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Abstract: The integrated process of design and fabrication is invariably of particular interest and
important to improve the quality and reduce the production cycle for structural joints, which are key
components for connecting members and transferring loads in structural systems. In this work, using
the generative design method, a pioneering idea was successfully realized to attain a reasonable
configuration of the cross joints, which was then consecutively manufactured using 3D printing
technology. Firstly, the initial model and generation conditions of a cross joint were constructed by
the machine learning-based generative design algorithm, and hundreds of models were automatically
generated. Then, based on the design objective and cost index of the cross joint, three representative
joints were selected for further numerical analysis to verify the advantages of generative design.
Finally, 3D printing was utilized to produce generative joints; the influences of printing parameters
on the quality of 3D printing are further discussed in this paper. The results show that the cross joints
from the generative design method have varied and innovative configurations and the best static
behaviors. 3D printing technology can enhance the accuracy of cross joint fabrication. It is viable
to utilize the integrated process of generative design and 3D printing to design and manufacture
cross joints.

Keywords: cross joints; generative design; 3D printing; numerical analysis

1. Introduction

Joints are significant components for connecting members and transferring loads in
various types of rod structural systems [1,2]. The cross joint has become one of the most
commonly applied joint forms due to its simple construction and clear force transmission
path [3]. However, conventional design and manufacturing methods are still used for
the cross joints in existing projects, leading to falling behind the engineering practice re-
quirements, such as unreasonable configuration, long cycle, and a high cost of joints [4].
Furthermore, the traditional design and fabrication stage of cross joints is usually indepen-
dent. The manufacturability of the model is not considered in the design stage, which easily
makes the designed joint scheme unable to be produced by traditional manufacturing
processes [5]. Therefore, to pursue innovative ideas for solving the above problems, it is
first necessary to summarize the current situation and development direction of the design
and manufacturing technology.

On the one hand, the design of cross joints still mainly depends on the engineers’
experience. Engineers first propose a preliminary joint model based on the conceptual
design, and then the mechanical performances of the initial joints are calculated and
analyzed in detail by finite element (FE) technology. Finally, the model’s adjustment is
conducted according to the computation results. The above process is generally cyclic and
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repeated several times, and model testing must sometimes be carried out. Therefore, the
traditional design method based on the engineers’ experience has a long cycle time and high
energy consumption [6]. In particular, when the types and numbers of joints in an entire
structure are substantial, such as in the Morpheus Hotel in Macau, as shown in Figure 1, it
is almost impossible to complete the design assignment by the traditional method.
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In recent years, the appearance of modern buildings is progressively complex, and
it is difficult to design rational joint configurations by relying purely on the engineers’
experience. For structural safety, engineers normally assign more material to cross joints,
which easily results in the design problems of excessive mass and insufficient geometric op-
timization. In response to the above problems, many scholars have conducted optimization
design research on joints with the help of topology optimization methods [7–9], such as
Zhang et al. [4], who proposed a topology optimization method of substructure based on
bionics and used this method to attain the optimal model of a cross joint. From the current
research status, topology optimization is a feasible method for the optimization design
of structures. Nonetheless, the existing topology optimization method is only executed
within the framework of the established optimized design area, which restricts the design
exploration space. Moreover, topology optimization can only obtain a single outcome
rather than several alternatives. If the topological convergence solution does not satisfy the
aesthetic or other property requirements, a significant amount of manual adjustment work
is required [6].

With the rapid development of artificial intelligence technology, the design of joints
can be achieved by introducing more automatic and efficient methods. Generative design
is a modern approach to comprehensive design schemes that explores the entire design
space to achieve purposes such as minimal structural compliance, given a set of functional
requirements and constraints based on geometry, material specifications, and fabrication
considerations [10–12]. According to Krish [13], the concept of generative design was
first proposed by Frazer in the 1970s. In 1989, with the advent of parametric CAD tools,
generative design was further studied [14]. In 1997, Bentley and Wakefield [15] developed
and optimized the first generation of generative design systems based on genetic algorithms.
Then, some representative generative design methods were born, such as cellular automata,
L-systems, and swarm systems [16]. However, there has been no substantial breakthrough.
Since the rapid development and popularization of a new round of intelligent automation
technology and optimization algorithms, generative design has achieved unprecedented
potential and has been seriously studied and applied in certain fields [17]. For example,
Gulanová et al. [18] proposed a surface-based the part generative engineering design
method, along with its general application. In 2019, Oh et al. [19] built a generative design
framework based on deep learning algorithms, which integrated topology optimization
and generative adversarial networks in an iterative way. Ge [20] utilized a generative
design for the lower limb structure of a biped robot and obtained hundreds of new design
alternatives. Bright et al. [21] carried out generative design on a helicopter frame and gained
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a derivative frame model with better fracture and deformation resistance. Wu et al. [22]
used the generative design method to optimize the roller seat of a wind turbine blade
turnover machine. The generative roller seat not only guaranteed strength and stiffness
but also reduced the mass to 44.4% of the initial model. From the studies and applications
of generative design, it can be see that it can automatically generate a large number of
design schemes in a short period, which is convenient for designers as it allows them to
choose the most appropriate scheme. Additionally, the results of generative design have
a good mechanical property and light mass. Consequently, if the generative design is
utilized in the design of cross joints, it is expected to improve the efficiency of the joint
design optimization.

On the other hand, using the casting process of pouring liquid steel into a mold in one
piece, various joints with complex configurations can be produced, and overlapping welds
at the intersecting parts can be avoided during welding [9]. Therefore, cross-cast-steel joints
have been widely applied in engineering during the last few years. However, the conven-
tional fabrication process of cast-steel joints is mandrel, sandbox, casting, and polishing [23],
and therefore the manufacturing cycle is long. Meanwhile, a large number of manual oper-
ations lead to huge labor consumption, especially when the types and numbers of joints
in an entire structure are substantial, as shown in Figure 1b. 3D printing is a transforma-
tive advanced digital manufacturing technology, developed in the past 30 years [24–26].
Differently from traditional fabrication methods (cutting, grinding, casting, forging, etc.),
the technology cuts the whole model through a program into digital slices, automatically
generates printing commands after sorting, and prints the digital slice layer by layer for
rapid prototyping. Many experts and companies have applied 3D printing technology in
the field of building structures. For example, in 2018, MX3D collaborated with AURP to
presented the world’s first metal bridge manufactured with 3D printing technology at the
Dutch design week [27]. Kanyilmaz et al. [28] utilized 3D printing technology to achieve
a nature-inspired optimization design of steel tubular joints. Du et al. [29] conducted an
integrated study of topology optimization and additive manufacturing on a cable-dome
bearing joint and obtained the result that when the density support was 15%, the surface of
the manufactured joint was relatively smooth. Compared with conventional fabrication
technologies, 3D printing can manufacture complex structural models, effectually sim-
plifying production processes and shortening manufacturing cycles [30]. In addition, 3D
printing technology has unique advantages in the integration of design and manufacturing
and effectively communicates the connection between the digital world and the physical
world. Currently, 3D printing combined with generative design has been tested in other
fields, such as the redesign of a seatbelt bracket by General Motors and the design of cabin
partitions by the European Aeronautics and Astronautics Corporation for Airbus [6]. From
these studies, it can be seen that generative design can make full use of the design space
provided by 3D printing technology, and 3D printing can ensure the manufacturability
of generative results. Therefore, utilizing generative design and 3D printing will help
to realize the integrated process of design and fabrication, and then effectively solve the
problems of excessive mass, insufficient geometric optimization, and long production time
for cross joints in practical engineering.

This work is presented as follows: In Section 2, the method and mathematical model
of generative design are established and elaborated. In Section 3, reasonable configurations
of cross joints under axial force are obtained by the generative design method; three
representative joint models are then selected for further numerical analysis and static
behavior comparison to verify the advantages of generative design. In Section 4, 3D
printing technology is used to manufacture generative joints.

2. Method and Mathematical Model of Generative Design
2.1. Method

Generative design is a hybridization of the design and optimization method, usually
integrated into a computation-intensive machine learning algorithm executed on powerful
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cloud computing technology [13,31–34]. This method integrates objective engineering re-
quirements into subjective design, and through the paradigm of simulating natural growth
and evolution, unlimited new viable design schemes can be created in a comparatively
short time [35–39]. Generative design only requires clarifying the design conditions and
target performance and does not depend on the initial structural geometry [19,40,41]. Gen-
erative programs relating to the intelligent distribution of the material in the cloud can
automatically generate more innovative and feasible design alternatives that have a lighter
mass and better properties. In addition, the relevant data of each generative scheme is fed
back in real-time into the cloud to evaluate and screen out the best structural configuration
suitable for practical engineering.

In the whole design process, the generative program can automatically complete
the various contents, effectively prevent the large number of repeated calculations and
adjustments required by traditional methods, and markedly upgrade the efficiency and
intelligence of the structural design [42–44]. To enhance intuitive understanding, this
work explains the idiographic operation process of the generative design method, mainly
including pretreatment, design exploration, and processing, as shown in Figure 2. The
first is the pretreatment of generative design, including defining the reserved geometry
and obstacle geometry of structures, arranging loads and imposing constraints on the
corresponding components, choosing manufacturing methods and materials, and setting
generation objectives. Generative iteration and model optimization are then performed
based on machine learning, evolutionary algorithms, and cloud computing. Finally, the
designer can select any generative scheme for output.
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2.2. Mathematical Model

Generative design starts from a series of problem solutions and evaluates multiple
solutions in the design space to maximize the quality of the generated model. To attain
more diversified structural design alternatives, this study combines space-filling criterion
and non-cohesion criterion based on the generative design method. The space-filling design
is normally applied in computer experiments, and the non-cohesion criterion is a potent
rule to ensure that there will be no interference between design schemes [22,45]. The
mathematical model of generative design is as follows:

xw =
{

x(w,k), k = 1, 2, . . . n
}
∈ Z ⊆ R (1)

Z =
{

xl
w ≤ x(w,k) ≤ xu

w, ∀k ∈ {1, 2, . . . n}
}

(2)
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Design space Z is composed of a series of solutions w, represented by xw. Z is a subset
of R, which is constrained by the lower limit xl

w and upper limit xu
w.

The generative design objectives are to explore Z and generate a set composed of N
different schemes. N is a custom parameter, and each specific position in Z represents each
project in m. In order to attain the set m, the space-filling criterion G(m) is introduced to
solve the project (Equation (3)).

G(m) =
N−1

∑
p=1

N

∑
q=p+1

1

E
(

xp, xq
)2 (3)

E
(
xp, xq

)
=

(
n

∑
k=1

(
xp,k − xq,k

)2
) 1

2

(4)

E
(

xp, xq
)

is the Euclidean distance between the design values p and q. According to
the maximum distance criterion, the minimum value of G(m) is conducive to the equidis-
tribution of N schemes in Z.

In high-dimensional design space, Audze space-filling criteria will place different
alternatives on the boundary of design space, which is not desirable [46]. Hence, it is
necessary to introduce a non-cohesion criterion, which divides each dimension of Z into
N intervals and guarantees that the two schemes do not interfere with each other. The
criterion utilizes Equation (5) to merge the retrieval process, and Equation (5) calculates the
number of intervals shared by N schemes. On the basis of the parameter θ, the adjusted
weight of H(m) can create a complete scheme of minimization.

H(m) = θ ×
N−1

∑
p=1

N

∑
q=p+1

o
(
yp, yq

)
(5)

o
(
yp, yq

)
=

n

∑
j=1

f
(

yp,k, yq,k

)
(6)

f
(

yp,k, yq,k

)
=

{
1, yp,k = yq,k
0, yp,k 6= yq,k

(7)

In Equation (5), o
(
yp, yq

)
is the interval number shared between the design values p

and q; yp and yq are the discrete representations of xp and xq, respectively. To solve the
k − th geometric parameter xi,k of the i − th design scheme, the generative design first
divides the range between the lower limit xk

i,l and the upper limit xk
i,u into N intervals

[xk
i,l = x1

i,l , x2
i,l , . . . xN

i,l = xu
p,k], and then assigns the integer coordinate t to yi,k, where yi,k is

the discrete value of xi,k, as shown in (Equation (8)).

∀t = {1, 2, . . . N},
(

xt
i,l ≤ xi,k ≤ xt+1

i,l

)
→ (yi,k = t) (8)

F(m) =
N−1

∑
p=1

N

∑
q=p+1

1

E
(
Xp, Xq

)2 + θ ×
N−1

∑
p=1

N

∑
q=p+1

o
(
yp, yq

)
(9)

In a generative design, each iteration is accomplished by performing N sub iterations.
After the objective function F(m) converges, the generative algorithm returns the m optimal
set of N. The generative design goal for cross joints in this study is to provide maximum
bearing capacity while utilizing the least amount of material. Because stiffness is the most
direct characteristic value of bearing capacity [47], the maximum stiffness is selected as the
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design objective. The volume V and compliance C are simultaneously minimized, and the
optimization problem is expressed as follows:

min :
{

C = 1
2 UTKU

L = (V/Vmax)× 100%
(10)

where U is the displacement vector of the cross joints, K is the global stiffness matrix, V is
the volume of each iteration of joints, and Vmax is the volume of the whole design space.

3. Generative Design of the Cross Joint
3.1. Pretreatment of Generative Design

The generative design does not depend on the initial structural model and only
requires specifying the reserved geometry and obstacle geometry of the structure. Reserved
geometry refers to the geometric features that need to be included in the final structural
shape. Obstacle geometry refers to the geometric features that need to be excluded. In
this study, four-branch pipes are selected as the reserved geometry; the middle part is the
generative design area, which is used to obtain the initial cross joint model for generative
design, as shown in Figure 3. The model is then imported into the calculation program for
generative design.
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(b) geometric properties.

Subsequently, the constraint and load are applied to the initial joint, as shown in
Figure 3a. Choosing the bottom surface of the initial model as the constraint surface, the
constraint is regarded as a fixed end. The axial tension of the 645 kN load is arranged on the
remaining three pipes, respectively. The design objective is maximum stiffness. Material
properties are defined and listed in Table 1.

Table 1. Material properties of the cross joint.

Parameters Values

Density (ton/mm3) 7.85 × 10−9

Poisson’s ratio 0.3
Shear modulus (MPa) 8.077 × 104

Elastic modulus (MPa) 2.10 × 105

3.2. Analysis of Generative Joints

After checking the input parameters, the cloud platform is set for iterative calculations
to generate multiple design schemes based on the structural performance requirements.
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The generative design leverages the powerful operational capacity of cloud computing to
simultaneously design thousands of cross joint models in a short period. This study lists
only some particular design schemes generated automatically by the generative design and
codes them, as shown in Figure 4.
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Figure 4. Partial generative design results of the cross joint.

It is easy to see from Figure 4 that the configurations of generative joints are varied
and innovative. Many joint models exhibit unique geometric features.

• There is no material in the middle of generative joints 4 and 9, and each branch is
connected by a hollowed-out cube;

• The transition between each branch and the generative design area of generative
joint 5 is smooth;

• The generated part of generative joint 7 looks like a shape that has been cut by a tool
and has an excellent visual effect;

• Generative joints 26 and 29 seemingly come from the same iterative design, and their
branches are united in a crescent shape, which is symmetrical as a whole. It can also be
seen that generative joint 26 has a higher degree of evolution than 29, and the model is
lighter and simpler.

The above joints embody the powerful model generation ability of the generative
design method. Furthermore, the generative joint configurations are different from the cross
joint shapes in engineering applications, which is beyond the scope of imagination based
on the engineers’ experience. In summary, the generative design method can automatically
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generate multiple neoteric structural configurations under the given conditions. The
physical index values of each generated result also are obtained by the generative algorithm,
such as volume, mass, maximum equivalent stress, and maximum displacement, which
provides convenience for designers to choose the most appropriate scheme.

To further verify the mechanical performance of the generative cross joints, the general
software (HyperWorks 2021) was used to carry out linear FE analysis. Due to the large
number of generative joints, the workload of one-by-one numerical verification is substan-
tial. Therefore, this work comprehensively considers the practical application requirements
and cost indexes of the cross joint and selects the representative joints with lighter mass
for further numerical analysis. To choose representative joints more intuitively, this paper
integrates the data values obtained by the generative algorithm into a scatter plot, as shown
in Figure 5. It is not difficult to see from Figure 5 that the mass and mechanical properties
of generative joints 1, 2, and 3 are the best. Consequently, these three joints were selected as
representative generative joints and are marked in Figure 5.
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3.3. Static Behaviors of the Representative Joints

The detailed characteristics of the generative design area for the representative joints
are depicted in Figure 6. The generative joints have a novel shape, the generative part has
outstanding compatibility with the tetrahedron, and the transition is smooth.
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The joint models are imported into the software HyperWorks 2021 in step format. The
material PSOLID entity attributes are created and provided in HyperMesh. In this study,
to ensure the quality of mesh generation, 2D mesh generation is first performed on the
joint model, and the 2D mesh is checked in detail. The 2D mesh is then converted to a 3D
mesh through Tetra mesh, the quality of the 3D mesh is checked, and any failed mesh is
modified. Finally, the FE model of the cross joint is attained. The load and constraint are
consistent with the original model of generative design. All nodes on the bottom-edge
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surface of the lower pipe are selected on the joint FE model to constrain the translational
and rotational degrees of freedom in the X, Y, and Z axes. An axial tension of 645 kN is
arranged on the top-edge surface of the remaining three branch pipes. Because the cast
steel material has obvious plasticity, the ideal elastoplastic model is adopted, obeying the
von Mises yield criterion. The static analysis results of displacement and the equivalent
stress of the generative joints are shown in Figures 7–9.
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The static analysis results show that the stress distribution of generative joints is
uniform, and the displacement and stress distribution of each joint are identical, which
indicates the rationality of the generative results. To further analyze the practical optimized
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design effect of the generative cross joints, the static behaviors are compared with those of
traditional flat polygon joints and topology-optimized joints.

3.4. Comparison Analysis with Other Joints
3.4.1. Static Behaviors of the Flat Polygon Cross Joint

The flat polygon is a commonly used connection for cross joints, so it has been selected
to compare its mechanical performance with the generative joints [5]. The flat polygon
cross joint model and its geometric characteristics are shown in Figure 10; its branch
size and material properties are the same as the initial cross joint model designed by
generative design. The flat polygon cross joint is taken as the original model of the
topology-optimized joints.
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Figure 10. The flat polygon cross joint: (a) model, (b) geometric features.

The mass of the flat polygon cross joint is 15.062 t. Under the same working conditions
as the generative joints, the static analysis results are shown in Figure 11. The maximum
displacement is 0.0874 mm, which is located at the top of the upper part of the pipe. The
maximum equivalent stress is 15.8899 MPa, which is located outside each branch pipe and
the connection of the flat polygon of the joint.
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3.4.2. Static Behaviors of the Traditional Topology-Optimized Joint

According to the research status of joint design, the topology optimization method can
minimize the weight while ensuring the excellent mechanical performance of joints [4,9].
Hence, the topology-optimized joint is elected to compare its static behavior with the
generative joints. The static analysis results are shown in Figure 12. The mass of the
topology-optimized joint is 10.675 t. The maximum displacement is 0.0898 mm, which is
located at the top of the upper pipe. The maximum equivalent stress is 15.8963 MPa, which
is located outside the intersection of each branch and the flat polygon of the joint.
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3.4.3. Static Behaviors of Substructure Topology-Optimized Joints

Based on our recent research for the optimization design of cross joints, topology
optimization using traditional substructure and bionic substructure partitioning methods
has better overall performance than the joint model obtained by conventional topology
optimization, and the related achievements have been published previously in journals [4].
To fully verify the actual optimization level of the generative design, the traditional sub-
structure topology-optimized joint and the bionic-based substructure topology-optimized
joint are selected to compare their static behavior with the generative joints.

The static analysis results of the cross joint obtained by the traditional substructure
topology optimization are shown in Figure 13. The mass of the traditional substructure
topology-optimized joint is 9.930 t. The joint displacement and stress are symmetrically
distributed. The maximum displacement is 0.0902 mm, which is located at the top of the
branch pipe. The maximum equivalent stress is 17.6482 MPa, which is located near the
junction of the branch pipe and main pipe.
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The static analysis results of the joint obtained by the bionic-based substructure
topology optimization method are shown in Figure 14. The joint has a mass of 9.870 t.
The maximum displacement and the maximum equivalent stress of the joint are the same
as the distribution position of the joint obtained by the traditional substructure topology
optimization, and the values are 0.0826 mm and 13.3257 MPa.
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Figure 14. Static analysis results of the bionic-based substructure topology-optimized joint:
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3.4.4. Comparison Analysis and Discussion

To facilitate the comparative analysis for the mechanical performances of the above
joints, the mass, maximum displacement, and equivalent stress are summarized in Table 2.
The flat polygon cross joint model is applied as a reference object for comparison. Negative
values indicate a decrease, while positive values indicate an increase.

Table 2. Comparison of the generative joints and other joints.

Joint Mass (t)
Compared to
Flat Polygon

Cross Joint (%)

Maximum
Displacement

(mm)

Compared to
Flat Polygon

Cross Joint (%)

Maximum
Equivalent

Stress (MPa)

Compared to
Flat Polygon

Cross Joint (%)

flat polygon cross joint 15.062 0.0874 15.8899
traditional topology-optimized joint 10.675 −29.13 0.0898 2.75 15.8963 0.04

traditional substructure
topology-optimized joint 9.930 −34.07 0.0902 3.20 17.6482 11.07

bionic-based substructure
topology-optimized joint 9.870 −34.47 0.0826 −5.49 13.3257 −16.14

generative joint 1 7.508 −50.15 0.0868 −0.69 12.7961 −19.47
generative joint 2 6.940 −53.92 0.0851 −2.63 12.7345 −19.86
generative joint 3 7.829 −48.02 0.0899 2.86 14.4469 −9.08

It can be seen from Table 2 that the static behaviors of the topology-optimized joints
and the generative joints have been improved in comparison to the flat polygon cross
joint model. In terms of joint maximum equivalent stress, generative joint 2 has the best
manifestation, which is reduced by 19.86%. In addition, it can be seen from Figure 8b
that the color bar of the equivalent stress nephogram of generative joint 2 is not much
different, and the stress distribution is more uniform than that of other joint models. In
terms of joint maximum displacement, the bionic-based substructure topology-optimized
joint has the best manifestation, which is decreased by 5.49%. In terms of joint mass,
compared with the flat polygon cross joint model, the mass of the generative joints and
the topology-optimized joints has been abated, among which the weight of generative
joint 2 is reduced by 53.92%, and the effect is the most prominent. Therefore, generative
joint 2 is optimal; not only is mass minimized, but the mechanical properties are also
greatly improved. Furthermore, the topology-optimized joint surface is rough, while
the generative joints are smooth and attractive, which is more in line with the needs of
architectural structure aesthetics. In summary, the joints obtained by generative design have
the most balanced stress distribution and best static behaviors, which notably improves the
design optimization effect of the cross joints.
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4. Manufacturing of Generative Joints

In recent years, 3D printing has become an emerging industrial intelligent manufac-
turing technology. Different from the traditional manufacturing method, the technology
converts the concept of subtracting materials into adding materials [48]. Based on digital
model files, it utilizes powdered adhesive materials to construct objects by stacking them
layer by layer [49–51]. At present, the main 3D printing technologies are fused depo-
sition modeling (FDM), selective laser melting (SLM), laminated object manufacturing
(LOM), stereo lithography appearance (SLA), and wire and arc additive manufacturing
(WAAM) [47,52].

Limited to experimental equipment and by cost, this paper utilizes FDM technology
to manufacture scale models of the generative joints with polylactic acid (PLA) plastic
as materials to verify the feasibility of 3D printing technology in restoring joint features
and enhance the intuitive understanding of generative joints. FDM technology works
by squeezing materials heated at high temperatures through a nozzle to build a physical
model layer by layer [53–55]. The production process is characterized by converting the FE
file of generative joints into the stereolithography (STL) file and then reading it into the
slicing software to generate the 3D printing commands, which are finally exported to the
3D printer of the Advanced Design and Intelligent Manufacturing Laboratory of Henan
University for additive manufacturing. The 3D printing process is shown in Figure 15.

Materials 2022, 15, x FOR PEER REVIEW 14 of 18 
 

 

aesthetics. In summary, the joints obtained by generative design have the most balanced 
stress distribution and best static behaviors, which notably improves the design 
optimization effect of the cross joints. 

4. Manufacturing of Generative Joints 
In recent years, 3D printing has become an emerging industrial intelligent 

manufacturing technology. Different from the traditional manufacturing method, the 
technology converts the concept of subtracting materials into adding materials [48]. Based 
on digital model files, it utilizes powdered adhesive materials to construct objects by 
stacking them layer by layer [49–51]. At present, the main 3D printing technologies are fused 
deposition modeling (FDM), selective laser melting (SLM), laminated object manufacturing 
(LOM), stereo lithography appearance (SLA), and wire and arc additive manufacturing 
(WAAM) [47,52]. 

Limited to experimental equipment and by cost, this paper utilizes FDM technology to 
manufacture scale models of the generative joints with polylactic acid (PLA) plastic as 
materials to verify the feasibility of 3D printing technology in restoring joint features and 
enhance the intuitive understanding of generative joints. FDM technology works by 
squeezing materials heated at high temperatures through a nozzle to build a physical model 
layer by layer [53–55]. The production process is characterized by converting the FE file of 
generative joints into the stereolithography (STL) file and then reading it into the slicing 
software to generate the 3D printing commands, which are finally exported to the 3D printer 
of the Advanced Design and Intelligent Manufacturing Laboratory of Henan University for 
additive manufacturing. The 3D printing process is shown in Figure 15. 

 
Figure 15. 3D printing technology of the generative joint. 

After many experiments, it was confirmed that the reasonable setting of some 
parameters is the key to attaining high precision joint models, such as printing 
temperature and speed, support, and nozzle diameter. The printing temperature is the 
most important parameter affecting the accuracy and mechanical performance of the 
finished model during the FDM printing process. The temperature of the printer nozzle 
should be kept 4~6% higher than the melting temperature of the printing material. The 
printing speed must be controlled within an appropriate range. If the printing speed is 
too quick, the underlying material will not have enough time to solidify. If the printing 
speed is too slow, the cooling time of the material will be longer, which may cause the 
adhesion between adjacent layers to be weakened, along with the layers’ uneven 
shrinkage. In addition, this study also lists the support type influence on the printed 
product. Support is mainly divided into no support, local support, and global support. 
Figure 16a,b shows the differences between local support and global support under 
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After many experiments, it was confirmed that the reasonable setting of some pa-
rameters is the key to attaining high precision joint models, such as printing temperature
and speed, support, and nozzle diameter. The printing temperature is the most important
parameter affecting the accuracy and mechanical performance of the finished model during
the FDM printing process. The temperature of the printer nozzle should be kept 4~6%
higher than the melting temperature of the printing material. The printing speed must be
controlled within an appropriate range. If the printing speed is too quick, the underlying
material will not have enough time to solidify. If the printing speed is too slow, the cooling
time of the material will be longer, which may cause the adhesion between adjacent layers
to be weakened, along with the layers’ uneven shrinkage. In addition, this study also
lists the support type influence on the printed product. Support is mainly divided into no
support, local support, and global support. Figure 16a,b shows the differences between
local support and global support under different printing angles; the local support is only
established in the key feature parts of the model, and the global support is arranged in all of
the suspended parts. Therefore, selecting the appropriate printing angle and support type
is of great significance to the performance and cost of the printed product. In this paper, the
generative joint is parallel to the printing platform, and it is printed with a global support.
Details of the support material are shown in Figure 16c. The 3D printing manufacturing
parameters of the joint model are shown in Table 3.
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Table 3. Summary of the 3D printing parameters.

Layer Thickness
(mm)

Infill
Density

Temperature
(◦C) Nozzle Speed

(mm/s)
Support

Mode

0.2 20% 210 0.4 40 All support

3D printing can highly reproduce the details of the joint model, which is very difficult
to manufacture by traditional fabrication processes. It can be seen from Figure 17 that the
generative joints are symmetrical, smooth, and balanced as a whole, and the connection
between the generative design area and the main branch pipe is dense and glossy. Although
the finished product made of PLA material cannot be applied directly to engineering
practice, it provides a new idea for the manufacture of complex-shaped joints in the future.
For example, 3D printing is used to produce the mold of complex cast-steel joints; digital
processing can ensure the precision of the mold, decrease the local defects during casting,
and enhance the manufacturing speed. Compared with traditional wooden molds, this
method lowers the cost of a single mold. In addition, this method can also guarantee
the actual performance of the joints. Although 3D printing technology has undergone
unprecedented development in recent years, there are still many defects, such as the actual
performance of 3D printed products. The actual failure mode of the printed model differs
from the results of the finite element analysis due to many factors such as deposition angle,
environmental condition of the 3D printer, and the polymer used to print. Therefore, the
molds are produced using 3D printing technology, and then models are manufactured
using the casting process. This not only shortens the production cycle but also ensures the
mechanical properties of the joints.
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5. Conclusions

In this work, a pioneering idea using the generative design method is successfully
realized to attain a reasonable configuration for cross joints, which are consecutively
manufactured using 3D printing technology. The main conclusions are as follows:

(1) The generative design method has powerful model generation ability and inno-
vation ability. Generative design can automatically generate multiple new cross joint
configurations. Most of the generative joints have novel shapes that are beyond the imagi-
nation of designers based purely on experiences. Furthermore, it is not always possible to
manufacture joints generated by generative design because of the production limitations,
molds, etc.

(2) Generative design can enhance the design optimization level of cross joints. The
numerical simulation results indicate that the generative joints have a lighter mass and
better mechanical performance. Moreover, the boundary and constraint conditions of
the generative design method are straightforward, and the whole design process is more
automatic and intelligent.

(3) Generative cross joints have excellent manufacturability and aesthetics. In this
paper, 3D printing technology is applied to produce a reduced-scale model of the generative
joints. The solid model shows that the joint formation effect is excellent, and the surface
is smooth.

(4) The development of 3D printing technology ameliorates the manufacturing tech-
nology of cross joints. High precision joints can be produced using 3D printing.

(5) The combination of generative design and 3D printing is an efficient way to realize
the integrated process of the design and manufacture of cross joints.
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