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Abstract
Human factor Xa (FXa) is a serine protease of the common coagulation pathway. FXa is known to activate prothrombin 
to thrombin, which eventually leads to the formation of cross-linked blood clots. While this process is important in main-
taining hemostasis, excessive thrombin generation results in a host of thrombotic conditions. FXa has also been linked to 
inflammation via protease-activated receptors. Together, coagulopathy and inflammation have been implicated in the patho-
genesis of viral infections, including the current coronavirus pandemic. Direct FXa inhibitors have been shown to possess 
anti-inflammatory and antiviral effects, in addition to their established anticoagulant activity. This review summarizes the 
pharmacological activities of direct FXa inhibitors, their pharmacokinetics, potential drug–drug interactions and adverse 
effects, and the details of clinical trials involving direct FXa inhibitors in coronavirus disease 2019 (COVID-19) patients.

Key Points 

Factor Xa is a serine protease in the common coagula-
tion pathway, the excessive stimulation of which leads to 
a host of thrombotic conditions.

Factor Xa has also been linked to inflammation as well 
as viral infections.

In addition to their established anticoagulant proper-
ties, factor Xa inhibitors have exhibited significant 
anti-inflammatory and antiviral effects in several testing 
settings.

Currently, there are > 10 clinical trials for evaluating the 
potential of factor Xa inhibitors in coronavirus disease 
2019 (COVID-19) patients.

Strategies to administer these drugs parenterally may 
facilitate their use in critically ill COVID-19 patients.

1 Introduction

The coronavirus disease 2019 (COVID-19) pandemic con-
tinues to impact the whole world. Since December 2019, 
there have been more than 23 million reported confirmed 
cases worldwide and more than 800 thousand human lives 
lost to the viral infection and/or its complications [1]. While 
most patients appear to develop a mild illness, the elderly 
(> 65 years of age) and patients with comorbidities of car-
diovascular diseases, diabetes, hypertension, or cancer are 
at a higher risk of death [2]. Despite recommendations and 
approvals of compassionate use of few potential therapeu-
tics, no vaccines or highly effective therapeutics are avail-
able; however, knowledge pertaining to the virus lifecycle 
and the disease pathogenesis continues to evolve.

Considering clinical reports, some COVID-19 patients 
have exhibited a hypercoagulable state, as indicated by the 
elevated levels of D-dimer and fibrinogen and the prolonged 
prothrombin time [3]. Furthermore, a number of inflamma-
tory markers have been reported to significantly increase 
during the severe stage of the disease, including C-reactive 
protein, ferritin, interleukin (IL)-1β, IL-6, monocyte chem-
oattractant protein-1 (MCP-1), granulocyte colony-stimu-
lating factor (G-CSF), C-X-C motif chemokine ligand-10 
(CXCL-10), chemokine C–C motif ligand 3 (CCL3), tumor 
necrosis factor (TNF)-α, and others [4]. Such excessive 
inflammation response has been described as a cytokine 
release syndrome, which appears to have led to acute lung 
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injury/acute respiratory distress syndrome, multiple organ 
failure, and ultimately death [4]. Moreover, the immune 
response to the viral infection appears to have led to an over-
activation of the coagulation pathways, which can further 
aggravate inflammation in a crosstalk that has substantially 
complicated the disease [5]. Together, coagulopathy and 
excessive inflammation appear to severely worsen the clini-
cal outcomes of the viral infection, as demonstrated by the 
critically ill patients [5].

Considering the previous coronavirus outbreaks, i.e. 
severe acute respiratory syndrome coronavirus (SARS-
CoV) [6] and Middle East respiratory syndrome coronavi-
rus (MERS-CoV) [7], and the clinical presentations of the 
current outbreak, i.e. COVID-19 (also reported as SARS-
CoV-2) [8], treating severe coronavirus cases appears to 
need therapeutics possessing (1) antiviral activity to block 
any stage of the viral lifecycle; (2) anticoagulant activity to 
manage the patient’s hypercoagulable state; and/or (3) anti-
inflammatory/immunomodulatory activity to mitigate the 
excessive inflammation. In this direction, factor Xa (FXa), 
a serine protease in the common coagulation pathway, is 
known to play a crucial role in coagulation by inducing the 
formation of thrombin, which eventually leads to the forma-
tion of cross-linked blood clots [9–11]. FXa has also been 
linked to inflammation [12] and viral infections [13]. In fact, 
direct FXa inhibitors have been reported to promote a host 
of pharmacological effects, including anticoagulant activ-
ity, anti-inflammatory activity, and antiviral activity (Fig. 1). 
Thus, direct FXa inhibitors may carry a significant therapeu-
tic potential for coronavirus patients, particularly critically 
ill patients in the ongoing COVID-19 pandemic.

Currently, there are four clinically approved direct FXa 
inhibitors for use as anticoagulants, in addition to many 

others under investigation. The four approved FXa inhibitors 
are rivaroxaban (approved in 2011; Xarelto) [14], apixaban 
(2012; Eliquis) [15], edoxaban (2015; Savaysa) [16], and 
betrixaban (2017; Bevyxxa) [17]. The chemical structures 
of the four drugs are provided in Fig. 2. In the following 
sections, we briefly review the literature that supports the 
various pharmacological activities of direct FXa inhibitors 
so as to catalyze their use to combat the ongoing coronavirus 
pandemic.

2  Anticoagulant Activity of Direct FXa 
Inhibitors

Human FXa is a trypsin-like serine protease of the common 
coagulation pathway. Its zymogen, i.e. factor X, is activated 
either via the intrinsic pathway (factor IXa) or the extrin-
sic pathway (factor VIIa/tissue factor) [9, 18]. FXa is the 
first serine protease in the common pathway leading to clot 
formation. The resulting FXa typically complexes with fac-
tor Va, calcium, and phospholipid to form prothrombinase, 
which subsequently activates prothrombin (also known as 
factor II) to thrombin (factor IIa) [19]. In turn, thrombin 
converts fibrinogen (factor I) to fibrin (factor Ia) monomers. 
Factor XIII, which is also activated by thrombin, converts 
the soluble fibrin monomers to insoluble cross-linked fibrin 
polymers on the surface of activated platelets, leading to the 
formation of a hemostatic plug [20]. Thrombin also posi-
tively feedbacks the cascade by activating factor XI [21], 
factor VIII [22] in the intrinsic pathway, and factor V [23] in 
the common pathway. This is to ensure the efficient genera-
tion of a burst of thrombin that amplifies and propagates the 
clotting response [24–27].

Fig. 1  Potential therapeutic 
benefits of direct FXa inhibitors 
in coronavirus infections. Four 
FXa inhibitors are approved 
anticoagulants, and several 
approved and experimental 
inhibitors have exhibited anti-
inflammatory and antiviral 
effects in different testing set-
tings. FXa factor Xa

Factor Xa

Activation of 
protease-activated 

receptors

Activation of 
prothrombin to

thrombin

Viral entry/protein 
processing (?) 

Coagulopathy

Viral infections

Cytokines 
production
& inflammation

Direct Factor Xa
inhibitors



527FXa Inhibitors in COVID-19

While the blood clotting process is important in main-
taining hemostasis, its excessive activation typically leads 
to thrombotic complications. Moreover, activation of the 
coagulation cascade during viral infections is probably a 
protective mechanism to limit the spread of the infection. 
However, excessive clotting can lead to disseminated intra-
vascular coagulation and subsequent hemorrhage. In fact, 
several reports have suggested that excessive coagulation is 
substantially linked to viral infections [28, 29] and, in this 
case, the viral infections by SARS-CoV-2, SARS-CoV-1, 
MERS-CoV [30]. Considering the ongoing pandemic, 
increasing evidence indicates that critically ill COVID-19 
patients develop a hypercoagulable state that has been linked 
to poor outcomes of progressive respiratory failure and even 
death [31–36]. The hypercoagulable state of COVID-19 
patients has been attributed to increased circulating pro-
thrombotic factors, endothelial injury, and immobilization 
[37]. Disseminated intravascular coagulation, as well as 
coagulopathies of venous thromboembolism and ischemic 
stroke, has been described in severe cases of COVID-19 
[37–41]. Interestingly, early anticoagulation in patients with 
severe COVID-19 infection has been found to reduce the risk 
of thrombotic complications and improve overall clinical 

outcomes, as was demonstrated by heparins, antithrombin-
based anticoagulants [32, 35, 42–44].

Along these lines, direct FXa inhibitors are therapeuti-
cally approved for the prevention and/or treatment of venous 
thromboembolism, including deep vein thrombosis and 
pulmonary embolism [45, 46]. Mechanistically, the four 
approved drugs in Fig. 2 are small molecule, competitive, 
and highly selective inhibitors of the enzyme. In contrast 
to heparins, these inhibitors directly (without antithrombin) 
inhibit both the free FXa and the clot-bound FXa. Relative to 
other anticoagulant classes of warfarin, heparins, and direct 
thrombin inhibitors, direct FXa inhibitors are associated 
with relatively less internal bleeding risk [47, 48]. Needless 
to mention, there is a US FDA-approved antidote known 
as andexanet alfa  (Andexxa®) to treat potential bleeding 
events that may arise with their clinical use [49]. Impor-
tantly, FXa inhibitors are generally associated with less 
rebound hypercoagulation that is more common with hep-
arins and direct thrombin inhibitors [50, 51]. In fact, while 
heparins appear to be gaining significant interest in treating 
COVID-19 patients [52, 53], a recent study has documented 
evidence of heparin resistance in critically ill patients [54]. 
This suggests that alternative anticoagulants are in urgent 
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Fig. 2  Chemical structures of US FDA-approved direct FXa inhibitors, along with the year of FDA approval as well as their brand and generic 
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need, and indeed, it encourages the consideration of direct 
FXa inhibitors.

Together, given the established efficacy and safety of 
direct FXa inhibitors as anticoagulants, and the pathogenesis 
of the ongoing viral pandemic, it is anticipated that these 
drugs can play a major role in treating the reported coagu-
lopathies so as to mitigate the illness manifestations and 
reduce the death rate of COVID-19 patients.

3  Anti‑Inflammatory Activity of Direct FXa 
Inhibitors

In addition to coagulation, human FXa also plays a substan-
tial role in inflammation. In this arena, it was shown that 
FXa, via its interaction with effector cell protease receptor-1, 
may function as a mediator of acute inflammation in vivo. 
This pathway may augment both coagulation and inflamma-
tory cascades and contribute to the pathogenesis of tissue 
injury [55]. It was also shown that exposing human umbili-
cal vein endothelial cells to FXa concentration-dependently 
stimulated the cytokine production of IL-6, IL-8, and 
MCP-1, as well as the expression of adhesion molecules 
of E-selectin, intercellular adhesion molecule-1, and vascu-
lar cell adhesion molecule-1 [56]. The adhesion molecules 
also increased the polymorphonuclear leukocyte adhesion 
to the endothelial cells. To confirm the contribution of FXa, 
active site-blocked FXa was found inactive with respect 
to cytokine production and adhesion molecule expression 
[56]. FXa additively also contributed to the thrombin action 
of calcium-mobilizing and proinflammatory reactions of 
endothelial cells [57]. In fact, FXa was found to stimulate 
proinflammatory and profibrotic responses in fibroblasts 
[58], human atrial tissue [59], and RAW 264.7 macrophages 
[60] via protease-activated receptor-2. An investigational 
FXa inhibitor was also recently reported to inhibit MCP-1 
production in endothelial cells via protease-activated recep-
tor-1 [61]. As a result, FXa-mediated signaling has been 
implicated in the pathogenesis of several inflammatory dis-
eases, including fibrosis, cardiovascular diseases, diabetic 
nephropathy, and cancer [62, 63].

Importantly, the anti-inflammatory effects of FXa 
inhibitors have been demonstrated in human subjects. For 
example, the anti-inflammatory effects of rivaroxaban and 
apixaban were recently observed in Japanese patients with 
atrial fibrillation [64]. The anti-inflammatory effect of apixa-
ban was also recently demonstrated in the acute phase of 
ischemic stroke patients [65]. A post hoc analysis of the 
X-VeRT trial also revealed that rivaroxaban caused a signifi-
cant reduction in the levels of D-dimer and IL-6 in patients 
with atrial fibrillation [66]. These results indicate that block-
ing the activity of FXa may not only be beneficial to prevent 
the virus-associated coagulopathies but may also dampen 

the virus-triggered excessive immune response. In fact, it is 
plausible to assume that the current dosage regimens of the 
clinically available direct FXa inhibitors can be adequate 
to promote the much-needed anti-inflammatory activity to 
mitigate the cytokine storm of COVID-19, yet this remains 
to be properly evaluated in clinical trials.

4  Antiviral Activity of Direct FXa Inhibitors

SARS-CoV-2 is a single stranded, positive-sense RNA virus 
that utilizes a surface spike protein to enter the host cells, 
initially the epithelial cells of the respiratory system [67]. 
The spike protein has two important subunits linked together 
in the form of S1–S2. The S1 subunit carries the host recep-
tor binding domain and the S2 subunit is responsible for the 
virus fusion with the host cell membrane. The S1 subunit of 
the viral spike protein binds to its receptor angiotensin-con-
verting enzyme 2 (ACE2) on the host cell. A proteolytic acti-
vation mediated by the host proteases takes place to break 
the linkage between the S1 and S2 subunits so as to facili-
tate the virus fusion with the host cell membrane [67, 68]. 
Host proteases that are important for the activation process 
include furin, transmembrane protease serine 2 (TMPRSS2), 
and lysosomal cathepsins. Nevertheless, previous experience 
with SARS-CoV revealed that other host proteases may also 
be important for viral fusion and entry, including FXa [67, 
68]. In fact, it was previously shown that an experimental 
FXa inhibitor blocked the viral entry of SARS-CoV into the 
host cells by preventing the spike protein cleavage into the 
S1 and S2 subunits. The inhibitor concentration-dependently 
blocked the SARS-CoV plaque formation in Vero E6 cells. 
Thus, direct FXa inhibitors may prevent coronavirus entry 
to human cells [69].

Furthermore, a recent study has computationally iden-
tified direct FXa inhibitors as potential inhibitors of 
TMPRSS2 [70]. In addition, another study suggested that 
FXa is essential for efficient replication of hepatitis E virus, 
a positive-stranded RNA virus, in cell culture and is poten-
tially involved in ORF1 polyprotein processing [71]. Thus, 
direct FXa inhibitors may interfere with the replication of 
hepatitis E virus. Moreover, selective inhibition of FXa was 
recently shown to improve left ventricular function during 
coxsackievirus B3-induced myocarditis and appeared to lead 
to improved myocardial remodeling [72]. FXa inhibition 
also significantly reduced adeno-associated virus-2 infec-
tions in mice [73]. Lastly, in human umbilical vein endothe-
lial cells, FXa was also found to exploit herpes simplex 
virus-associated tissue factor to increase infection through 
cellular protease activated receptor-2, suggesting that FXa 
inhibitors will likely reduce viral infectivity [74]. Together, 
direct FXa inhibitors have been shown to promote a sub-
stantial (in)direct antiviral activity against a range of RNA 
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and DNA viruses by blocking the viral entry stage [69] and 
possibly by other mechanisms [28, 70–74]. Such antiviral 
activity provides additional therapeutic benefit while using 
FXa inhibitors in COVID-19 patients.

5  Pharmacokinetics, Drug–Drug 
Interactions, and Adverse Effects of Direct 
FXa Inhibitors

All approved FXa inhibitors are orally used. With the excep-
tion of betrixaban, FXa inhibitors are hepatically metabo-
lized to predominantly inactive metabolites. Renal elimina-
tion of rivaroxaban, apixaban, and edoxaban, and/or their 
metabolites, is significant. However, betrixaban is predomi-
nantly eliminated in feces [17]. Therefore, dose adjustment 
of rivaroxaban, apixaban, and edoxaban is needed in the 
case of renal impairment, while their use is to be avoided in 
patients with moderate or severe hepatic impairment. They 
all have moderate to high plasma protein binding profiles. 
This is of enormous significance in the case of rivaroxaban, 
which has the highest potential of plasma protein binding, 
and thus, should be cautiously used in COVID-19 patients 
with hypoalbuminemia [75]. The corresponding pharma-
cokinetic parameters of approved FXa inhibitors are listed 
in Table 1 [14–17, 76].

All FXa direct inhibitors are potentially associated with 
significant drug–drug interactions because they are metabo-
lized by hepatic CYP450 enzymes (CYP450 3A4 for rivar-
oxaban, apixaban, and edoxaban) and/or they are substrates 
for p-glycoprotein [77]. With respect to their use in com-
bination with currently used anti-COVID-19 therapeutics, 
recent analysis indicated that coadministration of rivaroxa-
ban, apixaban, or edoxaban with lopinavir/ritonavir is asso-
ciated with a high risk of serious drug–drug interactions that 
require dose adjustment. The same high risk exists between 
edoxaban and azithromycin [78]. The study also indicated 
mild or moderate potential interactions between rivaroxa-
ban or apixaban and tocilizumab or sarilumab, as well as 
between edoxaban and hydroxychloroquine. A very low risk 

of drug–drug interactions is expected between direct FXa 
inhibitors and remdesivir, ribavirin, methylprednisolone, or 
anakinra [78].

The most common complication in using these drugs is 
bleeding, although bleeding risk may vary among the dif-
ferent agents. Reversing bleeding can be achieved by the 
use of andexanet alfa. If andexanet alfa is not available, 
four-factor prothrombin complex concentrate can be used 
[79, 80]. Although andexanet alfa has not been evaluated to 
reverse the anticoagulant effects of betrixaban or edoxaban 
in humans, nevertheless, since both are similar FXa inhibi-
tors as rivaroxaban and apixaban, it is likely that andexanet 
alfa will also be effective in reversing their actions [81].

6  Conclusion

Clinically available direct FXa inhibitors potentially hold 
a significant promise in treating COVID-19 because of 
their anticoagulant, anti-inflammatory, and antiviral activi-
ties. The diversity of their pharmacological effects will 
likely improve the overall clinical outcome of COVID-19 
treatment. Currently, there are about 10 clinical studies 
that appear to include rivaroxaban, apixaban, or edoxaban 
in trials for COVID-19 patients (Table 2). Regarding the 
appropriate dosage regimens of FXa inhibitors to be used 
in COVID-19 patients, the reported protocols in the ongo-
ing trials have considered dosage regimens similar to those 
being used in thrombotic patients, taking into account the 
status of their renal function. Some trials reported the drugs 
to be used for 21–30 days. Nevertheless, it remains to be 
determined whether the treatment protocols will yield the 
desired outcomes.

Importantly, an issue that may arise while using direct 
FXa inhibitors in treating hospitalized COVID-19 patients 
is the difficulty of administering oral solid pharmaceutical 
preparations, particularly to critically ill patients. However, 
this obstacle can potentially be overcome by the use of a 
crushed tablet in an aqueous suspension to be administered 
via nasogastric tube. In fact, a recent phase I, randomized, 

Table 1  Pharmacokinetic profiles of direct FXa inhibitors

BA bioavailability, CYP cytochrome P450, FXa factor Xa, t½ terminal elimination half-life, Tmax time to peak plasma concentration, Vd apparent 
volume of distribution

Drug Oral BA (%) Tmax (h) Vd t½ (h) Protein bind-
ing (%)

Metabolism Excretion (%)

Rivaroxaban 80–100 (food)
~60 (fasting)

2–4 50 L 5–9
11–13 (elderly)

92–95 
(albumin-
dependent)

Hepatic CYP3A4/5 
and CYP2J2

66 (urine)
28 (feces)

Apixaban ~50 3–4 21 L 8–15 87 Hepatic CYP3A4/5 27 (urine)
Edoxaban 62 1–2 107 L 10–14 55 Hepatic CYP3A4/5 50 (urine)
Betrixaban 34 3–4 32 L/kg 19–27 60 Minimal 85 (feces) 11 (urine)



530 R. A. Al-Horani 

Ta
bl

e 
2 

 C
lin

ic
al

 tr
ia

ls
 te

sti
ng

 ri
va

ro
xa

ba
n,

 a
pi

xa
ba

n,
 o

r e
do

xa
ba

n 
in

 p
at

ie
nt

s w
ith

 C
O

V
ID

-1
9a

C
O
VI
D

-1
9 

co
ro

na
vi

ru
s d

is
ea

se
 2

01
9,

 e
G
FR

 e
sti

m
at

ed
 g

lo
m

er
ul

ar
 fi

ltr
at

io
n 

ra
te

, C
rC

l c
re

at
in

in
e 

cl
ea

ra
nc

e
a  A

ll 
th

re
e 

fa
ct

or
 X

a 
in

hi
bi

to
rs

 a
re

 a
ls

o 
in

cl
ud

ed
 in

 th
e 

N
C

T0
45

18
73

5 
cl

in
ic

al
 tr

ia
l

St
ud

y 
tit

le
 (a

cr
on

ym
; C

lin
ic

al
Tr

ia
ls

.g
ov

 u
ni

qu
e 

id
en

tifi
er

)
N

Ty
pe

 (s
po

ns
or

s)
In

te
rv

en
tio

n

R
iv
ar
ox
ab

an
Eff

ec
t o

f a
nt

ic
oa

gu
la

tio
n 

th
er

ap
y 

on
 c

lin
ic

al
 o

ut
co

m
es

 in
 

CO
V

ID
-1

9 
(C

O
V

ID
-P

R
EV

EN
T;

 N
C

T0
44

16
04

8)
40

0
M

ul
tic

en
te

r, 
pr

os
pe

ct
iv

e,
 ra

nd
om

iz
ed

, e
ve

nt
-d

riv
en

, o
pe

n-
la

be
l, 

in
te

rv
en

tio
na

l t
ria

l (
C

ha
rit

e 
U

ni
ve

rs
ity

, G
er

m
an

 
C

en
tre

 fo
r C

ar
di

ov
as

cu
la

r R
es

ea
rc

h,
 a

nd
 B

ay
er

)

20
 m

g 
(1

5 
m

g 
fo

r s
ub

je
ct

s w
ith

 a
n 

eG
FR

 ≥
 30

 m
L/

m
in

/1
.7

3 
m

2  a
nd

 <
 50

 m
L/

m
in

/1
.7

3 
m

2 ) o
nc

e 
da

ily
 fo

r a
t 

le
as

t 7
 d

ay
s. 

Fu
rth

er
 d

es
cr

ip
tio

n 
is

 a
va

ila
bl

e
A

nt
i-c

or
on

av
iru

s t
he

ra
pi

es
 to

 p
re

ve
nt

 p
ro

gr
es

si
on

 o
f 

CO
V

ID
-1

9 
tri

al
 (A

C
T 

CO
V

ID
19

; N
C

T0
43

24
46

3)
40

00
O

pe
n-

la
be

l, 
pa

ra
lle

l g
ro

up
, f

ac
to

ria
l, 

ra
nd

om
iz

ed
 c

on
tro

lle
d,

 
in

te
rv

en
tio

na
l t

ria
l (

Po
pu

la
tio

n 
H

ea
lth

 R
es

ea
rc

h 
In

sti
tu

te
 

an
d 

B
ay

er
)

2.
5 

m
g 

tw
ic

e 
da

ily
 fo

r 2
8 

da
ys

A
us

tri
an

 c
or

on
av

iru
s a

da
pt

iv
e 

cl
in

ic
al

 tr
ia

l (
CO

V
ID

-1
9)

 
(A

CO
VA

C
T;

 N
C

T0
43

51
72

4)
50

0
M

ul
tic

en
te

r, 
ra

nd
om

iz
ed

, a
ct

iv
e-

co
nt

ro
lle

d,
 o

pe
n-

la
be

l, 
in

te
rv

en
tio

na
l t

ria
l (

M
ed

ic
al

 U
ni

ve
rs

ity
 o

f V
ie

nn
a)

2.
5 

or
 1

0 
m

g 
fo

r 2
9 

da
ys

Fu
ll 

an
tic

oa
gu

la
tio

n 
ve

rs
us

 p
ro

ph
yl

ax
is

 in
 C

O
V

ID
-1

9:
 

CO
A

LI
ZA

O
 A

C
TI

O
N

 T
ria

l (
A

C
TI

O
N

; N
C

T0
43

94
37

7)
60

0
R

an
do

m
iz

ed
, i

nt
er

ve
nt

io
na

l t
ria

l (
B

ra
zi

lia
n 

C
lin

ic
al

 
Re

se
ar

ch
 In

sti
tu

te
)

20
 m

g/
da

y 
fo

r 3
0 

da
ys

 (1
5 

m
g 

if 
C

rC
l =

 30
–4

9 
m

L/
m

in
 a

nd
/

or
 c

on
co

m
ita

nt
 u

se
 o

f a
zi

th
ro

m
yc

in
); 

fo
llo

w
ed

 b
y 

en
ox

ap
a-

rin
/u

nf
ra

ct
io

na
te

d 
he

pa
rin

 a
s n

ee
de

d
Pr

ev
en

tin
g 

ca
rd

ia
c 

co
m

pl
ic

at
io

n 
of

 C
O

V
ID

-1
9 

di
se

as
e 

w
ith

 
ea

rly
 a

cu
te

 c
or

on
ar

y 
sy

nd
ro

m
e 

th
er

ap
y:

 a
 ra

nd
om

iz
ed

 
co

nt
ro

lle
d 

tri
al

 (C
-1

9-
A

C
S;

 N
C

T0
43

33
40

7)

31
70

Pr
os

pe
ct

iv
e,

 m
ul

tic
en

te
r, 

ra
nd

om
iz

ed
, o

pe
n-

la
be

l, 
co

n-
tro

lle
d,

 in
te

rv
en

tio
na

l t
ria

l (
Im

pe
ria

l C
ol

le
ge

 L
on

do
n)

2.
5 

m
g 

fo
r 3

0 
da

ys

A
 tr

ia
l t

o 
ev

al
ua

te
 sa

fe
ty

 a
nd

 e
ffi

ca
cy

 o
f r

iv
ar

ox
ab

an
 

(C
O

V
ID

-1
9)

 (N
C

T0
45

04
03

2)
60

0
R

an
do

m
iz

ed
, c

on
tro

lle
d,

 p
ha

se
 II

b,
 b

lin
de

d,
 in

te
rv

en
tio

na
l 

tri
al

 (B
ill

 &
 M

el
in

da
 G

at
es

 M
ed

ic
al

 R
es

ea
rc

h 
In

sti
tu

te
)

10
 m

g 
ta

bl
et

 b
y 

m
ou

th
, o

nc
e 

da
ily

 fo
r 2

1 
da

ys

A
 st

ud
y 

of
 ri

va
ro

xa
ba

n 
to

 re
du

ce
 th

e 
ris

k 
of

 m
aj

or
 v

en
ou

s 
an

d 
ar

te
ria

l t
hr

om
bo

tic
 e

ve
nt

s, 
ho

sp
ita

liz
at

io
n 

an
d 

de
at

h 
in

 m
ed

ic
al

ly
 il

l o
ut

pa
tie

nt
s w

ith
 a

cu
te

, s
ym

pt
om

at
ic

 c
or

o-
na

vi
ru

s d
is

ea
se

 2
01

9 
(C

O
V

ID
-1

9)
 in

fe
ct

io
n 

(P
R

EV
EN

T-
H

D
; N

C
T0

45
08

02
3)

40
00

M
ul

tic
en

te
r, 

ra
nd

om
iz

ed
, p

la
ce

bo
-c

on
tro

lle
d,

 d
ou

bl
e-

bl
in

de
d,

 p
ra

gm
at

ic
 p

ha
se

 II
I, 

in
te

rv
en

tio
na

l t
ria

l (
Ja

ns
se

n 
Re

se
ar

ch
 &

 D
ev

el
op

m
en

t, 
LL

C
)

10
 m

g 
ta

bl
et

 o
ra

lly
, o

nc
e 

da
ily

 fo
r 3

5 
da

ys

A
pi
xa
ba

n
FR

EE
D

O
M

 C
O

V
ID

-1
9 

an
tic

oa
gu

la
tio

n 
str

at
eg

y 
(F

R
EE

-
D

O
M

 C
O

V
ID

; N
C

T0
45

12
07

9)
36

00
R

an
do

m
iz

ed
, o

pe
n-

la
be

l, 
in

te
rv

en
tio

na
l t

ria
l (

Ic
ah

n 
Sc

ho
ol

 
of

 M
ed

ic
in

e 
at

 M
ou

nt
 S

in
ai

)
5 

m
g 

ev
er

y 
12

 h
; 2

.5
 m

g 
ev

er
y 

12
 h

 fo
r p

at
ie

nt
s w

ith
 

at
 le

as
t t

w
o 

of
 th

re
e 

of
 th

e 
fo

llo
w

in
g:

 a
ge

 ≥
 80

 y
ea

rs
, 

w
ei

gh
t ≤

 60
 k

g,
 o

r s
er

um
 c

re
at

in
in

e ≥
 1.

5 
m

g/
dL

CO
V

ID
-1

9 
po

si
tiv

e 
ou

tp
at

ie
nt

 th
ro

m
bo

si
s p

re
ve

nt
io

n 
in

 
ad

ul
ts

 a
ge

d 
40

–7
9 

(N
C

T0
44

98
27

3)
70

00
M

ul
tic

en
te

r, 
ad

ap
tiv

e,
 ra

nd
om

iz
ed

, p
la

ce
bo

-c
on

tro
lle

d,
 

do
ub

le
-b

lin
de

d,
 in

te
rv

en
tio

na
l t

ria
l (

U
ni

ve
rs

ity
 o

f P
itt

s-
bu

rg
h 

an
d 

N
at

io
na

l H
ea

rt,
 L

un
g,

 a
nd

 B
lo

od
 In

sti
tu

te
)

2.
5 

or
 5

 m
g 

tw
ic

e 
da

ily

Ed
ox
ab

an
C

or
O

N
a 

V
iru

s e
do

xa
ba

N
 C

ol
ch

ic
in

E 
CO

V
ID

-1
9 

(C
O

N
-

V
IN

C
E;

 N
C

T0
45

16
94

1)
42

0
A

 ra
nd

om
iz

ed
, o

pe
n-

la
be

l, 
in

te
rv

en
tio

na
l s

tu
dy

 (U
ni

ve
rs

ity
 

H
os

pi
ta

l I
ns

el
sp

ita
l a

nd
 D

ai
ic

hi
 S

an
ky

o 
Eu

ro
pe

, G
m

bH
)

Ed
ox

ab
an

 6
0 

m
g 

on
ce

 d
ai

ly
, o

r 3
0 

m
g 

on
ce

 d
ai

ly
 in

 p
at

ie
nt

s 
w

ith
 C

rC
l ≤

 50
 m

L/
m

in
 o

r b
od

y 
w

ei
gh

t ≤
 60

 k
g 

fro
m

 ra
nd

-
om

iz
at

io
n 

to
 e

nd
 o

f t
he

 st
ud

y 
vi

si
t a

t d
ay

 2
5



531FXa Inhibitors in COVID-19

single-dose, crossover study presented results supporting the 
use of 60 mg crushed edoxaban tablets for administration as 
an apple puree oral preparation or an aqueous suspension via 
a nasogastric tube [82]. One can be skeptical about the use of 
a nasogastric tube given the hemodynamic instability of crit-
ically ill patients. In this arena, betrixaban was approved for 
use in adult patients hospitalized for an acute medical illness 
who are at risk for thromboembolic complications because 
of moderate or severe restricted mobility and other risk fac-
tors for venous thromboembolism [83]. Overall, the develop-
ment of a novel parenterally administered formulation or a 
parenteral delivery system for the currently available direct 
FXa inhibitors may further facilitate the realization of their 
full potential in treating hospitalized COVID-19 patients.
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