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Long noncoding RNAs (lncRNAs) play important roles in a variety of biological processes.
Knocking out or knocking down some lncRNA genes can lead to death or infertility. These
lncRNAs are called essential lncRNAs. Identifying the essential lncRNA is of importance for
complex disease diagnosis and treatments. However, experimental methods for
identifying essential lncRNAs are always costly and time consuming. Therefore,
computational methods can be considered as an alternative approach. We propose a
method to identify essential lncRNAs by combining network centrality measures and
lncRNA sequence information. By constructing a lncRNA-protein-protein interaction
network, we measure the essentiality of lncRNAs from their role in the network and
their sequence together. We name our method as the systematic gene importance index
(SGII). As far as we can tell, this is the first attempt to identify essential lncRNAs by
combining sequence and network information together. The results of our method
indicated that essential lncRNAs have similar roles in the LPPI network as the essential
coding genes in the PPI network. Another encouraging observation is that the network
information can significantly boost the predictive performance of sequence-based
method. All source code and dataset of SGII have been deposited in a GitHub
repository (https://github.com/ninglolo/SGII).

Keywords: essential lncRNA, lncRNA-protein interaction network, protein-protein interaction network, network
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INTRODUCTION

Long noncoding RNAs (lncRNAs) refer to non-coding RNAs with a length over 200 nt. LncRNAs
play a major role in epigenetic control, cell differentiation, autophagy, apoptosis, and embryonic
development (Mercer et al., 2009; Rinn and Chang, 2012; Chen, 2016). Many cellular processes are
regulated by lncRNAs. For examples, RNA splicing, translation, and signal transductions are related
to lncRNA regulations (Khalil and Rinn, 2011; Da Sacco et al., 2012; Zhu et al., 2013; Hu et al., 2017;
Zhang et al., 2018, 2021; Li et al., 2019; Pyfrom et al., 2019; Zhao et al., 2020). In addition, lncRNAs
are related to a variety of complex diseases, including cancers, nervous system diseases, and
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cardiovascular diseases (Fenoglio et al., 2013; Uchida and
Dimmeler, 2015; Schmitt and Chang, 2016).

Knocking out or knocking down some lncRNA genes can lead
to death or infertility. These lncRNAs are called essential
lncRNAs, which are of vital importance for survival and
development. Identification of essential lncRNAs provides
insight into the minimum requirements of normal cell
functioning and normal organism development. Experimental
methods have been applied to identify essential lncRNAs. Li et al.
established the single lncRNA knockout mouse model, as well as
the multiple lncRNA knockout mouse model (Li and Chang,
2014). By large-scale phenotypic analysis, they found that
knocking out lncRNAs, such as Fendrr, Peril, and Mdgt,
showed perinatal and postpartum lethality (Li and Chang,
2014). Watanabe et al. found that Dnm3os has an essential
role in the normal growth and bone development of mice
(Watanabe et al., 2008). Zhou et al. proposed that Meg3
deletion in female rats can result in skeletal muscle defect and
perinatal death (Zhou et al., 2012). These studies provide helpful
insights for identifying essential lncRNAs. However,
experimental methods for identifying essential lncRNA genes
are not always feasible due to many factors, which may also
produce misleading results (Jathar et al., 2017). Therefore,
computational approaches are considered as alternative ways.

Computing essentiality of a coding gene has been widely studied.
Most of the existing methods define the essentiality measures based
on the topological importance of a protein in protein-protein
interaction networks. Various types of centralities have been
introduced in this regard. For example, Jeong et al. found that
hub nodes with high connections in the protein-protein interaction
(PPI) network are often indispensable, which allows them to use the
degree centrality (DC) to identify essential proteins (Jeong et al.,
2001). Joey et al. introduced the betweenness centrality (BC) to
measure the essentiality of proteins, as they found that PPI network
is modularized (Joy et al., 2005). Wang et al. used eigenvector
centrality (EC) to predict essential proteins, which measures the
importance of nodes by calculating the connection with high index
nodes in the network (Wang et al., 2013). Wuchty et al. found that
closeness centrality (CC)measure using local information is useful in
predicting essential proteins (Wuchty and Stadler, 2003). Many
more methods have tried to incorporate different types of
information in predicting essential proteins (Li et al., 2012; Wang
et al., 2012; Zhong et al., 2013; Campos et al., 2019; Zhang et al., 2020;
Liu et al., 2021). However, these centrality measures are not always
working, due to incomplete protein-protein networks and frequent
false-positives in the high-throughput experiments for identifying
protein-protein interactions. Therefore, sequence-based methods
were also considered. Zeng et al. defined the Gene Importance
Calculator (GIC) score using only genomic sequence information
(Zeng et al., 2018). The GIC score was derived from a logistic
regression model. It can score not only coding genes but also non-
coding genes.

As far as we can tell, the GIC score is the only available
essentiality measure that can be applied on non-coding genes,
including lncRNA genes (Zeng et al., 2018). However, the design
of the GIC score ignored all information that is buried in the
lncRNA-protein interactions (LPI). We believe that the LPI

information has a similar role in identifying essential lncRNAs
to that of PPI in identifying essential coding genes.

With the development of high-throughput experimental
technologies, many databases have been established for non-
coding genes and their interactions. The NPInter database
provides a comprehensive archive of molecular interactions
involving noncoding RNAs(Hao et al., 2016). NONCODE
database is an integrated knowledge database dedicated to
non-coding RNAs and their annotations (Zhao et al., 2016).
However, essential gene databases, like the DEG database,
focus more on recording essential coding genes (Zhang et al.,
2004). The essential non-coding genes are rarely recorded,
particularly for complex organisms, like human and mouse.
This is a primary challenge in developing a systematic method
for measuring essentiality of non-coding genes.

By curating data from various literatures, as well as public
databases, we established a dataset as the basis for developing a
computational method to measure non-coding gene essentiality.
In this work, we proposed the systematic gene importance index
(SGII) by combining various centralities on the lncRNA-protein-
protein heterogeneous network and sequence-based essentiality
scores. By comparing our measure to both network-based
methods and sequence-based method, we found that network
information can boost the sequence-based method significantly.

MATERIALS AND METHODS

Dataset Curation
We downloaded human and mouse lncRNA-protein interactions
from the NPInter database v4.0 (Hao et al., 2016). Self-
interactions and duplicates were removed. The mouse
lncRNA-protein interaction network involves 33255 lncRNAs,
182 proteins, and 102051 interactions. The human lncRNA-
protein interaction network contains 41589 lncRNAs, 3237
proteins, and 394895 interactions. We downloaded human and
mouse protein-protein interaction data from BioGrid database
version 4.4 (Oughtred et al., 2021). The mouse protein-protein
interaction network includes 9744 proteins and 52342
interactions. The human protein-protein interaction network
includes 19106 proteins and 644235 interactions.

We combine the lncRNA-protein interactions and protein-
protein interactions by matching the name of the proteins in both
datasets, producing a heterogeneous network with two types of
interactions. The mouse network was composed by 9845 proteins
and 33255 lncRNAs with 102051 lncRNA-protein interactions
and 52342 protein-protein interactions. The human network was
composed by 19553 proteins and 41589 lncRNAs with
394895 lncRNA-protein interactions and 644235 protein-
protein interactions. The sequences of all lncRNAs in both
human and mouse interaction networks were obtained from
the NONCODE database version 5 (Zhao et al., 2016).

According to literatures (Penny et al., 1996; Marahrens et al.,
1997; Lee, 2000; Sado et al., 2001; Grote et al., 2013; Klattenhoff
et al., 2013; Sauvageau et al., 2013; Yildirim et al., 2013; Zeng et al.,
2018), eight mouse lncRNAs, including Xist, Gas5,Meg3, Tsix, Gt
(ROSA) 26Sor, Dnm3os, Fendrr, and Braveheart, were identified
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as essential lncRNAs. The remaining 33247 lncRNAs in the
mouse network were marked with unknown status. For
human lncRNAs, we curated a set of lncRNAs that are
reported to be essential in various conditions from literatures
(Supplementary Table S1). This set contains 63 lncRNAs. The
names of these lncRNAs and the conditions that they are reported
to be essential, are listed in Supplementary Table S1, along with
literatures of the original reports. In addition, 11 mouse lncRNAs,
which are homologous of human essential lncRNAs, were also
collected for validation purpose, as homologous usually have
similar essentiality (Georgi et al., 2013).

Gene Importance Calculator
Gene Importance Calculator (GIC) (Zeng et al., 2018) is a useful
essentiality indicator for both protein-coding genes and
noncoding genes. It is based solely on sequence information.
The GIC score (g) is defined as follows:

g � 1
1 + exp[−θ(p)], (1)

where θ(p) is derived from a logistic regression model. θ(p) can be
defined as

θ(p) � ln
p

1 − p
� β0 + β1L + β2

1
L
e +∑

5

i�1
αifi, (2)

where α1, α2, . . ., α5, β0, β1 and β2 are regression coefficients, L the
length of RNA sequence, e the minimum free energy of RNA
secondary structure, p the conditional probability that a gene is
essential, and fi the occurrence frequency of a triplet in the
sequence. The five types of triplets, which are considered in
the GIC, are CGA, GCG, TCG, ACG and TCA (Zeng et al., 2018).

When calculating the GIC score, we need to use the external
program RNAfold (Lorenz et al., 2011), which requires a
sequence length less than 20000 nt. Therefore, only 24450
mouse lncRNAs and 29481 human lncRNAs can be
calculated for GIC. All other lncRNAs have lengths too long
for the RNAfold to work.

Network Centralities
We formulate the heterogeneous graph asG = (V, E), whereV is the
set of all nodes, including lncRNAs and proteins, and E the set of all
interactions, including lncRNA-protein and protein-protein
interactions. Without losing generality, we note the number of all
nodes as n. The network can be represented as an adjacency matrix
A∈{0.1}n×n. The element on the ith row and the jth column ofA can
be denoted as ai,j. If ai,j = 1, the ith node and the jth node have
interactions between them. If ai,j = 0, there is no interaction between
the ith node and the jth node. Given ai,j, we can define four different
centrality measures, including degree centrality (DC), betweenness
centrality (BC), closeness centrality (CC), and eigenvector centrality
(EC) for each node in the network.

The degree centrality of the ith node can be defined as follows:

di � 1
n − 1

∑
n

j�1
ai,j (3)

The betweenness centrality of the ith node can be defined as
follows:

bi � 1

(n − 1)(n − 2) ∑
u≠i≠v∈V

σu,v(i)
σu,v

(4)

where σu,v is the number of shortest paths between the uth node
and the vth node, and σu,v(i) the number of shortest paths
between the uth node and the vth node that pass the ith node.

The closeness centrality of the ith node is defined as follows:

ci � [|R(i)| − 1]2
(n − 1) ∑

j∈R(i)
di,j

(5)

where R(i) is the set of nodes that can reach the ith node, di,j the
length of the shortest path between the ith node and the jth node,
and |.| cardinal operator of a set.

The eigenvector centrality of the ith node is defined as follows:

ei � xmax(i) (6)
where xmax(i) is the ith dimension of the normalized eigen vector
x that corresponds to the largest eigen value of adjacency matrix
A. Let λmax be the largest eigen value of A, the following
relationships are satisfied in finding x:

Ax � λmaxx, and (7)
‖x‖ � 1 (8)

where ||.|| is the vector norm operator.

Systematic Gene Importance Index
Our network model contains two types of nodes, lncRNAs, and
proteins. It also involves two types of interactions, the lncRNA-
protein interactions and protein-protein interactions. Essentially,
it is a lncRNA-protein-protein interaction (LPPI) heterogeneous
network. Figure 1 illustrates a part of the LPPI network for
human and mouse respectively.

We propose the Systematic Gene Importance Index (SGII) as a
comprehensive measure of gene essentiality, particularly for non-
coding genes. SGII is a combination of the sequence-based GIC
score and centrality measures, which have been elaborated
as above.

For the ith node in the LPPI network, we compute its BC, CC,
DC and EC, which can be noted as bi, ci, di and ei, respectively. Its
GIC score is noted as gi. We sort all nodes according to their BC,
CC, DC, EC and GIC in a descending order, respectively. The
rank of the ith node after sorting according to BC, CC, DC, EC
and GIC can be noted as rb(i), rc(i), rd(i), re(i) and rg(i),
respectively.

Let si be the degree of the ith node, which can be computed as
follows:

si � ∑
n

j�1
ai,j (9)

Given a threshold z, if si ≥ z, the centrality measures will
determine the essentiality of a gene directly. For convenience,
we define the centrality-based essentiality indicator function
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for the ith node according to BC, CC, DC, and EC respectively
as follows:

Ib(i) �
⎧⎪⎨
⎪⎩

1
rb(i)
n

< k%,

0 otherwise

(10)

Ic(i) �
⎧⎪⎨
⎪⎩

1
rc(i)
n

< k%,

0 otherwise

(11)

Id(i) �
⎧⎪⎨
⎪⎩

1
rd(i)
n

< k%,

0 otherwise

, and (12)

Ie(i) �
⎧⎪⎨
⎪⎩

1
re(i)
n

< k%,

0 otherwise

(13)

where k is a rank threshold parameter. The ith node is identified
as essential when

Ib(i)Ic(i)Id(i)Ie(i) � 1 (14)
is satisfied.

If si < z, we rely on the GIC score to determine the essentiality
of a gene. Similarly, we can define the indicator function for GIC
ranking, as follows:

Ig(i) �
⎧⎪⎪⎨
⎪⎪⎩

1
rg(i)
n

< t%,

0 otherwise

(15)

where t is another rank threshold parameter. The ith node is
essential if

Ig(i) � 1 (16)
is satisfied.

The whole flowchart of SGII is illustrated in Figure 2.

Performance Evaluation
In evaluating SGII, we use three statistics to describe its predictive
performance. These statistics include sensitivity (s), false positive
rate (r), and Fisher’s exact test score (f), which are defined as
follows:

s � nt
n+

(17)

r � nf
n−
, and (18)

f � −log10p (19)
where nt is the number of known essential lncRNAs that are
identified as essential lncRNAs, n+ the total number known
essential lncRNAs, nf the number of lncRNAs with unknown
essentiality that are identified as essential, n- the total number of
lncRNAs with unknown essentiality and p the p-value of Fisher’s
exact test. Since SGII is a direct scoring method with manually
configurable cutoff values, no training procedure is involved in
the whole process. This is different to machine learning based
methods. We cannot treat the above sensitivity and false positive
rate as comparable to those in evaluating machine learning
methods, as the knowledge of essential lncRNAs is too limited
to perform any kind of cross-validations. This is also why we
introduced the Fisher’s exact test to further quantifying the
quality of our results. It will measure how likely a result in
whole is random or not. The bigger f value is, the results are
less likely to be random.

Parameter Calibration
There are eight parameters in the GIC, which represent all the
coefficients in the model built by GIC method. We took all the
parameter values from literature (Zeng et al., 2018). The values
for the mouse model are β0 = 0.1625, β1 = 2.638 × 10–4, β2 = 2.194,

FIGURE 1 | A part of the LPPI network. (A)Human dataset. The network contains the lncRNACRNDE and 14 interacting proteins; (B)Mouse dataset. The network
contains the lncRNA Xist and 14 interacting proteins.
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α1 = 19.88 (for CGA), α2 = 37.59 (for GCG), α3 = 50.37 (for TCG),
α4 = 35.44 (for ACG), and α5 = -64.66 (for TCA). The values for
human model are β0 = 0.7417, β1 = 2.612 × 10–4, β2 = 4.295, α1 =
48.66, α2 = 15.64, α3 = 76.23, α4 = -1.113, and α5 = -60.29.

Three parameters are introduced in combining centralities
and GIC, which are noted as z, k and t. We first perform a grid
search of k and t with a given value of z. The pairs of k and t,
which maximize the score f, are recorded for every different z.
These values are further sorted to find the best z, k and t
combination. When performing the grid search on the mouse
dataset, k = 1, 3, 5, 7, 9, and t = 1, 3, 5, 7, 9. When performing the
grid search on the human dataset, k = 5, 10, 15, 20, 25 and t = 5,
10, 15, 20, 25. For both datasets, z = 5, 10, 15, 20. Finally, we set z =
15, k = 5, t = 9 for mouse dataset, and z = 5, k = 20, t = 5 for human
dataset. All results for different parameters are provided in
supplementary materials, as Supplementary Table S2.

RESULTS AND DISCUSSIONS

Characters of the lncRNA-Protein-Protein
Heterogeneous Network
We first explore the basic statistical characters of the LPPI
network. We plot the degree distribution of the mouse and
human network respectively in Figure 3. It is intuitively that
the distribution of the degree follows the common power law
distribution, which is similar to the PPI networks (Jeong et al.,
2001). Since in the PPI network, essential proteins are usually rare

and with high degrees, we assume that in our LPPI network, the
essential lncRNAs have similar properties.

As we have mentioned in the method section, several lncRNAs
with a length too long to calculate its secondary structure were not
counted in our analysis. It becomes a question whether these
lncRNAs have preferences to large or small amounts of
interactions. We plot the degree distribution with and without
those over-length lncRNAs for mouse and human datasets,
respectively, in Figure 4. It is hard to find differences on the
degree distributions. We therefore believe that, for a lncRNA, its
length alone is not a major contributing factor to its interactions
in the LPPI network. This also implied that the essentiality, which
we believe to be associated with local network structure, has no
direct relationship with the length of the lncRNA. These over-
length lncRNAs were kept in the network as dummy nodes,
which means we did not compute their essentiality at all,
regardless of whether they have a degree over the threshold
or not.

Integrating Centrality Measures and the GIC
Score
Figure 5 gives scatter plots of GIC pairing with each of the four
types of centralities on human and mouse datasets, respectively.
For the mouse dataset, the red dots, which represent essential
lncRNAs, tend to appear in the top-right part of the plots, while
the blue dots, which denote all other lncRNAs, spread much
wider. Although the red dots are relatively rare, but their top-right

FIGURE 2 | The flowchart of SGII. The method SGII consists of two parts. For lncRNAs whose degree is greater than or equal to z, four types of centralities were
used to determine whether they were essential lncRNAs. For lncRNAs whose degree is less than z, GIC was used.
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preference is still observable. For human dataset, this preference
is not intuitively obvious.

This allows us to carry out further quantitative analysis on
combining the centrality measures and the GIC scores. A primary
challenge is that the number of known essential lncRNAs is too

small for a machine learning algorithm to train on. In addition,
some essential lncRNAs are only involved in a very limited
number of interactions. For example, the Braveheart (Bvht)
lncRNA, which is essential, has only one interaction record in
the database. We think this may be due to the incomprehensive

FIGURE 3 | The degree distribution of lncRNAs in mouse network and human network, respectively. (A) The degree distribution of lncRNAs in mouse network; (B)
The degree distribution of lncRNAs in human network. No protein-protein interaction is counted in producing these distributions.

FIGURE 4 | The degree distribution of lncRNAs in mouse network and human network with and without over-length lncRNAs. (A) The degree distribution of
lncRNAs in mouse network with over-length lncRNAs; (B) The degree distribution of lncRNAs in mouse network without over-length lncRNAs; (C) The degree
distribution of lncRNAs in human network with over-length lncRNAs; (D) The degree distribution of lncRNAs in human network without over-length lncRNAs.
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FIGURE 5 | The scatter plots of GIC pairing with each of the four types of centralities onmouse dataset and human dataset, respectively. (A)BC pairing with GIC on
mouse dataset; (B) BC pairing with GIC on human dataset; (C) CC pairing with GIC on mouse dataset; (D) CC pairing with GIC on human dataset; (E) DC pairing with
GIC on mouse dataset; (F) DC pairing with GIC on human dataset; (G) EC pairing with GIC on mouse dataset; (H) EC pairing with GIC on human dataset. Red dots
represent known essential lncRNAs, while blue dots represented all others. When drawing panel (A), BC scores of mouse HOTAIR and Xist are too high to be
plotted in the scope. Their (BC,GIC) values are (0.01.0.39) and (0.01.0.94). When drawing panel (B),NEAT1,MALAT1,U1 are too distant to other dots, so they cannot be
reasonably plotted in the scope. Their (BC,GIC) values are (0.03.0.40), (0.01.0.43) and (0.005.0.54).
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FIGURE 6 | The distribution density of different centralities and the GIC scores onmouse dataset and human dataset respectively. (A) The distribution density of BC
on mouse dataset; (B) The distribution density of BC on human dataset; (C) The distribution density of CC on mouse dataset; (D) The distribution density of CC on
human dataset; (E) The distribution density of DC on mouse dataset; (F) The distribution density of DC on human dataset; (G) The distribution density of EC on mouse
dataset; (H) The distribution density of EC on human dataset; (I) The distribution density of GIC on mouse dataset; (J) The distribution density of GIC on human
dataset. The red bars represent known essential lncRNAs, while the blue bars for all others. The vertical axis for the red bars are on the right side of the panel, while blue
on left. When drawing panel (A), BC scores of mouseHOTAIR and Xist are too high to be plotted in the scope. Their BC values are 0.01 and 0.01.When drawing panel (B),
BC scores of human NEAT1, MALAT1, U1 are too far to be drawn in the scope. Their BC values are 0.03, 0.01 and 0.005.
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knowledge of the lncRNA-protein interaction network. As the
estimation of centrality measures highly rely on the interaction
enrichment of a node in the network, when dealing with a
lncRNA with limited number of interactions, we turn to rely
on the GIC score.

With the settings in the method section, we combined four
types of centrality measures and the GIC scores. On the mouse
dataset, we identified 2284 essential lncRNAs from altogether
24450 lncRNAs. Among the 2284 lncRNAs, eight lncRNAs are
known to be essential, accounting for 100% of all known essential
lncRNAs, resulting a p-value = 5.73 × 10–9 (Fisher’s exact test).
On the human dataset, we identified 5063 essential lncRNAs,
from altogether 29481 lncRNAs, Among the 5063 essential
lncRNAs, 41 lncRNAs are reported to be essential in various
conditions in literatures, accounting for 65% of all curated
essential lncRNAs (p-value = 3.59 × 10–17, Fisher’s exact test).
This result clearly indicates that our method is effective to identify
essential lncRNAs.

Systematic Comparison Between Different
Configurations of SGII
As SGII is the first attempt to combine the network information
and sequence information to identify essential lncRNAs, we
explore which kind of centrality measure is more capable to
identify essential lncRNAs along with the GIC scores. We first
plot the distribution density of different centralities and the GIC
scores on mouse and human datasets respectively. As in Figure 6,
BC and DC centrality measures along with the GIC scores appear
to have much better separation than the CC and EC measures on
the mouse dataset, while on the human dataset, only BC and DC
present an intuitive separation.

However, considering the large differences on axis scale for
essential lncRNAs and all lncRNAs, these intuitive observations

may be misleading. Therefore, we performed a quantitative
comparison using eight different conditions, GIC alone, GIC
combined with each one of four types of centralities, GIC
combined with BC and DC, GIC combined with CC and EC,
and GIC combined with all four types of centralities. The
parameters of all comparison are optimized as in method
section (Table 1).

The first observation onTable 1 is that the best combination of
centrality measure and the GIC is not the combination of all four
types of centralities. For the mouse dataset, the BC + DC + GIC
method has the best significance level and lowest FPR value. For
the human dataset, the BC + GIC method reaches the highest
significance level. A second to the best significance level is
obtained again by BC + DC + GIC method, with the highest
sensitivity value. Therefore, we think that the BC + DC + GIC
may be a better way to identify essential lncRNAs than the current
configuration of SGII. This consists with the impression from
Figure 6. However, due to the limited number of available data
and current results, it is possible that this observation does not
reflect a comprehensive scene of identifying essential lncRNAs.
Therefore, we keep the configuration of SGII to combine all four
kinds of centralities and the GIC score, for an unbiased way of
identifying essential lncRNAs.

Comparative Analysis Between Human and
Mouse Essential lncRNAs
At a closer look to Table 1, it appears that the Fisher’s exact test
reports much more significant results on both datasets when GIC
is combined with centralities, which proves that integration of
centrality measures and GIC is effective. Another observation is
that SGII gives under-expected sensitivity values on the human
dataset. However, the significance levels on the human dataset are
generally way higher than that of the mouse dataset. This may be

TABLE 1 | Comparison for different configurations of SGII on mouse and human datasets.

Methods Dataset Sena (%) FPRb (%) Fisher’s
exact test scorec

GICd Mouse 75.00 8.98 4.90
BC + GIC Mouse 100.00 9.53 8.16
CC + GIC Mouse 100.00 9.48 8.18
DC + GIC Mouse 100.00 9.55 8.16
EC + GIC Mouse 100.00 9.32 8.24
BC + DC + GIC Mouse 87.50 4.54 8.50
CC + EC + GIC Mouse 100.00 9.31 8.24
BC + CC + DC + EC + GIC Mouse 100.00 9.31 8.24
GIC Human 26.98 14.97 1.91
BC + GIC Human 66.67 12.49 22.61
CC + GIC Human 63.49 16.37 16.15
DC + GIC Human 71.43 20.51 17.25
EC + GIC Human 66.67 19.94 14.90
BC + DC + GIC Human 71.43 18.33 19.23
CC + EC + GIC Human 65.08 18.19 15.45
BC + CC + DC + EC + GIC Human 65.08 17.07 16.45

aSen stands for Sensitivity, as Eq. 17.
bFPR, stands for False Positive Rate, as Eq. 18.
cFisher’s Exact Test Score is defined in Eq. 19.
dWhen GIC, was used alone, it is applied on all lncRNAs.
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the results of two differences between the mouse and the human
datasets. First, the human dataset is collected from literatures of
lncRNAs in various conditions, including tumor cell line
experiments. Essential lncRNAs, which are identified by one
type of cell line experiments, may be different to those from
the original essential gene definitions. As direct essential gene
experiments on human are not feasible, the quality of the dataset
is not comparable to the mouse dataset. This also applies to the
coding gene data (Austin et al., 2004). Secondly, the number of
essential lncRNAs in the human dataset is roughly eight times of
that of mouse dataset. Since the computation process of the
significance level is affected by the raw counts, it is anticipated
that systematic differences on significance levels exist.

To further confirm the above explanations, we performed the
following analysis. We find homologous genes of human essential
lncRNAs in mouse. According to the studies in coding genes,
these genes are likely to also produce essential lncRNAs(Georgi
et al., 2013). Altogether 11 homologous genes in mouse were
identified as lncRNA genes in the mouse LPPI network. We used
SGII to test if we can identify these homolog essential lncRNAs
(Table 2).

Obviously, sensitivity is dropping in comparison to the
mouse essential lncRNAs. However, it should be noted that
the FPR is also dropping, which indicates much less false
positives. The significance levels remain almost the same as
the mouse essential lncRNAs. Again, the BC + GIC method
obtained the best significance level, while the BC + DC + GIC
method obtained a second to the best significance level with
the highest sensitivity. This result confirmed that the
significance level difference between human and mouse
dataset is largely caused by the raw counts of the dataset. It
also suggests that the BC + GIC or BC + DC + GICmethod may
be a better choice than combining all types of centralities and
the GIC score.

The importance of BC can be understood intuitively. If we
think the cellular system as a system composed of molecules. The
interactions between molecules transfer information. A high BC
value indicated that the node is critical as an information hub in
many shortest paths between other nodes. Therefore, dropping
such nodes will easily break many information channels

simultaneously, which will eventually destroy the whole
system. That makes it an essential node in the network.

For the DC measure, the intrinsic mechanism is similar. The
DC measure is directly associated to the degree of a node. If a
node with many edges is dropped, it is more likely that the whole
network collapses. This consists with the observations in coding
genes. In addition, although some other kinds of centralities, like
the NC (new centrality) (Wang et al., 2012), can identify essential
coding genes better, it does not work well in non-coding genes.
This is an expected result. For NC to work in the LPPI network, it
requires that dense interactions exist among the proteins that
interacting the same lncRNAs. However, we did not observe this
phenomenon in our dataset. The NC is difficult to be estimated
for many lncRNAs, due to lacking such kind of interactions.

Functional Analysis of Essential lncRNA in
the Mouse Genome
We took the essential lncRNA gene in mouse genome for functional
analysis. For every lncRNA that was predicted as essential in mouse
genome, we first map this lncRNA to the Ensembl database (Howe
et al., 2021) using either gene name or sequence information. The
mapped genes are then uploaded to the Gene Ontology online
system for functional enrichment analysis. The top three enrichment
of functions are “nucleic acid binding” (GO:0003676), “heterocyclic
compound binding” (GO:1901363) and “organic cyclic compound
binding” (GO:0097159). As we have mentioned, this is expected for
lncRNAs. They realize their functions through bindings with other
molecules.

CONCLUSION

SGII is the first attempt to combine lncRNA-protein interactions
and lncRNA sequence information for identifying essential non-
coding RNAs. Since the study on collecting and identifying
essential coding genes has been performed for over a decade,
it is time to step forward to the essentiality of non-coding genes,
as non-coding genes are much more common than coding genes
in mouse and human genomes. Due to the limited number of
known essential lncRNAs, SGII does not use conventional
machine learning algorithms, but applies simple scoring
schemes and statistical tests. By combining BC, CC, DC, EC
and GIC scores, SGII achieved a better performance than using
only sequence information. Since the knowledge for constructing
LPPI network may be incomprehensive, we applied the centrality
measures only on those lncRNAs with enough interactions. For
those lncRNAs with limited number of interactions, we turned to
rely on its sequence to score the essentiality.

The results support our assumption that essential lncRNAs
have similar roles as essential coding genes in the LPPI network.
Particularly, we found that BC appears to be more important than
other kinds of centrality measures. Due to the limited number of
known essential lncRNAs, it is not feasible to explore further
optimization of different weight on different centralities. When
more essential lncRNAs are reported and recorded, we believe
that modern machine learning algorithms will provide deeper

TABLE 2 | Performance analysis on mouse homologs to human essential
lncRNAs.

Methods Sena (%) FPRb (%) Fisher’s
exact test scorec

GICd 45.45 8.98 2.77
BC + GIC 72.73 1.79 11.75
CC + GIC 45.45 1.22 6.90
DC + GIC 54.55 1.25 8.75
EC + GIC 45.45 1.17 7.00
BC + DC + GIC 81.82 5.89 9.36
CC + EC + GIC 45.45 1.17 7.00
BC + CC + DC + EC + GIC 45.45 1.17 7.00

aSen stands for Sensitivity, as Eq. 17.
bFPR, stands for False Positive Rate, as Eq. 18.
cFisher’s Exact Test Score is defined in Eq. 19.
dWhen GIC, was used alone, it is applied on all lncRNAs.
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insights in identifying essential non-coding genes. As a summary,
we listed the prediction results of SGII on mouse and human
datasets in Supplementary Table S3 in supplementary materials,
which may be useful for life science studies. A more
comprehensive collection of essential lncRNAs is being
curated. We plan to establish a database that is dedicated in
recording essential lncRNA information in future.
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