including all variables from the final model of the
immuno-oncology and oncology panels.

Protein OR (95% CI) p-Value

Gal-1 99.147 × 104 (65.740–1.50 × 1010) 0.005

MMP7 40.640 × 104 (6.623–2.49 × 1010) 0.022

Gal-9 4.82 × 10−4 (8.37 × 10−7–0.277) 0.018

FASLG 1.665 × 10−2 (2.505 × 10−4–1.107) 0.056

CDHR2 1.738 (0.426–7.083) 0.441

NCS1 5.054 (0.252–101.451) 0.290

MLN 2.360 (0.771–7.227) 0.132

FLT3 6.315 × 10−3 (4.39 × 10−5–0.909) 0.046

COL9A1 3.174 × 10−2 (1.50 × 10−3–0.673) 0.027
Note: OR = Odds Ratio; CI = Confidence Interval.
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Table 10. Joint panel: result of the stepdown procedure applied to the saturated multivariate logistic
regression model.

p-Value OR (95% CI) Coefficient (95% CI)

Gal-1 0.001 7.30 × 104 (7.38 × 101–7.21 × 107) 11.198 (4.302–18.094)

MMP7 0.001 1.04 × 104 (4.71 × 101–2.29 × 106) 9.249 (3.852–14.646)

Gal-9 0.010 8.98 × 10−3 (2.47 × 10−4–3.27 × 10−1) −4.713 (−8.307–−1.119)

FASLG 0.003 1.56 × 10−2 (9.58 × 10−4–2.53 × 10−1) −4.163 (−6.951–−1.375)

COL9A1 0.008 6.80 × 10−2 (9.34 × 10−3–4.96 × 10−1) −2.688 (−4.673–−0.702)

Constant 0.001 1.72 × 10−53 (2.49 × 10−83–1.18 × 10−23) −121.497 (−190.203–−52.791)

Note: OR = Odds Ratio; CI = Confidence Interval; Coefficient = logistic regression model coefficient.

Table 11. Joint panel: sensitivity/specificity plot for the resulting multivariate logistic regression
model, and for sensitivity levels higher than specificity levels.

Predicted Probability Cut Point Sensitivity Specificity

≥0.2436392 100.00% 79.07%

≥0.3154508 97.67% 83.72%

≥0.4752594 95.35% 90.70%

Biomedicines 2022, 10, x FOR PEER REVIEW 13 of 21 
 

Table 10. Joint panel: result of the stepdown procedure applied to the saturated multivariate logistic 
regression model. 

 p-Value OR (95% CI) Coefficient (95% CI) 
Gal-1 0.001 7.30 × 104 (7.38 × 101–7.21 × 107) 11.198 (4.302–18.094) 

MMP7 0.001 1.04 × 104 (4.71 × 101–2.29 × 106) 9.249 (3.852–14.646) 
Gal-9 0.010 8.98 × 10−3 (2.47 × 10−4–3.27 × 10−1) −4.713 (−8.307–−1.119) 

FASLG 0.003 1.56 × 10−2 (9.58 × 10−4–2.53 × 10−1) −4.163 (−6.951–−1.375) 
COL9A1 0.008 6.80 × 10−2 (9.34 × 10−3–4.96 × 10−1) −2.688 (−4.673–−0.702) 

Constant 0.001 
1.72 × 10−53 (2.49 × 10−83–1.18 × 

10−23) −121.497 (−190.203–−52.791) 

Note: OR = Odds Ratio; CI = Confidence Interval; Coefficient = logistic regression model coefficient. 

Table 11. Joint panel: sensitivity/specificity plot for the resulting multivariate logistic regression 
model, and for sensitivity levels higher than specificity levels. 

Predicted Probability Cut Point Sensitivity Specificity 
≥0.2436392 100.00% 79.07% 
≥0.3154508 97.67% 83.72% 
≥0.4752594 95.35% 90.70% 

 

 
Figure 5. Sensitivity and specificity plot of the final multivariate logistic regression model based on 
cytokines resulting from the two final models based on both the immune-oncology and the oncology 
panel. 

Figure 5. Sensitivity and specificity plot of the final multivariate logistic regression model based
on cytokines resulting from the two final models based on both the immune-oncology and the
oncology panel.



Biomedicines 2022, 10, 1857 15 of 22Biomedicines 2022, 10, x FOR PEER REVIEW 14 of 21 
 

 
Figure 6. Receiver operating characteristics curve of the final multivariate logistic regression model 
based on cytokines resulting from the two final models based on both the immune-oncology and 
the oncology panel. 

Bioinformatic Analysis 
We used gProfiler as the classification tool for proteomic enrichment data analysis. 

For the Immuno-oncology panel, proteins (Figure 7) are classified into groups according 
to their molecular function, biological processes, and protein classes. Regarding molecular 
function, proteins were categorized into: cytokine receptor binding, cytokine activity, re-
ceptor-ligand activity, signaling receptor activator activity, signaling receptor regulator 
activity, signaling receptor binding, chemokine activity, and chemokine receptor binding. 
For biological processes, proteins were categorized into: immune response, immune sys-
tem process, positive regulation of immune system process, cell surface receptor signaling 
pathway, regulation of immune system process, cytokine-mediated signaling pathway, 
response to cytokine, and cellular response to cytokine stimulus. Contrastingly, for pro-
tein class, proteins were categorized into: extracellular region, external side of plasma 
membrane, extracellular space, cell surface, side of membrane, cell periphery, plasma 
membrane, and integral component of plasma membrane. Reactome tool grouped these 
proteins into eight pathways: chemokine receptors bind chemokines, interleukin-10 sig-
naling, cytokine signaling in immune system, immune system, signaling by interleukins, 
peptide ligand-binding receptors, TNFR2 non-canonical NF-kB pathway, class A/1 (Rho-
dopsin-like receptors). 

Figure 6. Receiver operating characteristics curve of the final multivariate logistic regression model
based on cytokines resulting from the two final models based on both the immune-oncology and the
oncology panel.

Predicted probability = 1/(1 + exp(−(−121.4969 − 4.713017 × Gal-9 + 11.1979 × Gal-1
+ 9.248928 ×MMP7 − 4.163016 × FASLG − 2.687621 × COL9A1))).

Bioinformatic Analysis

We used gProfiler as the classification tool for proteomic enrichment data analysis. For
the Immuno-oncology panel, proteins (Figure 7) are classified into groups according to their
molecular function, biological processes, and protein classes. Regarding molecular function,
proteins were categorized into: cytokine receptor binding, cytokine activity, receptor-ligand
activity, signaling receptor activator activity, signaling receptor regulator activity, signaling
receptor binding, chemokine activity, and chemokine receptor binding. For biological
processes, proteins were categorized into: immune response, immune system process,
positive regulation of immune system process, cell surface receptor signaling pathway,
regulation of immune system process, cytokine-mediated signaling pathway, response
to cytokine, and cellular response to cytokine stimulus. Contrastingly, for protein class,
proteins were categorized into: extracellular region, external side of plasma membrane,
extracellular space, cell surface, side of membrane, cell periphery, plasma membrane, and
integral component of plasma membrane. Reactome tool grouped these proteins into eight
pathways: chemokine receptors bind chemokines, interleukin-10 signaling, cytokine signal-
ing in immune system, immune system, signaling by interleukins, peptide ligand-binding
receptors, TNFR2 non-canonical NF-kB pathway, class A/1 (Rhodopsin-like receptors).
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The same analysis was performed for the Target 96 Oncology III panel (Figure 8). Pro-
teins were classified into groups according to their molecular function, biological processes,
and protein class. The molecular function categories were: protein binding. The biological
processes were: negative regulation of endothelial cell proliferation. The protein class cate-
gories were: extracellular region, extracellular space, vesicle, extracellular exosome, extra-
cellular vesicle, extracellular organelle, and extracellular membrane-bounded organelle. Re-
actome tool analysis classified these proteins into four pathways: CLEC7A/inflammasome
pathway, Defective CSF2RA causes SMDP4, and Defective CSF2RB causes SMDP5, Innate
Immune System.
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4. Discussion

Biomarkers play a key role in oncological applications, including diagnosis of the
disease, prognosis and determination of personalized treatment [42]. High throughput
technology of TMT LC\MS-MS allowed for the identification and quantification of several
candidate biomarkers in a large cohort of patients [43]. In recent years, there has been
a great effort to identify and validate biomarkers in EC, but, until now, no candidate
biomarker has reached the clinical stage [43,44].

To identify early candidate biomarkers in EC, we exploited for the first time PEA tech-
nology in targeted proteomics, which had already been used successfully for identification
of biomarkers in several pathologies. From the 92 proteins of the Immuno-oncologic panel,
only 20 were selected with a binary logistic regression p-value below 0.01. A multivariate
logistic regression analysis based on four proteins (Gal-9, Gal-1, MMP7, FASLG) allowed
us to separate cases from controls with an AUC = 95.4%. From the Target 96 Oncology
III, only 24 proteins were selected with a binary logistic regression p-value below 0.02. A
multivariate logistic regression analysis based on five proteins (CDHR2, NCS1, MLN, FLT3,
COL9A1) allowed us to separate cases from controls with an AUC = 88.9%. According to
these results, the performance of the Immuno-oncologic panel was better than the Target
96 Oncology III panel. To further improve the model, we performed a multivariate logistic
regression, including all proteins from the first (Gal-1, Gal-9, MMP7, FASLG) and one from
the second model (COL9A1) obtaining an AUC = 96.9%.

Thanks to PEA technology, several candidate biomarkers were identified in differ-
ent pathologies, such as FABP2, FGF5, LPL, and LTA in coronary artery disease (CAD)
pathogenesis [45]; ITGAV, EpCAM, IL18, SLAMF7 and IL8 were identified as biomarkers
in inflammatory bowel disease (IBD) [46]; and ten candidate biomarkers, including CHIT1,
SMOC2, MMP-10, LDLR, CD200, EIF4EBP1, ALCAM, RGMB, tPA and STAMBP, were
identified in early Alzheimer’s disease [47]. In endometriosis, PEA technology identified
seven proteins up-regulated (IL-6, IL-8, CCL 19, SCF, VEGF-D, IL-6RA, MIA9) and ten
proteins down-regulated (ICOSLG, EGFR, SELE, ErbB2/HER2, IL-6RA, VEGFR-2, Flt3L,
CXCL10, HE4, FR-alpha). Moreover, in endometriosis patients, dysregulation of these
proteins has been reported to induce immune response modulation, angiogenesis, cell
proliferation, cell adhesion and inhibition of apoptosis [38].

In this work, we identified five proteins, namely, Gal-1, Gal-9, MMP7, FASLG, and
COL9A1, that based on their known function in endometrial and other cancers might
represent useful early-stage EC biomarkers, upon a validation phase.

Indeed, Extracellular Gal-9 induces apoptosis of effector T-cells through mucin domain-
containing molecule 3 (Tim-3) [48]. This protein induces the differentiation and suppressive
activity of regulatory T-cells [49]. In their work, Chuan-xia Zhang et al. highlighted a novel
mechanism involving Gal-9 in creating an immune-suppressive microenvironment, which
favors tumor progression [50].

Gal-1 is a small lectin that binds beta-galactoside and a wide array of complex carbohy-
drates. This protein acts as an immunosuppressive molecule and is expressed by different
types of cancer cells [51]. Once secreted, Gal-1 binds to the glycosylated receptor of immune
cells, leading to their inhibition and consequently to the immune escape of cancer cells [52].
In EC, Mylonas and colleagues performed an immunohistochemistry study of Gal-1 and
Gal-9, finding a correlation between these proteins and EC clinicopathological features. [53]
Indeed, high expression of Gal-1 is associated with poor prognosis, while high expression
of Gal-9 is associated with early pathological changes. In addition, Gal-1 also correlates
with lymphangiosis, a poor prognostic marker in EC [54].

MMP7 is a small enzyme that degrades several types of galectins, casein and fi-
bronectin [55]. MMP7 promotes tumor cell invasion and migration, digesting the extracellu-
lar matrix (ECM) and components of cell surface proteins [56]. This protein is a promising
diagnostic and prognostic biomarker of pancreatic cancer [57] and bladder cancer [58]. Its
biochemical characteristics make MMP7 a potential target in several types of cancers [56].
Downregulation of MMP7 leads to a reduced proliferation and migration of tumor cells
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in gallbladder cancer [59] and reduces the cisplatin resistance in NCSLC cells [60]. In EC,
high expression of MMP7 correlates with higher lymph node invasion [61] and increased
risk of metastasis [62]. These data are supported also by in vitro assays (Misugi et al.),
confirming that increased expression of MMP-7 in high-grade ECs may be correlated with
tumor invasion and the protein may be a prognostic marker in EC [63].

COL9A1 is a structural component of hyaline cartilage and vitreous of the eye; the
COL9A1 gene localizes in chromosome 16q13 [64]. Several studies correlates COL9A1
with breast cancer [65] and oral squamous cell carcinoma [66]. In EC, computational
analysis of RNAseq data deposited in the TCGA database show that COL9A1 expression is
increased both in primary and metastatic tumor (https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC7173926/) accessed on 4 July 2022.

Lastly, FASLG binds to TNFRSF6/FAS receptor inducing apoptosis [67]. This protein is
important to maintain the immune homeostasis and for the elimination of cancer cells [68].
Epithelial mesenchymal transition (EMT) and stiffness make cancer cells more aggressive by
excessive production and secretion of FASLG [69]. McGlorthan et al. described a possible
mechanism explaining how progesterone and calcitriol induce apoptosis in EC, relying on
the induction of FasL, Fas, and FADD expression, which, in turn, activates the caspase-8
pathway [70]. Accordingly, a genetic study showed that the homozygous CC variant of
FASL −844 T>C polymorphism confers protection against EC [71].

The Reactome analysis of our five candidate proteins also identified several pathways
related with the immunity system. Of them, chemokines and chemokine receptors not only
take part in immune regulation but also play a key role in tumor development. Moreover,
chemokines and chemokine receptors are related with angiogenesis, metastasis, drug
resistance, and immunity of breast cancer [72]. For example, IL-10 plays a key role on
the regulation of several genes in gastric cancer cells involved in cell proliferation and
migration [73]. Interestingly, cytokines are small proteins that play an important role in
cellular functions, such as proliferation, differentiation, and survival, as well as the response
to pathogens. These proteins induce the activation of the JAK-STAT pathway, which is
fundamental in the regulation of immune system and tumor surveillance [74].

Altogether, in our study, we found a panel of proteins whose secretion in blood
correlates with early EC and can be exploited as a diagnostic biomarker upon further
validation, although we know that there are some limitations. First, since it was very
difficult for us to find controls with the same age as the EC patients, the controls are slightly
younger than the EC patients. We acknowledge this is a limitation and that levels of some
proteins might change with age. The next step will be the validation of these results with
age-matched cases and controls.

Another limit of our study is the small number of patients, which does not allow us to
generalize to the overall population. Even if the results are satisfactory, more studies are
certainly required to confirm and consolidate these findings.

5. Conclusions

In conclusion, by combining proteins from the Immuno-oncology panel and the Target
96 Oncology III panel, we were able to generate an algorithm that was able to discriminate
early EC type I patients from controls with high specificity and sensitivity thanks to the
analysis of Gal-1, Gal-9, MMP7, COL9A1, and FASLG serum levels. Although Gal-1, Gal-9,
MMP7, COL9A1, and FASLG are overexpressed in different kinds of cancers, the analysis
of their serum levels allows one to discriminate between healthy controls and woman
affected by type I EC, and combining this analysis with a typical clinical manifestation of
EC, such us bleeding and pelvic pain, might help early EC diagnosis, avoiding invasive
diagnostic techniques.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomedicines10081857/s1, Table S1: The clinical and pathological characteris-
tics of the patients. Table S2: List of proteins of 92 human proteins of Olink Target 96 oncology III. Table S3:
List of proteins of 92 human proteins of Olink Target 96 Immuno-Oncology Panels.
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