
ORIGINAL RESEARCH
published: 04 September 2020

doi: 10.3389/fncom.2020.00075

Frontiers in Computational Neuroscience | www.frontiersin.org 1 September 2020 | Volume 14 | Article 75

Edited by:

Tatyana Sharpee,

Salk Institute for Biological Studies,

United States

Reviewed by:

Carmen Castro Canavier,

Louisiana State University,

United States

Ervin Wolf,

University of Debrecen, Hungary

*Correspondence:

Adam Mergenthal

mergenth@usc.edu

Received: 09 April 2020

Accepted: 17 July 2020

Published: 04 September 2020

Citation:

Mergenthal A, Bouteiller J-MC, Yu GJ

and Berger TW (2020) A

Computational Model of the

Cholinergic Modulation of CA1

Pyramidal Cell Activity.

Front. Comput. Neurosci. 14:75.

doi: 10.3389/fncom.2020.00075

A Computational Model of the
Cholinergic Modulation of CA1
Pyramidal Cell Activity
Adam Mergenthal*, Jean-Marie C. Bouteiller, Gene J. Yu and Theodore W. Berger

Biomedical Engineering Department, Center for Neural Engineering, University of Southern California, Los Angeles, CA,

United States

Dysfunction in cholinergic modulation has been linked to a variety of cognitive disorders

including Alzheimer’s disease. The important role of this neurotransmitter has been

explored in a variety of experiments, yet many questions remain unanswered about

the contribution of cholinergic modulation to healthy hippocampal function. To address

this question, we have developed a model of CA1 pyramidal neuron that takes into

consideration muscarinic receptor activation in response to changes in extracellular

concentration of acetylcholine and its effects on cellular excitability and downstream

intracellular calcium dynamics. This model incorporates a variety of molecular agents

to accurately simulate several processes heretofore ignored in computational modeling

of CA1 pyramidal neurons. These processes include the inhibition of ionic channels by

phospholipid depletion along with the release of calcium from intracellular stores (i.e.,

the endoplasmic reticulum). This paper describes the model and the methods used

to calibrate its behavior to match experimental results. The result of this work is a

compartmental model with calibrated mechanisms for simulating the intracellular calcium

dynamics of CA1 pyramidal cells with a focus on those related to release from calcium

stores in the endoplasmic reticulum. From this model we also make various predictions

for how the inhibitory and excitatory responses to cholinergic modulation vary with

agonist concentration. This model expands the capabilities of CA1 pyramidal cell models

through the explicit modeling of molecular interactions involved in healthy cognitive

function and disease. Through this expanded model we come closer to simulating these

diseases and gaining the knowledge required to develop novel treatments.
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1. INTRODUCTION

Acetylcholine (ACh) directly modulates the activity of neurons within every subregion of the
hippocampus, including both principal neurons and interneurons (Aznavour et al., 2002; Takács
et al., 2018). The dense distribution of the cholinergic terminals within the hippocampus suggests
that this neurotransmitter plays an important role in healthy hippocampal functioning. This
important role is further evidenced by the correlation of dysfunctions reported in cholinergic
terminals with cognitive impairment. The progression of Alzheimer’s disease (AD) has long been
associated with the decline of cholinergic markers in the hippocampus (Schliebs and Arendt,
2011). Other cognitive disorders such as depression and schizophrenia are also associated with

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2020.00075
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2020.00075&domain=pdf&date_stamp=2020-09-04
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mergenth@usc.edu
https://doi.org/10.3389/fncom.2020.00075
https://www.frontiersin.org/articles/10.3389/fncom.2020.00075/full


Mergenthal et al. Cholinergic Modulation of CA1 Cells

alterations in cholinergic disregulation (Higley and Picciotto,
2014). On an even broader scale, changes in cholinergic
expression are associated with the cognitive decline due to
advanced age (Schliebs and Arendt, 2011). The variety of
cognitive dysfunctions related to ACh suggests that it plays not
only an important, but a complex role. In a 2-year double-
blind study, 35% of patients taking an acetylcholinesterase
inhibitor to slow cognitive decline due to AD had a recurrence
of major depressive episodes vs. 19% of those on a placebo
(Reynolds et al., 2011). In other words, a drug meant to
counteract one form of cholinergic dysfunction exacerbated
a separate form of cholinergic dysfunction. Developing better
treatments for these disorders requires a better understanding
of the dynamics of healthy cholinergic modulation. Currently,
ACh is understood to play a role in a variety of cognitive
processes. We will summarize some of these effects briefly
but for fuller reviews (see Dannenberg et al., 2017; Solari and
Hangya, 2018). Acetylcholine has long been understood to be
involved in the generation of theta oscillations (4–12 Hz) in
the hippocampus. Theta oscillations are theorized to organize
memory encoding and retrieval into distinct phases (Hasselmo
et al., 2002). Acetylcholine seems to be involved with the
generation of the lower frequency portion of theta oscillations,
as these frequencies can be blocked by the cholinergic receptor
antagonist atropine (Kramis et al., 1975). On a behavioral level,
the blockade of cholinergic receptors in animal models leads to a
variety of memory deficits involving both spatial navigation and
the acquisition of conditioned fear responses (Jiang et al., 2016;
Solari and Hangya, 2018). These effects result from the activation
of a variety of cholinergic receptors in the hippocampus. These
receptors can be sorted into two types. The first type, nicotinic
receptors, act as ionotropic receptors and allow the passage
of ions through the plasma membrane. In the CA1, nicotinic
receptors primarily modulate interneuron activity (McQuiston,
2014), but they also appear in low densities on pyramidal cells
(Kalappa et al., 2010). The second type, muscarinic receptors,
have a much larger effect in modulating CA1 pyramidal cell
activity (Dasari and Gulledge, 2011). These receptors are G
protein coupled receptors with their activation setting off a
cascade of intracellular reactions. Among the five subtypes of
muscarinic acetylcholine receptors (mAChRs), the subtypes that
primarily modulate CA1 pyramidal activity are the M1 and
M4 mAChRs. M4 mAChRs suppress glutamatergic release from
excitatory synapses originating from the CA3 subregion (Dasari
and Gulledge, 2011). M1 mAChRs are present throughout the
cell’s morphology and alter its overall excitability along with
altering the intracellular calcium dynamics (Dasari and Gulledge,
2011). Thus, the M1 mAChRs are responsible for the majority of
the cholinergic response in this cell type. The M1 mAChR, as a
G-protein coupled receptor, activates a cascade of intracellular
reactions (Falkenburger et al., 2010a,b). It is through these
reactions that the M1 receptor is able to modulate the behavior
of a variety of ion channels. Teithehe M-current was given that
name due to muscarinic receptors suppressing its activity (Brown
and Adams, 1980). Inhibition of this current in CA1 pyramidal
cells through bath application of theM-current antagonist XE991
lead to a depolarized resting membrane potential and increased

spiking activity (Shah et al., 2008). This current was also shown
to be inhibited after bath application of the muscarinic agonist
Oxotremorine-M (Oxo-M) (Carver and Shapiro, 2019). The
channels responsible for the M-current, Kv7 Potassium channels,
require phosphatidylinositol 4,5-bisphosphate (PIP2) in the cell
membrane to maintain its open state. M1 activation leads
to the activation of phospholipase C (PLC) which hydrolyzes
PIP2 into inositol(1,4,5)triphosphate (IP3) and diacylglycerol
(Falkenburger et al., 2010a,b). It is through this depletion of PIP2
that mAChRs inhibit the M-current. Also, by producing IP3, M1
receptors trigger the release of calcium from the endoplasmic
reticulum (ER) via IP3 receptors. This leads to an increase
in intracellular calcium which activates calcium dependent
potassium (SK) channels. In CA1 pyramidal cells M1 activation
is followed by a hyperpolarization which is able to inhibit action
potentials. These hyperpolarizations can be blocked through
the application of apamin, an SK channel antagonist (Dasari
and Gulledge, 2011). Figure 1 provides both a flowchart and a
cartoon illustrate these processes. One long term goal of our lab
has been to create a large scale model of the hippocampus and
through thismodel, gain a better understanding of the underlying
dynamics of this system (Hendrickson et al., 2015), thereby
facilitating the development of better treatments (electrical
or pharmaceutical) to alleviate hippocampal dysfunctions.
Experimental evidence has demonstrated that cholinergic
modulation plays an important role in controlling the dynamics
of this system. This has driven the development of this single cell
model, which will act as a foundation for integrating cholinergic
modulation into our efforts for a large-scale hippocampal model.
We have chosen to build the single cell model on a biophysically
realistic basis wherever possible. This is for two reasons. First, the
collection of experimental data for calibrating a model gives a
perspective on the depth of understanding and raises questions
to guide further in vitro or in vivo experimental efforts. Second,
the inclusion of biochemical mechanisms allows for broad
parametric manipulations which (i) facilitate the simulation
of pathological processes and disease states and (ii) provide
useful insights for the identification and development of novel
treatment options. By creating a biophysically realistic model, we
have developed a tool that allows more cohesive collaboration
with other experimental efforts. What follows is a description of
a model for the cholinergic modulation of the somatic activity
of pyramidal cells within the CA1 region of the hippocampus.
Within the hippocampus, this cell type is the most studied
in terms of cholinergic modulation and will constitute a solid
foundation for the construction of larger cell network models.

2. MATERIALS AND METHODS

The primary task of this research was to evaluate and bring
together a variety of mechanisms and models to accurately
capture the dynamic response of CA1 pyramidal cells to
acetylcholine. As a starting point, we used a compartmental
model of the CA1 pyramidal cell (mpg141209_A_idA as
downloaded from ModelDB) (Migliore et al., 2018) previously
developed for the NEURON simulation environment (Carnevale
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FIGURE 1 | Mechanisms of CA1 pyramidal cell modulation by M1 MAChRs. (A) Flowchart description of the steps between M1 activation and modulated membrane

potential. (B) Illustrated stages of activation: (Left) Before activation the cell is at rest with Kv7 channels open. (Center) M1 activation leads to hydrolysis of PIP2 from

cell membrane (inhibiting Kv7 channels) and the release of intracellular Ca2+ (activating SK channels) through the generation of IP3. (Right) As Ca2+ is extruded from

the intracellular space SK channels close while Kv7 channels remain closed. (C) Membrane potential at different stages of activation. (D) Intracellular calcium levels at

different stages of activation.

and Hines, 2006). We chose to use this simulation environment
as its RXD module (McDougal et al., 2013) allowed us to
efficiently expand the model’s intracellular calcium mechanisms.
The code for these simulations was developed in the Python
programming language. The base model included mechanisms
for the M-current, SK channels, voltage-gated calcium channels
(VGCC). Entry through VGCCs was the only mechanism
through which intracellular calcium increased, while calcium
efflux was simulated as an exponential decay of the intracellular
calcium to its resting value. As one of the focuses of this
work was to simulate intracellular calcium release we needed
to insert and calibrate all of the mechanisms for simulating the
storage and release of calcium from the endoplasmic reticulum,
buffering the intracellular calcium concentration, and extrusion
of excess calcium into the extracellular space. Without these
mechanisms, none of the inhibitory effects seen in Figure 1

could be replicated. These calcium mechanisms were only
expanded in the sections that comprise the soma and the first
200 µm of the apical dendritic trunk. Figure S1 illustrates

which sections within the full morphology were given expanded
calcium mechanisms. One reason for the decision to only
expand the calcium model into these sections was that the
calcium dynamics in these regions are the most studied due
their diameters being large enough for calcium imaging using
fluorescent dyes. Second, cholinergic modulation in synaptic
spines seems to play a role in plasticity (Dennis et al., 2016).
However, plasticity in these synapses is also dependent upon
postsynaptic spiking activity. To properly simulate how plasticity
is altered by cholinergic modulation requires we first make
a working model of how cholinergic modulation alters cell
excitability and spike generation. Finally, the mechanisms of
action differ between synaptic and somatic modulation. For
instance, the hyperpolarization seen at the soma is due to
the activation of SK channels as evidenced by its blockade by
apamin (Dasari and Gulledge, 2011), while synaptic cholinergic
modulation has been tied to the inhibition of SK channels
(Buchanan et al., 2010). Calibrating these differing mechanisms
requires a separate series of simulations and would be best
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explained in a separate work. Our goal in selecting additional
mechanisms was to create a relatively simple model capable
of replicating intracellular calcium dynamics. Disease and age
have been reported to alter several of the mechanisms included
(e.g., calcium buffering; Gant et al., 2006; Oh et al., 2013).
By incorporating mechanistic models for these altered states,
we can explore how the cell behavior changes, and how these
changes impact network-level outcomes. Of importance, fidelity
to the biochemistry of the intracellular space must be balanced
against the realities of computational modeling. A model that
includes all of the known molecular interactions would have too
many parameters to constrain with the available experimental
evidence. Additionally, simulations using this model would be
computationally expensive even for a single cell model. In
addition, our goal of including this model into large scale
network simulations only exacerbates this limitation. We have
thus strived to include the minimum collection of mechanisms
that is necessary for capturing cholinergic modulation in the
soma and apical trunk. Expanding themodel to other regions and
to include other mechanisms will be performed in subsequent
work. A visualization of themechanisms in the expanded calcium
model can be found in Figure 2, while the concentrations
and kinetic parameters for these mechanisms can be found in
Tables S1, S2, respectively. The addition of a mechanism often
required constraining parameter values to properly replicate
experimental results. In order to simplify the calibration process,
the mechanisms were divided into groups based upon region
of action (e.g., endoplasmic reticulum vs. intracellular). These
groups were then calibrated in a specific order, starting from
protocols that required the smallest number of mechanisms and
comprised a minimum number of interdependent parameters.
For example, the rate at which the endoplasmic reticulum (ER)
regains depleted calcium at rest is based upon the balance
between the rate of calcium uptake from sarco/endoplasmic
reticulum calcium pumps (SERCA) vs. the rate of calcium
leakage from the ER. Since the conductance of VGCCs does not
factor into this result it can be ignored. Conversely, replicating
intracellular calcium transients after an action potential requires
constraining parameters for VGCC conductance and calcium
extrusion, in addition to SERCA and ER leak flux, as ER
calcium sequestration alters the dynamics in the intracellular
space. Since we could relatively isolate the ER mechanisms, those
parameters were calibrated first. This simplified the calibration
of later parameters based on results that depend on more
mechanisms. The following sections describe the mechanisms
that were implemented and the experimental data from which
constrained these parameter values.

2.1. Calibrating the Endoplasmic Reticulum
The first step in creating the model was to calibrate the
parameters pertaining to the ER. We chose to model the
ER as an idealized 10% of the intracellular volume to avoid
explicitlymodeling the intricate and dynamic geometry of the ER.
Reconstructions of the ER in CA1 pyramidal cells have focused
on the organelle’s volume in either the dendritic branches or
synaptic spines while ignoring the volume of the ER in the soma
and apical trunk. Using smaller values for the percentage of ER

volume, such as those found in dendritic reconstructions (2–
8% of dendrite volume) (Spacek and Harris, 1997), decreased
the capacity of calcium storage such that the model could not
replicate the amplitude of calcium release events. The 10% value
is therefore a compromise that allows larger intracellular calcium
release events while remaining near the experimentally measured
range. The resting concentration inside the ER was initialized at
175 µM (Solovyova et al., 2002). For the initial calibration, there
were three mechanisms that defined the ER calcium dynamics:
calreticulin (CALR) concentration, SERCA pumps, and calcium
leak. The inositol(1,4,5)triphosphate receptor mechanism (IP3R)
was calibrated at a later stage as the IP3R model produced
negligible currents at resting IP3 concentrations. CALR acts
as the major calcium buffer in the lumen of the ER and its
concentration defines the amount of buffered calcium reserves
for a given lumenal calcium concentration. We used the CALR
kinetics and concentration found in an earlier ER model (Doi
et al., 2005).

Expressions (1) and (2) were used for the SERCA pump
mechanism while Expression (3) was the formula used to
calculate the leak of calcium from the ER into the cytosol.
Expression (4) shows the chemical formula used for CALR
binding to calcium.

Ca2+cyt

kS
f

−→Ca2+ER (1)

kSf =
gS · [Ca

2+
cyt ]

2

[Ca2+cyt ]
2 + 0.00132

(2)

Ca2+ER

kleak ER
f
−→ Ca2+cyt (3)

CALR+ Ca2 +
kcalr
f

⇋

kcalr
b

CALRCa (4)

From these mechanisms we calibrated two parameters, gS, the
SERCA conductance, and kleak ER

f
, the rate of leakage from the

ER. Due to the model ER not having a set geometry it also lacks a
set surface area. Therefore these mechanisms were implemented
as direct fluxes between the two volumes without consideration
of surface density. To constrain the SERCA and leakmechanisms,
we used an experimental result (Garaschuk et al., 1997) for which
the return of Ca2+ER to resting concentrations was fit with an
exponential function with a time constant of 59 s. This time
constant along with the experimental Ca2+ER resting concentration

gave us a target with which wemanually calibrated gS and k
leak ER
f

.

The results of this calibration are illustrated in Figure 2B.

2.2. Calibrating Intracellular Calcium and
Indicator Model
With the ER related mechanisms calibrated, we moved to
calibrating the mechanisms related to the intracellular space.
The major mechanisms of interest in this portion of the model
pertain to the extrusion of excess calcium into the extracellular
space [i.e., plasma membrane calcium pumps (PMCA)] and
the conductance of VGCCs. However, experimental evidence to
constrain these parameters required the addition of mechanisms
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FIGURE 2 | (A) Visualization of mechanisms included in expanded CA1 pyramidal cell calcium model. (B) Results of tuning model mechanisms that replenish calcium

stores in the endoplasmic reticulum without action potentials. Plotted value is simulated calcium stored in endoplasmic reticulum over time (x-axis = 50 s, y-axis = 50

µM). Target data is based on experiments in Garaschuk et al. (1997). (C) Results of tuning model mechanisms that determine calcium dynamics following an action

potential. Plotted value is the percent change in fluorescence of a simulated calcium indicator (OGB-1) over time (Scale: x-axis = 1 s, y-axis= 10% change in

fluorescence). Target data is based on results from Power and Sah (2002).

to replicate experiments using fluorescent calcium indicators.
Fluorescence measurements constitute the primary method to
visualize calcium dynamics. However these indicators act as a
high affinity calcium buffer and alter the very dynamics they
are supposed to report. We therefore included mechanisms to
simulate the binding of calcium to Oregon Green BAPTA-1
(OGB-1), as this was the indicator used in the experimental
results we sought to replicate. The kinetic parameters we used
for the OGB-1 mechanism were based on measurements in an
intracellular environment as interactions with intracellular ions
can change the affinity from its reported in vitro value (Thomas
et al., 2000). Expression (5) was the chemical formula used for
the binding of calcium to OGB-1. According to the product
information sheet OGB-1 bound to calcium fluoresces 14 times
the rate of the unbound state (Molecular Probes, 2005). We
used this fact to create Expression (6), which provides a method
to calculate the simulated fluorescence. With this mechanism
we could use fluorescence experiments that used this calcium
indicator to constrain the other intracellular mechanisms. This
OGB-1 mechanism for creating a simulated fluorescence was
only used in this portion of the calibration process and was not
included in later parameter calibrations.

OGB+ Ca2 +
k
ogb1

f

⇋

k
ogb1

b

OGBCa (5)

F = fmult · OGB1Ca+ OGB1 (6)

Deciding what concentration of Calbindin-D28k (CB) to use in
our simulations was another obstacle. The presence of CB is
among the ways that CA1 pyramidal cells display heterogeneity,

with only around 50% of cells expressing this protein (Müller
et al., 2005). Expression of CB is not correlated with the
bursting/regular firing characteristic that serves as the major
dichotomy within CA1 pyramidal cells (Baimbridge et al., 1991),
so the spiking response of base compartmental model could
not be used as a constraint. Additionally CB is mostly mobile,
so a large portion of CB likely diffused out of the cell and
into the electrodes used to inject the fluorescent indicators as
demonstrated in Müller et al. (2005). These factors make it
difficult to have full confidence in the intracellular concentration
of CB during the fluorescent measurements we used to calibrate
the parameters. In simulations replicating fluorescent data,
we assumed these cells did express this protein but that
the concentration was diminished. We set the diminished
concentration to 20% of its regular value as that proportion
was estimated to be immobile in neurons (Schmidt et al., 2005).
Expression (7) is the chemical formula for the binding of CB
to calcium.

CB+ Ca2 +
kcb
f

⇋

kcb
b

CBCa (7)

Expression (8) describes the binding of pmca to calcium
while Expression (9) describes the release of calcium into the
extracellular volume. This series of reactions describes how
PMCA acts as the mechanism for the extrusion of calcium from
the cytosol to the extracellular space.

PMCA+ Ca2+
k
pmca ca

f

⇋

k
pmca ca

b

PMCACa (8)
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PMCACa
kpmca rel

−→ PMCA (9)

Among these mechanisms there were two parameters that
required calibration. First, we needed to tune the overall rate of
calcium extrusion due to PMCA. While we had the parameters
for its binding kinetics, we needed to tune the overall flux by
altering the mechanism’s surface density. Second, we had to
alter the conductances of the VGCCs. In altering the model we
had expanded the volume the model tracked while calculating
calcium concentration. The original conductance values were
tuned assuming a thin shell on the inner surface of the cell
membrane. This expanded volume required increasing the
channel conductances such that the calcium influx was enough
to drive the fluctuations seen in the target experimental data.

As our target for constraining the intracellular calcium
dynamics we chose the calcium fluorescence following an
action potential (AP) (Power and Sah, 2002) as this protocol
minimized the amount of calcium released from the ER. These
experiments measured fluorescence transients in both the soma
and the apical dendritic trunk, allowing us to calibrate separate
parameter values for different section types. To calibrate these
mechanisms we induced a simulated AP. We then modified
the parameters values by hand until the simulated calcium
fluorescence matched the target data. By altering the VGCC
conductances we could alter the overall amplitude of the calcium
transient. Due to differences in target amplitude, separate VGCC
conductance values were calibrated for the soma and apical
dendritic trunk. Increasing the density of PMCA decreased the
maximum amplitude of the calcium along with increasing the
rate the transient decayed to resting concentrations. The results
of this calibration can be seen in Figure 2C.

2.3. Calibrating Calcium Release and Spike
Acceleration
With the components for the calcium dynamics in place, the next
step was to calibrate the production of IP3 following M1 mAChR
activation. For the M1 mAChR model we turned to the kinetic
models developed by the Hille lab (Falkenburger et al., 2010a,b,
2013; Kruse et al., 2016). This model included mechanisms that
describe the process from the receptor activation by its agonist to
PIP2 hydrolysis into IP3 and DAG. A schematic representation
of this model including all of the associated reactions can
be found in Figure S2. However, the model required notable
modifications to fit our purpose. First, the Hille model simulated
the agonist Oxo-M, not acetylcholine (ACh). While Oxo-M is an
important muscarinic agonist, the goal of simulating endogenous
cholinergic modulation required the mechanism to include ACh.
Our work added the action of ACh on the M1 mAChR model
through the calibration of additional parameters. Second, the
rate of IP3 production was extremely slow compared to the
behavior seen in CA1 pyramidal cells. Recordings of spiking CA1
pyramidal cells exposed to brief (40 ms) pulses of ACh were
provided by the authors of Gulledge andKawaguchi (2007). From
these recordings we selected a subset of traces demonstrating
regular spiking activity where the pre-ACh spiking frequency was
<15 Hz. This provided 16 cell voltage traces. From these selected
recordings it was determined that the regenerative release

occurred within 200 ms of receptor activation as spikes were
inhibited by this time. Both of these issues required the alteration
of parameter values in order to achieve the desired responses.

In Falkenburger et al. (2010b), the authors used fluorescence
resonance energy transfer (FRET) to measure the binding of
M1 mAChRs to Oxo-M. A separate study performed an analysis
of ACh binding to M1 using similar FRET techniques (Ziegler
et al., 2011). From this study we took the half maximal effective
concentration value of ACh and used that value to calibrate
the parameters for agonist binding the receptor (see reaction 1
in Table S2). The change in the receptor’s response to agonist
concentration can be seen in Figure S3.

The discrepancy between the rapid release of intracellular
calcium after M1 activation seen in CA1 pyramidal cells and the
slow generation of IP3 in the Kruse et al. (2016) model was solved
by increasing a subset of kinetic parameters in two portions of
the M1 model. This discrepancy is most likely due to the original
model being constrained to fit the response within sympathetic
neurons. Activation of M1 channels in this neuron type leads
to PIP2 depletion but not large releases of intracellular calcium.
The rate of PLC activity will differ depending on the specific
isozymes present within the cell type. Hippocampal cells contain
PLC isozymes which are activated by increased intracellular
calcium (Nakahara et al., 2005), creating a positive feedback for
the hydrolysis of PIP2. It stands to reason that PIP2 hydrolysis
would be triggered more rapidly than in the original model.
The first portion of the model that needed faster dynamics was
the activation and inactivation of PLC through its binding and
unbinding to the G protein. Expressions (10) and (11) describe
these reactions.

PLC+ Gα − GTP
kPLCassoc
−→ Gα − GTP-PLC (10)

Gα − GDP-PLC
kPLCdiss
−→ Gα − GDP+ PLC (11)

From these reactions we recalibrated the two forward rates
(kPLCassoc and kPLCdiss). If we examine the original dynamics as
seen in Figures 3A,B, one can see that the PLC activation peaks
around 2 s after the ACh pulse and that IP3 levels peak around the
same time. However, looking at the cell recordings (see Figure 4A
for an example), by this time the calcium transients have already
largely ended by 2 s as the cells have largely resumed spiking by
then. Using the original parameter values led to a longer weak
release of calcium from the ER as opposed to the approximately 1
s duration strong release we required to reach higher (>1 µM)
intracellular calcium concentrations. The two parameters were
therefore both increased by a factor of 10. The difference in
dynamics can be seen in Figure 3A.

The second portion of the M1 model that required changed
kinetics was the hydrolysis of PIP2 into DAG and IP3.
Expressions (12) and (13) describe this reaction.

PIP2
kPLC
−→ IP3 + DAG (12)

kPLC = rPLC ∗ Gα-GTP-PLC (13)

Here the parameter, rPLC, was increased by a factor of 100. If we
look at Figure 3B, we can see how this altered the dynamics of
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FIGURE 3 | Comparison of dynamics after a simulated 50 ms 100 µM ACh

pulse. (A) Activated PLC dynamics using original parameter values from Kruse

et al. (2016) (red dash) to recalibrated parameter values used in final model

(black solid). (B) IP3 dynamics using either the original parameters (red dash),

increased PLC activation parameters (blue dash-dot), or increased PLC

activation parameters along with increased hydrolysis rate (kPLC) (black solid)

(C) PIP2 dynamics using either using either the original parameters (red dash),

increased PLC activation parameters (blue dash-dot), increased PLC activation

parameters along with increased hydrolysis rate (kPLC) (gray dot), or all

increased parameters including those that drive synthesis of PIP2 (black solid).

the reaction. By increasing the rate of the hydrolysis along with
increasing the rates in Expressions (10) and (11), the production
of IP3 occurred far more rapidly and was largely complete within

FIGURE 4 | (A) Experimental recording of CA1 pyramidal cell responding to a

40 ms pulse of 100 µM while driven to spiking. (B) Model response to 50 ms

pulse of 100 µM ACh while cell is driven to regular spiking. (C) Comparison of

instantaneous firing rate of experimental response and model response.

2 s of the ACh pulse. This also rapidly depleted the PIP2 as seen
in Figure 3C.

The next goals were to calibrate the calcium release required
for spike inhibition and the rate of PIP2 synthesis. This latter
process controls the rate of reactivation of the M-current, and
thereby controls the duration of spike acceleration. With the
rate of IP3 increased in previous calibration steps, overall IP3
levels were controlled by altering the total concentrations of IP3
Kinase (IP3K) (Expressions 16, 17, and 18) and IP 5-phosphatase
(IP5P) (Expressions 14, 15). Similar reasoning to the increased
rate of IP3 production drove tuning the rate of IP3 removal.
The concentration of IP3 needed to return to near resting levels
quickly enough that calcium release ended within seconds of the
ACh pulse. This allowed mechanisms to restore calcium to the
ER and also allowed the cell’s activity to sharply transition from
hyperpolarization to accelerated spiking.

IP5P+ IP3
k
ip5p

f

⇋

k
ip5p

b

IP5P− IP3 (14)

IP5P− IP3
kip2
−→ IP5P+ IP2 (15)

IP3K+ 2Ca2+
k
ip3k ca

f

⇋

k
ip3k ca

b

IP3K− 2Ca2 (16)

IP3K− Ca2 + IP3

k
ip3k ip3

f

⇋

k
ip3k ip3

b

IP3K− 2Ca2 − IP3 (17)
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IP3K− Ca2 − IP3
kip4
−→ IP3K− Ca2 + IP4 (18)

The mechanism for calcium efflux through IP3 receptors is
described by Expressions (19) and (20). Here ROpen refers to the
open state of the full kinetic model. For the full kinetic scheme of
the IP3 receptor model (see Figure S2B).

Ca2+ER

kIP3R
f
−→Ca2+cyt (19)

kIP3Rf = gIP3R · ROpen (20)

By manipulating the maximum flux, gIP3R, and the rate of IP3
breakdown we were able to produce calcium transients with
peaks reached >1 µM that resolved within the desired duration
range (1–3 s).

The final set of parameters we altered to replicate the CA1
pyramidal cells’ behavior were involved in the synthesis of PIP2.
The resynthesis of PIP2 is due to activity in the ER that varies with
the proteins a cell type expresses (Blunsom and Cockcroft, 2020).
As these species are not characterized within the CA1 pyramidal
cell, we chose to use the mechanisms present in the model
and to calibrate the kinetic parameters to match the behavior
seen in in vitro experiments. The following expressions describe
these reactions.

PI
k4K
−→PI(4)P (21)

PI(4)P
k5K
−→PIP2 (22)

PI(4)P
k4P
−→PI (23)

PIP2
k5P
−→PI(4)P (24)

From these expressions four parameters needed to be recalibrated
(k4K , k5K , k4P, and k5P). These parameters were recalibrated
based upon the rate the instantaneous firing rate (IFR) returned
to its pre-ACh value. In our model, this increased spiking is
due to the inhibition of the M-current following PIP2 depletion.
By simulating the original experiments used in Gulledge and
Kawaguchi (2007), we could replicate the altered spiking behavior
and calibrate the kinetic parameters for PIP2 synthesis so that the
resolution of spike accelerationmatched the experimental results.
Figure 3C shows how the recalibrated parameters changed the
synthesis of PIP2. Figure 4 shows a simulated experiment along
with an example of a cell recording and demonstrates the model’s
ability to replicate the changes to IFR over time.

2.4. Depolarization Activated Calcium
Store Replenishment
The final mechanism we resolved to include in this model was
the role of store operated calcium entry (SOCE). Briefly, this is
a process by which the depletion of lumenal calcium causes the
activation of calcium channels on the plasma membrane. These
channels are positioned in membrane junctions or regions where
the distance between the plasma and ER membrane is <100 nm.
This allows the calcium that enters through SOCE to almost
directly enter the ER without altering the overall intracellular

calcium concentration. For a more in depth review of this process
(see Majewski and Kuznicki, 2014). Interestingly this process
is also dependent on depolarization of the cell (Dasari et al.,
2017). Without depolarization, repeated phasic exposure fails to
demonstrate repeated hyperpolarizing responses to intracellular
calcium release.

While this process is well documented and the responsible
actors have been partly identified, the kinetics of this process
have not been quantified. Not including a mechanism to replicate
SOCE would make it impossible to simulate network activity
with synaptic release of ACh, as the cell model would only be
able to respond to one release event. To overcome this limitation
we included a mechanism that replicated the behavior of SOCE
without explicitly modeling the underlying molecular events.
This mechanism is based on a series of assumptions.

• Depolarization is required for activation (Dasari et al., 2017).
• Hyperpolarization does not cause a leak from intracellular

stores.
• CaER depletion is required for activation (Majewski and

Kuznicki, 2014).
• The action of this mechanism bypasses the intracellular

calcium concentration as calcium directly moves from the
extracellular space to the ER lumen.

Expression (25) was the mechanism we used which fit the
above criteria.

dCa2+ER = gSOCE · ln(1+ evm−vinit ) · e
−(CaER−Cad)

kSOCE (25)

This mechanism avoids altering the intracellular calcium
concentration by directly changing the value of CaER. Through
the use of a softplus function this mechanism will have
minimum activation except when the cell’s membrane potential is
depolarized from it’s resting value (vinit). Also asCaER approaches
its resting value, this mechanism deactivates, ensuring it is
maximally activated after calcium store depletion. As seen in
Figure S4 this mechanism allows repeated hyperpolarizations
following intracellular calcium release if the cell depolarizes, but
intracellular calcium release cannot repeatedly occur if the cell
maintains a near resting membrane potential. This replicates
behavior seen in cortical pyramidal cells (Dasari et al., 2017).

3. RESULTS

3.1. Acetylcholine and Cell Excitability
With the compartmental model able to replicate experimental
responses of CA1 cells, we sought to explore how variations in the
concentration of ACh would alter the model’s behavior. As our
model only captures themodulation in the soma, axon, and apical
trunk of the cell, we focused on simulating how ACh alters the
cell’s excitability. Experiments tend to use agonist concentrations
that will drive a significant and unambiguous response.
These experimental concentrations may not be biologically
relevant, however. While some measurements of in vivo ACh
concentrations have been made, these measurements were
made under the assumption of volumetric transmission. Recent
work, however, has demonstrated that cholinergic terminals
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form synapses, undermining this volumetric assumption (Takács
et al., 2018). It therefore remains unclear what concentrations
muscarinic receptors see during cognition. This particular aspect
will be further discussed later. To avoid testing an exact
concentration profile we sought to explore how our model
responds to a wide range of concentrations. We also explored
how the model behaved differently under a synaptic release of
ACh vs. a steady state exposure. Short pulses (50 ms) replicated
a simultaneous synaptic release we termed “phasic,” while long
term (>5 s) exposures simulated a steady state exposure referred
to as “tonic” exposure.

We first replicated phasic exposure while the cell is at a
resting membrane potential. Figure 5 demonstrates how the
model replicates these changes to membrane potential. At 100
µM the model produces a−9.05 mV hyperpolarization followed
by a depolarization of 1.98 mV. From Figures 5C,D, it is clear
that the amplitudes of these reactions are highly concentration
dependent. From Figure 5D, its clear that for concentrations
<0.1 µM, the release of calcium from intracellular stores is
negligible and consequently no hyperpolarization occurs. In
Figure 5C, we see that the hyperpolarizing effect is induced at
lower concentrations (EC50 = 0.499µM) than the depolarization
(EC50 = 1.95 µM). This suggests that for cells at rest, within
a certain range of concentrations, short pulses of acetylcholine
would only have an inhibitory effect on the cell without
producing much excitatory modulation.

We then sought to explore how phasic ACh exposure would
alter the spiking activity of the cell model. We ran a series
of simulations in which current injections drove the cell to
spike at a constant rate of 10 Hz. At the 1 s mark we then
modeled the injection of a 50 ms pulse of ACh with each
simulation having a different concentration. The results of these
simulations can be seen in Figure 6. Looking at Figure 6C, we
can see that once spiking resumes, the IFR increases rapidly
reaching a peak around 2–3 s after the ACh pulse. The increased
firing rate then slowly returned to its baseline rate over several
seconds. We calculated the peak percent increase in IFR, or
spike acceleration, for each simulated concentration. As shown
in Figure 6D, this value formed a smooth sigmoidal curve
when plotted against concentration. The duration of the spike
inhibition, seen in Figure 6E varied in a way similar to the
variation seen in the resting conditions, abruptly beginning at
concentrations above 0.1 µM. That spike inhibition begins so
abruptly means that for ACh concentrations of 0.1 µM or less
the firing rate will have noticeably increased without a period
of spike inhibition. Additionally, while the peak acceleration
followed a sigmoidal curve, the longest spike inhibition occurred
at 1 µM, with the duration of inhibition decreasing thereafter. If
we examine Figure 7, we can see the cause of this nonlinearity.
In Figure 7A, we can see that as the concentration of the
ACh pulse increases, the peak concentration of the intracellular
calcium transient increases. Figure 7B demonstrates that these
peak values form a sigmoidal curve. However, while the peak
values is increasing, the duration of the calcium transient
is also decreasing. This is due to larger ACh pulses driving
increased IP3 production and thereby causing a more rapid
depletion of ER calcium stores. As the stores are depleted,

FIGURE 5 | Simulated response to phasic (50 ms) exposure at varying

concentrations of acetylcholine. (A) Cell membrane potential with no other

stimulation besides acetylcholine pulse. (B) Simulated intracellular calcium

release. (C) Peak hyperpolarization and depolarization values at different

concentrations of acetylcholine. (D) The peak intracellular calcium

concentration following acetylcholine pulse.
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FIGURE 6 | Simulated response to phasic (50 ms) exposure of varying

concentrations of acetylcholine. (A) Cell injected with a current amplitude such

that it spikes at a steady rate of 10 Hz. Current injection is present throughout

simulation. (B) Repeat of experiment with the addition of a 100 µM

acetylcholine pulse that starts at t = 1 s and lasts for the duration of the

simulation. (C) Instantaneous firing rate over time for different concentrations

of ACh. This rate is the inverse of the inter spike interval. (D) The peak spike

acceleration increased with higher concentrations of ACh. (E) The duration of

the pause in spiking vs. the concentration of ACh.

FIGURE 7 | (A) Time series of intracellular calcium concentration after phasic

(50 ms) exposure to ACh. (B) Peak cytosol calcium vs. the concentration of

the phasic ACh pulse.

the calcium transient begins to decay. It is this accelerated
depletion of ER calcium which leads to the shorter duration of
inhibition for higher concentrations of ACh. This nonlinearity
in spike inhibition could have interesting implications for
network activity, and will be a subject of discussion later in
this paper.

Under tonic exposure to ACh, we noted multiple ways
that the cell model displayed increased excitability. As can be
seen in Figure 8 the rheobase (defined here as the minimum
amplitude of a 200 ms current pulse required to elicit an
action potential) decreased with increasing concentrations
of ACh. Starting at a value of 263 pA, the rheobase
decreased 40.5% to a value of 156 pA with 14.3 nM of
ACh producing half of the maximum decrease. The cell
model also demonstrated increased excitability, illustrated by
an increase of 39.1% in the input resistance measured at the
soma. The increase in simulated input resistance can be see in
Figure 9. This increased excitability plateaus in the high hundred
nanomolar range with the increased excitability starting within
nanomolar concentrations. This suggests that even relatively
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FIGURE 8 | Measuring reduction in rheobase due to tonic acetylcholine

exposure. (A) A 200 ms current pulse of varying amplitude is applied at a time

sufficiently after the start of a simulated acetylcholine exposure such that the

system is at steady state. A binary search was performed to find the minimum

current injection amplitude which would generate an action potential. (B) Cell

rheobase decreases with increased concentration of acetylcholine.

low background concentrations should be able to alter cell
spiking behavior. Long term exposure of ACh also produced a
depolarization that persisted through the duration of exposure.
The amplitude of this depolarization varied as a function of
ACh concentration as demonstrated in Figure 10. Finally, tonic
exposure caused accelerated spiking for a given amplitude
of current injected at the soma. This accelerated spiking is
demonstrated in Figure 11.

3.2. Intracellular Calcium Release
Focal application of muscarinic agonists and stimulation
of cholinergic terminals were demonstrated to generate
calcium waves that progressed from the apical dendritic
trunk to the soma (Power and Sah, 2002). Our model, as
demonstrated in Figure 12, replicates many aspects of these
calcium waves. As seen experimentally, the sections in the
apical trunk reached a higher peak calcium concentration
more rapidly than the somatic section. This is likely
due to dendritic regions having higher surface area to
volume ratios.

FIGURE 9 | Increasing the concentration of tonic acetylcholine increases the

input resistance of the cell model as measured at the soma. Input resistance

was measured by performing a series of somatic current injections and then

performing linear regression on the relation between membrane depolarization

to current amplitude. The values plotted are the slopes of the estimated linear

functions. The current amplitudes used were 0, −100, and 100 pA.

4. DISCUSSION

4.1. Novel Additions to CA1
Compartmental Model
This model includes a number of mechanisms that have
largely been absent from previous compartmental computational
models of the CA1 pyramidal cell. In addition to including
the M1 mAChR model, the intracellular calcium related
mechanisms have been greatly expanded. Among these new
calcium mechanisms were calbindin and PMCA. We have
also been able to replicate the calcium wave phenomenon by
including the endoplasmic reticulum. The parameters for these
mechanisms were calibrated using experimental measurements
obtained in CA1 pyramidal cells to ensure the resulting model
accurately replicates this cell type’s behavior. The addition of
these novel mechanisms allows our model to replicate several
molecular interactions that have been heretofore ignored in
whole cell computational models of CA1 pyramidal cells.

4.2. Predictions From Model
The expanded CA1 pyramidal cell model have allowed us to
generate some predictions which could be tested experimentally.
First, the model predicts that intracellular calcium release can
be triggered over a wide range of ACh concentrations. Later
experimental evidence may show a more tightly regulated
threshold that the transition between minimum and maximum
responses occurs over a narrower range of concentrations.
These hypothetical results would then suggest that there are
mechanisms involved which introduce additional nonlinearities
that increase the threshold for calcium release. For example the
rate of PIP2 hydrolysis into IP3 being dependent on calcium
would likely cause a sharper threshold for calcium waves.

A second prediction is that the duration of spike suppression
as seen in Figures 6E, 11D does not increase monotonically;
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FIGURE 10 | Measuring depolarization and hyperpolarization after tonic (60 s)

exposure to acetylcholine. (A) Simulated response of somatic membrane

potential to different concentrations. (B) Amplitude of steady depolarization

and temporary hyperpolarization vs. acetylcholine concentration.

instead the maximum duration occurs at intermediate
concentrations (0.1 µM for tonic and 1 µM for phasic
exposure). This result is likely due to the interplay between
two competing processes: regenerative calcium release and the
rate of calcium store depletion. The concentrations with the
longest suppressions generate enough IP3 to drive regenerative
calcium release through IP3Rs while minimizing the rate of Ca2+

release from intracellular stores. Higher ACh concentrations
drive higher IP3 production and so IP3Rs open more fully and
deplete intracellular stores more rapidly. This modulation of the
length of inhibition is interesting when considering the possible
functional roles calcium waves play in CA1 pyramidal cells.

If the function of calcium waves is to provide an inhibitory
signal, then this inhibitory signal would have some interesting
properties. First, as IP3 is the trigger for this inhibition, multiple
sources (whether mGluRs or mAChRs) could be required to
work in concert to generate this signal. The non-monotonically
increasing duration of spike cessation suggests that coactivation
of additional IP3 sources after the regenerative calcium release
threshold has been passed may cause a shorter inhibition as the
additional IP3 will only lead to faster calcium stores depletion.
Second, the rate at which intracellular calcium stores are depleted
depends upon the amount of calcium stored. A cell with

FIGURE 11 | Increasing the concentration of tonic acetylcholine increases

spike rate for a given injected current amplitude. (A) Cell injected with a current

amplitude such that it spikes at a steady rate of 10 Hz. Current injection is

present throughout simulation. (B) Repeat of experiment with the addition of a

100 µM acetylcholine pulse that starts at t = 1 s and lasts for the duration of

the simulation. (C) The maximum spike frequency acceleration vs.

acetylcholine concentration. Spike frequency acceleration was measured as

the percent increase from the rate before acetylcholine exposure. (D) Duration

of spike inhibition vs. tonic acetylcholine concentration as measured as the

longest inter spike interval after the initiation of the acetylcholine pulse.

more calcium buffered in the ER will have a longer inhibitory
reaction to cholinergic modulation. Since every action potential
increases the amount of calcium in the ER, calcium waves
would be longer for cells that have had more action potentials
in the recent past. This mechanism would thereby act as an
internal inhibition which encodes each cell’s past activity. These
two properties suggest scenarios where cholinergic modulation
causes shorter inhibition for cells that are currently receiving a
large glutamatergic signal but have not been spiking much in
the past while cells that have been consistently spiking and only
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FIGURE 12 | Acetylcholine leads to the release of intracellular calcium. All

sections in the apical trunk and soma were simultaneously exposed to a 50 ms

pulse of 100 µM ACh. (A) Simulated time course of intracellular calcium after

acetylcholine exposure. More distal sections achieve higher concentrations

more rapidly than somatic sections. (B) Display of concentrations in all model

compartments at different time steps throughout calcium wave.

receive cholinergic modulation are inhibited for a longer period.
The implications of these properties may have a crucial impact on
the downstream effects of calcium homeostasis, amongst which
are excitotoxicity and learning and memory; these aspects will be
studied in later work (see section 4.4 below).

4.3. Refining Model
In developing this model there have been gaps in experimental
evidence which have made it difficult to model all of the
experimental reactions to cholinergic modulation. First of all
the dynamics of the phosphoinositides in the CA1 pyramidal
cell plasma membranes are not well understood. This has
forced us to make assumptions based on electrophysiological
results, but further research into this area would aid in refining
the model. As the ER plays a role in the production of
these phospholipids, it is likely that the depletion of calcium
stores leads to changed dynamics. Indeed experiments in CA1
pyramidal cells have suggested that prolonged activation of
mAChRs can drive oscillations in PIP2 levels (Hackelberg and
Oliver, 2018). The signaling cascade that drives these oscillations,
however, is not well-understood and therefore could not be
included in this model iteration. As these dynamics become
better understood, more explicit cascades can be incorporated

into the model allowing for a better simulation of the depletion
and synthesis of PIP2.

Tonic cholinergic activation was also shown to inhibit
the early portions of slow after hyperpolarization (sAHP)
following trains of action potentials (Dasari and Gulledge, 2011).
Experimental evidence suggests this sAHP is largely due to
sodium-potassium exchange pumps (Gulledge et al., 2013; Tiwari
et al., 2018). It is unclear how these exchange pumps interact with
the mechanisms involved with mAChR activation. Without this
clearer understanding, we have no way to properly calibrate the
level of sAHP inhibition to variations in ACh concentration.

The model could also be expanded through adding
mechanisms which model mitochondrial calcium dynamics. The
mitochondria, along with being vital for the energy metabolism
of the cell, play a large role in calcium dynamics through
interactions with the ER (Krols et al., 2016). As mitochondrial
dysfunction has a well established link with Alzheimer’s disease
(Cenini and Voos, 2019), this expansion would provide a method
for exploring the functional consequences to network behavior
and how best to intercede.

4.4. Future Uses
Though the present work is a significant advancement
for modeling the interactions between cholinergic input,
intracellular calcium, and neuronal dynamics, the model is far
from encompassing all of the mechanisms that participate in
cholinergic response. Yet this work represents a framework
within which additional mechanisms can be added as the
knowledge of the system evolves. We have sought to use
best practices while generating the code base to facilitate its
understanding and allow future users to expand upon its
capabilities. The current cell model focused on cholinergic
modulation in the apical dendritic trunk and the somatic region
and consequently does not incorporate the modulation of
synaptic transmission. Experimental evidence has shown that
in synapses originating from the CA3 region, the activation of
presynaptic M4 mAChRs suppresses the amplitude of excitatory
postsynaptic potentials (EPSPs) (Dasari and Gulledge, 2011).
This signal suppression has been suggested to shift control of
CA1 pyramidal cell activity away from the CA3 toward synaptic
inputs from the entorhinal cortex (EC). This is theorized to set
the CA1 network into a state more conducive for encoding the
sensory information encoded by the EC synapses (Hasselmo and
McGaughy, 2004). However, the synaptic connections from the
EC are located in the most distal portions of the CA1 pyramidal
cell dendritic tree. In order for these inputs to become dominant,
the CA1 pyramidal cell would need to become more sensitive
to distal inputs. Our model has demonstrated that it is capable
of replicating an increased excitability as measured by increased
input resistance and lower rheobase at higher concentrations of
ACh. This increased excitability, in conjunction with suppressed
CA3 synaptic activity would replicate increased sensitivity to
distal inputs. Our model thereby constitutes a solid foundation
for future work exploring the consequences of this modulation
for the integration of inputs from EC vs. CA3.

Additionally, synaptic connections from CA3 pyramidal cells
to CA1 pyramidal cells demonstrate plasticity that is dependent
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upon postsynaptic calcium concentrations (Cummings et al.,
1996). M1 mAChRs are known to be present at these synapses
(Yamasaki et al., 2010) and have been linked to both long-
term potentiation and long-term depression (Dennis et al.,
2016). Our lab has already developed a kinetic model for the
postsynaptic calcium seen in the spine head (Hu et al., 2018).
While this previous model did not include any mechanisms to
link M1 activation to intracellular calcium release, these missing
mechanisms could easily be added. This would allow us to
expand upon previous modeling efforts that sought to tie calcium
dynamics to plasticity (Shouval et al., 2002) to explore how
cholinergic modulation alters the network dynamics through
long term changes in connectivity.

Another direction of interest would consist of expanding
the model to explicitly model cholinergic synapses. Currently
our simulations treat acetylcholine concentration as a fixed
value which we change in a step-wise manner. The addition of
cholinergic synapses would allow us to explore how the model
responds to varying synaptic parameters. For example, tonic ACh
concentration is based upon both the amount of ACh released
but also the rate of hydrolysis due to acetylcholinesterase (AChE).
This enzyme is the target for a class of drugs, AChE inhibitors,
used in the treatment of AD. Exploring how these drugs
alter CA1 network dynamics could point to better treatment
strategies. Additionally, cholinergic synapses have been shown
to cotransmit ACh with GABA (Granger et al., 2016; Takács
et al., 2018). This cotransmission could have dramatic effects on
network coherence.

Finally, although pyramidal cells are the most numerous cell
type in the CA1, they are not alone. There are a variety of
interneuron cell types which are also the subject of cholinergic
modulation. If ACh does play a role in shifting the focus of
information processing from synapses from the CA3 to synapses
from the EC, interneurons likely contribute to this process.
This is due to certain interneurons’ ability to disinhibit CA1
pyramidal cells (e.g., CCK+ Basket Cells; Karson et al., 2009).
Furthermore, interneurons also participate in the generation
of network oscillations which help organize network processes

(e.g., OLM cells; Mikulovic et al., 2018). Understanding how

these cells, through AChmodulation regulate the overall network
activity would aid our understanding of the complex role ACh
plays in the hippocampus.
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