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MOTIVATION With the development of epigenomic technologies, we can obtain more and more Hi-C,
ATAC-seq, ChIP-seq, and other epigenome data with high resolution; Although we can obtain some regu-
latory chromatin interactions that are anchored at some regulatory element, this would require us to calcu-
late the loops that are anchoring to the location of the peaks. This process is challenging for the low ratio of
regulatory chromatin interactions in Hi-C contact matrix. Therefore, we provide a toolkit, MINE, which in-
cludes MINE-Loop, MINE-Density, and MINE-Viewer, to enhance the ratio of regulatory chromatin interac-
tions in Hi-C contactmatrix and define the spatial density of regulatory chromatin interactions to explore the
relationship between the spatial density of regulatory chromatin interactions, gene expression, and chro-
matin structure change.
SUMMARY
Chromatin interactions play essential roles in chromatin conformation and gene expression. However, few
tools exist to analyze the spatial density of regulatory chromatin interactions (SD-RCI). Here, we present
the multi-modal network (MINE) toolkit, including MINE-Loop, MINE-Density, and MINE-Viewer. The MINE-
Loop network aims to enhance the detection of RCIs, MINE-Density quantifies the SD–RCI, and MINE-
Viewer facilitates 3D visualization of the density of chromatin interactions and participating regulatory factors
(e.g., transcription factors). We applied MINE to investigate the relationship between the SD-RCI and chro-
matin volume change in HeLa cells before and after liquid-liquid phase separation. Changes in SD-RCI before
and after treating the HeLa cells with 1,6-hexanediol suggest that changes in chromatin organization was
related to the degree of activation or repression of genes. Together, the MINE toolkit enables quantitative
studies on different aspects of chromatin conformation and regulatory activity.
INTRODUCTION

With advances in 3D genome research, increasing evidence

supports an essential role for chromatin interactions with nuclear

regulatory factors in shaping chromatin conformation and the

regulation of gene transcription. For example, the chromatin

structure of A/B compartments and topologically associating

domains (TADs) appear to be formed through distinct chromatin

interactions (i.e., loops).1 Previous research2 has revealed that

gene densities and GC content are correlated with the density
Cell Re
This is an open access article under the CC BY-N
of chromatin interactions (i.e., the number of interactions per

Mb). Hou et al.3 showed that gene density and transcription

contribute to the partition of physical domains (i.e., regions

with high gene density). Interactions between chromatin features

associated with transcriptional activation or repression, such as

Rad21, CCCTC-binding factor (CTCF), and H3K4me3, are corre-

lated with gene expression.4,5 Almassalha et al.6 provided a

‘‘macrogenomic engineering’’ approach to regulate transcrip-

tional activity in cancer cells by modulating chromatin density.

Therefore, research on the spatial density of regulatory
ports Methods 3, 100386, January 23, 2023 ª 2022 The Authors. 1
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chromatin interactions (SD-RCI) can further our understanding of

the mechanisms responsible for chromatin folding and the rela-

tionship between chromatin conformation and gene expression.

Technologies such as ChIA-PET7 and HiChIP,8 and tools like

3CPET9 and ChIA-PET2,10 can capture the RCIs for proteins of

interest, such as DNA-binding regulatory proteins or RNA tran-

scription factors. However, ChIA-PET and HiChIP data are only

available for some cell lines, and their acquisition of different

target proteins is costly, laborious, and time consuming. Hi-C11

is a sequencing technology that quantifies the number of interac-

tions between genome bins adjacent in 3D space but may be

farther in a linear genome. Therefore, a method to detect RCIs

by calling loops from Hi-C data can help reduce the cost. In

this paper, we propose using MINE-Loop to identify special

RCIs from high-resolution Hi-C data.

Among the numerous physical mechanisms of chromatin

formation, one type of model12–15 considers the formation of

chromatin structures mediated by chromatin interactions with

molecular factors, such as architectural proteins, histone marks,

and non-coding RNAs.16 Specifically, the strings and binders

switch (SBS) model proposes that chromatin is a ‘‘self-avoiding

polymer’’ surrounded by diffusive molecular factors (e.g., tran-

scription factors) that anchor to cognate recognition sites on

the chromosome to drive the chromatin folding process. The

SBS model can be specifically applied to study the relationship

between chromatin structural states, such as loops, TADs, or

A/B compartments, and the density of regulatory factors (such

as enhancer, promoter, and silencer). Studies investigating

loops17,18 have shown that CTCF mediates interactions with

chromatin regions enriched with enhancer-regulated genes by

altering chromatin domain structures. Similarly, Golkaram

et al.19 examined local chromatin density to quantify transcrip-

tional regulatory components in a cell population and found

that distinct TADs determined the distribution of gene expres-

sion. Jiang et al.20 proposed the spatial density of open chro-

matin (SDOC) metric to characterize intra-TAD chromatin state

and structure, where the SDOC refers to the ratio of the total

number of accessible chromatin regions in a TAD to the total

3D space taken up by its physical structure. They found that

TADs with decreased SDOC were enriched with repressed

genes during T cell development in mice. While these studies

investigated the relationship between chromatin structure and

specific molecular factors (e.g., CTCF and transcription factors

[TFs]), a method for simultaneous quantification of the spatial

density of active or repressive RCIs (i.e., chromatin interactions

that are anchoring regulatory elements to chromatin) is still lack-

ing. Such a method could provide quantitative evidence sup-

porting or refuting the SBS model of the relationship between

chromatin structure and gene expression.

To address this gap, we introduce the multi-modal network

(MINE) data analysis toolkit, including the MINE-Loop, MINE-

Density, and MINE-Viewer tools, to explore the SD- RCI.

MINE-Loop is a neural network model that integrates Hi-C,

ChIP-seq,21 and ATAC-seq22 data to enhance the proportion

of detectable RCIs. MINE-Density can be used to calculate the

RCISD-RCI identified by MINE-Loop, and MINE-Viewer facili-

tates visualization of density and specific interactions with regu-

latory factors in 3D genomic structures. We explored the rela-
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tionship between SD-RCI and the status of gene transcription

in HepG2 cells. We also identify four distinct levels of interaction

density related to the formation of transcriptionally active or

repressive chromatin regions enriched for anchored regulatory

factors (i.e., developed hubs) or regions with low density of

anchored factors (developing hubs). Finally, we applied SD-

RCI values to data obtained in a liquid-liquid phase separation

(LLPS) experiment (i.e., the HeLa cell line treated or not with

1,6-hexanediol) to quantitatively describe changes in chromo-

some structure, which revealed that chromosome structure

expands after treating with 1,6-hexanediol (Hex group). In sum-

mary, MINE provides a new method for quantitative analysis of

chromatin conformations.

RESULTS

Overview of the MINE framework
MINE is a multi-modal method for detecting the SD-RCI (i.e.,

chromatin interactions that are anchoring regulatory elements

to chromatin) that includes MINE-Loop, MINE-Density, and

MINE-Viewer functions (Figure 1A). The pipeline schematics of

using the MINE toolkit can be seen in Methods S1I–S1N).

Description of the MINE-Loop tool

Since raw Hi-C deep sequencing data contain a high degree of

noise, the currently available loop (i.e., two chromatin regions

that the interaction frequency is higher than that of the surround-

ing adjacent regions in the Hi-C contact matrix) callers

commonly identify a relatively low proportion of RCIs. Hence,

MINE-Loop was developed to obtain a larger proportion of

RCIs from enhanced Hi-C data than from raw Hi-C data, where

the RCIs are defined to be the chromatin loops that are

anchoring with functional factors (e.g., CTCF, RAD21, SMC3,

and POLR2A).

As shown in Figure 1B, the MINE-Loop tool first generates a

high-resolution (i.e., 1 kb resolution) VC-normalized Hi-C contact

matrix (Raw-hic) from raw Hi-C deep sequencing data obtained

from GM12878, H1-hESC, and HepG2 cells. We then generated

a masked Hi-C matrix (Masked-hic) from the Raw-hic file using

ATAC-seq or histone ChIP-seq data obtained from the same

cell line, resulting in a targeted Hi-C matrix that contains a large

proportion of RCIs that are used to train theMINE-Loop network.

The methodology for producing Masked-hic is described in

‘‘generation of Masked-hic.’’

Since the peaks called from the ATAC-seq and histone ChIP-

seq data can indicate the localization of RCIs, we next generated

a correlation matrix of ATAC-seq and ChIP-seq peaks by calcu-

lating the Pearson correlation coefficients between the peaks of

these datasets. This correlation matrix serves as the first modal

matrix for training the MINE-Loop model.

We then processed the Raw-hicmatrix to generate the second

modal matrix of training the MINE-Loop model. The Raw-hic

matrix was downsampled at a ratio of 1
s3s to build a smoothed

Hi-C contact matrix at the same resolution as the Raw-hic,

where the values of the s3s window were set as the average

values of the s3s window. The essential reason to smooth

Raw-hic is that the exact location of loops cannot be determined.

We think this is beneficial for reducing noise (the noise refers to

the chromatin interaction intensity values near the diagonal
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Figure 1. Overview of the MINE pipeline

(A) Workflow and analytical pipeline of the MINE method.

(B) An overview of the MINE-Loop architecture and workflow for model training.
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region of a Hi-C contact matrix. Maass et al.23 have proved that

the chromatin interaction intensity near the diagonal region was

much lower than that obtained by the Hi-C experiment.). To

reduce the noise near the diagonal, we set s = 10 (a length of

10 kb region) to smooth the area around the diagonal, set s = 5

(the length of a 5 kb region, less than the average length of loops

[5–200 kb]24) to smooth the upper right corner area of the Hi-C

contact matrix (the distal contact values in the Hi-C contact ma-

trix). To extract more features of the Hi-C matrix, these down-

sampled Hi-C matrices were then added by point-to-point, and

the Hi-C matrix was then enhanced using the FAN method25 to

obtain a completed Hi-C matrix (Completed-hic).

Finally, the correlation matrix, Completed-hic, and Masked-

hic are fed into the MINE-Loop network to map functions among

the correlation matrix, Completed-hic, and Masked-hic. Once

the model is trained, it is then applied to generate an enhanced

Hi-C contact matrix (MINE-enhanced-hic) for any cell line using

the Completed-hic and correlation matrix as inputs. To identify

RCIs, MINE-enhanced-hic can then be fed into two available

loop callers (i.e., FitHiC226 and mustache27). By surveying the

input data requirements for different loop callers (Methods

S1H), we found that only MUSTACHE and Fithic2 can identify

loops with contact matrix (or some kind of data format that the

contact matrix can be converted to) as input, while HiCCUPS28

calls loops from .hic format file, cLoops29 call loops require Map-
ped PETs info, HiC-ACT30 calls loops from the output file from

other methods (such as Fit-Hi-C/FitHiC2). Due to the output file

predicted by MINE-Loops being only a contact matrix (n3n

size), we only integrated MUSTACHE and Fithic2 in our MINE-

Loop tool to call loops by transforming the Hi-C contact matrix

(n3n size).

The MINE-Loopmodel can increase the proportion of different

types of RCIs (active or repressive) by training with different

histone modifications using ChIP-seq. For ChIP-seq data of

different active-related histone modifications (i.e., H3K27ac or

H3K4me3), an active MINE-Loop model (i.e., active model) can

obtain a larger proportion of RCIs related to the control of

DNA transcription machinery (i.e., active interactions), while

ChIP-seq data of suppression-related histone modifications

(i.e., H3K27me3 or H3k9me3) can be used to train a repressive

MINE-Loop model (i.e., repressive model) to obtain a larger pro-

portion of transcriptionally repressive chromatin interactions

(i.e., repressive interactions).

Description of the MINE-Density and MINE-Viewer tools

Based on the RCIs identified by the MINE-Loop network, the

ratio of the total number of active or repressive interactions in

a TAD to the entire 3D space physically occupied by the TAD

structure is defined as the SD-RCI. The 3D chromatin structure

can be visualized with target factors (e.g., CTCF, genes,

H3K4me3, and POLR2A) using the MINE-Viewer tool to
Cell Reports Methods 3, 100386, January 23, 2023 3



Table 1. Data used to train the active model or repressive model

Model Epigenome data (input)

Data used to

generate

Masked-hic

Active ATAC-seq, H3K27ac,

H3K4me3 ChIP-seq

cis-regulatory

element file

Active ATAC-seq, H3K4me3

ChIP-seq

cis-regulatory

element file

Active ATAC-seq, H3K27ac,

ChIP-seq

cis-regulatory

element file

Repressive H3K27me3, H3K9me3

ChIP-seq

H3K27me3,

H3k9me3

ChIP-seq
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investigate the density of target factor distribution in the 3D chro-

matin structure. Ultimately, MINE is applied to analyze changes

in the SD-RCI before and after phase separation.

The three tools of the MINE method, including MINE-Loop,

MINE-Density, and MINE-Viewer, enable exploration of the

SD-RCI.

MINE-Loop facilitates detecting a high proportion of
RCIs
MINE-Loop can detect RCIs in high-noise data

We next assessed whether the MINE-Loop analysis could in-

crease the proportion of detectable RCIs comparedwith that ob-

tained by current loop callers from raw Hi-C data using an active

model as an example. We first generated a Completed-hic, cor-

relationmatrix, andMasked-hic of theGM12878 cell line that tar-

geted factors (e.g., H3K4me3 and H3K27ac) specifically

involved in DNA transcription to train and test the active model.

Hi-C data in the GM12878 cell line was downloaded from the

4DNucleome database (https://data.4dnucleome.org)31 to

generate the Completed-hic. The ATAC-seq and H3K27ac,

H3K4me3 histone ChIP-seq data from the GM12878 cell line

were downloaded from the ENCODE database and subse-

quently used to generate the correlation matrix. The annotation

file of candidate cis-regulatory elements (CREs) in GM12878

cell line was downloaded from ENCODE to generate the

Masked-hic.

Then, matrices generated for human chromosomes 1–17 in

the GM12878 cell line dataset were used for training the active

model, while the matrices generated for human chromosomes

18–22 in the GM12878 dataset were used to test the perfor-

mance of the active model with the enhanced Hi-C data in the

MINE-enhanced-hic output file. As Figure S1A shows, with the

number of epochs in training, the accuracy of the training set

and validation set increases. When the epoch equals about 20,

the accuracy reaches saturation. To avoid overfitting, we choose

to stop training when the epoch is about 20.

The MINE-Loop network includes MINE_Conv, maxPool_2D,

and ConvTranspose_2D. To verify the influence of these modules

on validation loss, as shown in FigureS3,wechanged the network

following three operations: (1) delete a layer of the network

(‘‘Remove one layer’’), including ‘‘concat,’’ ‘‘ConvTranspose_2D,’’

and ‘‘MINE_Conv’’; (2) remove half of the submodules of

MINE_Conv module (‘‘remove half of MINE_Conv’’); (3) reduce
4 Cell Reports Methods 3, 100386, January 23, 2023
the number of channels by half (‘‘half channel for short’’). Fig-

ure S1B shows that the verification loss value of MINE-Loop is

lower than that of the other three networks, and ‘‘half channel for

short’’ has the worst effect, followed by ‘‘Remove one layer’’ and

‘‘remove half of MINE_Conv.’’ We can conclude that the number

of channels has the greatest impact on the model effect, followed

by the upsampling layer, and the number of convolutional layers.

To evaluate the effect of FAN, we only use the 1/25 downsam-

pling matrix to train MINE-Loop work and predict using 421.77

million, 601.74 million, and 4.01 billion Hi-C datasets (Fig-

ure S1C). The results show that the effect of a model trained us-

ing only the 1/25 downsampling matrix is much worse than using

both the 1/25 and 1/100 downsampling matrices. Rao et al.32

have shown that Hi-C contact matrices at different sequencing

depth or resolutions can represent different features, such as

A/B compartment, TAD, and loops. Forcato et al.33 also showed

that the reproducibility among replicates of the same dataset

was low at all resolutions. Hence, we think that a Hi-C contact

matrix with different sampling ratios can provide the model

with different features. For example, in this experiment, 1/100

downsampling can compensate for some local information of

the 1/25 downsampling matrix. When we only use a 1/25 down-

sampling matrix to train the MINE-Loop network, more features

will be missed. When we use both the 1/25 and 1/100 downsam-

plingmatrix to train themodel, themodel will not rely on loop fea-

tures of a certain resolution. A model trained in this way can help

us find both proximal and distal loops. The validation results of

MINE-Loop also evaluate the effect of FAN in this work.

The general applicability of the MINE-Loop model

To test the active model, FitHiC226 andmustache27 were used to

call intrachromosomal loops within a genomic distance of 2–100

kb in the MINE-enhanced-hic and Raw-hic matrices of human

chromosomes 18–23 in GM12878 cells. The results showed a

12.5% and 9.7% overlap between loops called from MINE-

enhanced-hic and Raw-hic data by FitHiC2 and mustache

(Figure S2). However, the loops called from the MINE-

enhanced-hic had 7–15 times more TFs related to the control

of DNA transcription machinery (e.g., CTCF, RAD21, SMC3,

and POLR2A) anchored at the same corresponding loops than

that in raw Hi-C data (Figure S2A).

The same comparison was conducted for called loops ranging

from 2 to 300 kb and 2 to 500 kb, which showed a greater

number of anchored factors in the enhanced Hi-C data (Fig-

ure S2A). Taking the CTCF anchoring number as an example,

‘‘2-300kb’’ obtained more 2373 than ‘‘2-100kb,’’ ‘‘2-500kb’’ ob-

tained more 1732 than ‘‘2-300kb.’’ These results suggested that

MINE_loop analysis could also reveal long-range RCIs.

Having generated enhanced, integrative datasets related to

RCIs as shown in Table 1 by training an active model, we then

explored the effects of using different histone ChIP-seq data

combinations to train active models. To this end, three combina-

tions (combination (i): ATAC-seq, H3K27ac ChIP-seq, H3K4me3

ChIP-seq. Combination (ii): ATAC-seq, H3K27ac ChIP-seq.

Combination (iii): ATAC-seq, H3K4me3 ChIP-seq) were used

as inputs for active model training (Figures 2A–2D). Examination

of anchor number for the CTCF, RAD21, SMC3, and POLR2A

TFs in [2, 100 kb] loops (Figures 2A–2D) indicated that combina-

tion (ii) revealed fewer TF anchor points than other combinations

https://data.4dnucleome.org
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Figure 2. MINE-Loop can detect RCIs in high-noise data

The active and repressive models were trained in the GM12878 cell line using different epigenomic data combinations as inputs.

(A–D) Number of CTCF, RAD21, SMC3, and POLR2A transcription factor anchors in 2–100 kb loops called from active models trained with different epigenomic

data combinations.

(E and F) Comparison of POLR2A and EZH2 anchors in loops called from active and repressive models.
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in active interactions. This suggested that the more active-

related histone ChIP-seq data used to train active models, the

more active TF anchor chromatin interactions will be detectable.

To determine the MINE-Loop model’s general applicability,

we applied the active model trained using the combination

(i) dataset in GM12878 cell line to predict using the combination

(i, ii, iii) datasets in the IMR90 cell line as input data. The results

show that the three combinations all perform better than raw

Hi-C data in the number of anchoring TFs (Figure S3A), suggest-

ing that MINE-Loop model does not require all epigenome data

used in the training process. Besides the IMR90 cell line, the

data from K562, H1-hESC, and HepG2 cell lines is also conduct-

ed using the active model trained in the GM12878 cell line. The

results show that, within the genomic distance of 2–100, loops

called from MINE-enhanced-hic of IMR90 (Figure S9) and K562

(Figure S3B) cell lines both can anchor more TFs than from

Raw-hic, but less than from GM12878 (Figures 2A–2D), H1-

hESC (Figure S3C), and HepG2 (Figure S3D) cell lines. The re-

sults suggest that the sequencing depth of the raw Hi-C data

has an impact on the model’s effect, where the sequencing

depth of K562 and IMR90 cell lines (�1 billion) is much lower

than that of GM12878 (�4.01 billion), H1-hESC (�3.22 billion),
and HepG2 (2.02 billion) cell lines. To further validate the influ-

ence of sequencing depth of Hi-C data on the prediction effect,

we downloaded Hi-C data from 4dnucleome.org under acces-

sion numbers 4DNFI9ZWZ5BS (421.77 million), 4DNFI7J8BQ4P

(601.74 million), and 4DNFI1UEG1HD (4.01 billion), and

enhanced these Hi-C data using the active model trained using

the combination (i) dataset in the GM12878 cell line. Figure S4

shows that the deeper the sequencing depth is, the better the

prediction effect of the model is.

Following the identification of loops containing transcriptional

machinery genes that are actively transcribed, we then used

a repressive MINE-Loop model (repressive model) trained

with suppression-related histone marks (i.e., H3K27me3 and

H3K9me3) target ChIP-seq data downloaded from ENCODE34

(accession numbers ENCSR000DRX and ENCSR000AOX) to

assess whether MINE-Loop could improve detection of tran-

scriptionally repressive chromatin interactions. Comparison of

POLR2A and EZH2 (a transcript factor related to long-term tran-

scriptional inhibition) factors between active and repressive

models trained with GM12878 cell line data showed that

2–100 kb loops in the repressive model obtained more EZH2 an-

chors than those of POLR2A (Figures 2E and 2F), indicating that
Cell Reports Methods 3, 100386, January 23, 2023 5
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active models successfully identified more transcriptional acti-

vation-related interactions while the repressive model identified

more transcriptional inhibition-related interactions. In agreement

with our experimental evaluation of the active model, the repres-

sive model trained with GM12878 cell line data was also used for

prediction in other cell lines. In the K562 (Figure S3E) and HepG2

(Figure S3F) cell lines, loops called from MINE-enhanced-hic re-

vealed a greater number of EZH2 anchors than that obtained

from Raw-hic. Collectively, these data demonstrated that the

MINE-Loop tool can facilitate the detection of a high proportion

of active and repressive RCIs.

MINE-Loop facilitates the detection of functional

chromatin loops

We next sought to verify whether the loops with anchored

TFs called from the MINE-enhanced-hic overlapped with the

ChIA-PET region. We found that 42.43%, 21.64% of the CTCF

and POLR2A ChIA-PET region, overlapped with the active loops

anchored CTCF and POLR2A in the HepG2 cell line, suggesting

that loops called from MINE-enhanced-hic include many tran-

scription factor binding interactions (Figure S5A). The Venn

graph of Raw-hic, MINE-enhanced-hic, and POLR2A ChIA-

PET in the GM12878 cell line showed that MINE-enhanced-hic

could overlap with more POLR2A ChIA-PET region (about

9,606) than Raw-hic (Figure 3A). The number of anchoring TSS

sites around the active loops (Figure 3B) further proved that

MINE-enhanced-hic could detect more functional chromatin

loops. By doing disease ontology (Do) enrichment analysis of

the genes around these �405 loops detected by Raw-hic but

not by MINE-enhanced-hic (Figure S5C), we found these genes

are enriched in terms related to ‘‘adenocarcinoma,’’ ‘‘myeloma,’’

where ‘‘adenocarcinoma,’’ ‘‘myeloma’’ are more likely to be

associated with cancer cells (e.g., Rpmi-8226 and U266)

than with a normal B cell line (GM12878). Therefore, MINE-

enhanced-hic cannot detect these 405 loops.

To validate whether the loops called from MINE-enhanced-

hic could anchor more cell-specific genes than from Raw-hic.

We next performed Do enrichment analysis to investigate the

predicted functions of genes close to the anchor of active loops

that were differentially detected between Raw-hic and MINE-

enhanced-hic datasets generated with GM12878 or HepG2

cell lines. The differential genes enriched in active loops called

from MINE-enhanced-hic GM12878 data were involved in ‘‘im-

mune-related’’ processes (Figures 3C and 3D). In the HepG2

cell line, the differential genes from MINE-enhanced-hic were

enriched in terms related to liver disease, which was consistent

with the characteristics of HepG2 cells, while differential genes

from Raw-hic were enriched in terms related to sensory

perception of smell (Figure S5B). This shows that the differen-

tial loops of MINE-enhanced-hic compared with Raw-hic are

enriched for genes functionally related to characteristics of

that cell line.
Figure 3. MINE-Loop facilitates the detection of functional chromatin

The active model was trained by GM12878 cell line with data of combination (i).

(A) The Venn graph of loops called from Raw-hic, MINE-enhanced-hic, and POL

(B) Comparison of anchoring transcription start site (TSS) number between MINE

(C and D) The differential gene Do (disease) enrichment of Raw-hic and MINE-en

(E) Visualization of loops, H3K27ac, H3K27me3, H3K4me3, and POLR2A target
To further investigate the enrichment pattern in a locus that

loops called from Raw-hic and MINE-enhanced-hic are quite

different, we chose the chr1: 110500000–112000000 region in

chromosome 1. Upon close inspection of the region (Figure 3E),

we found that the differential loops of MINE-enhanced-hic were

enriched with H3K27ac, H3K27me3, H3K9me3, and POLR2A

signals. These results showed that MINE-Loop could enhance

the detection of functional RCIs.

Spatial density of RCIs and gene transcription
To investigate how the active and repressive models affect the

SD-RCI, we refer to the definition of the SDOC metric20 used

to quantitatively measure the intra-TAD chromatin state and

structure, and propose the SD-RCI (Figure 4A). The SD-RCI is

defined as the ratio of the total number of active or repressive in-

teractions in a TAD to the entire 3D space taken up by the phys-

ical structure of the TAD. (The calculation steps of SD-RCI are

described in ‘‘spatial density of regulatory chromatin interac-

tions.’’) Based on the definition of SD-RCI, the MINE-density

tool is developed to calculate the SD-RCI.

To explore the relationship between the SD-RCI and the status

of gene transcription in the HepG2 cell line, we first generated

active and repressive loops within a genomic distance of 2–

100 kb (Figure 4) and 2–300 kb (Figures S6D–S6F) using the

active model and repress model of MINE-Loop. Based on the

active and repressive loops, we calculated SD-RCI with a unit

of TAD and divided the genome structure into four levels (i.e., ul-

tra_high, high, middle, and low) based on the value of d in the

Gaussian distribution of SD-RCI (Figures 4B and 4E). To further

explore the relationship between the number of RCIs and the vol-

ume of chromatin structure, we analyzed the relationship be-

tween the number of active loops or repressive loops in a TAD

and an estimation of the volume of the TAD (i.e., an estimation

of the physical space the TADs are occupying), respectively

(Figures 4C and 4F). Details on our calculations of TAD volume

are described in ‘‘calculation of TAD volume’’ in STAR Methods.

The results show that a structure with higher SD-RCI (i.e., high,

middle level) can cover more RCIs with a smaller volume of

TADs, consistent with the definition of SD-RCI.

To investigate the gene expression changes within the TADs,

we calculated the gene expression value log (RPKM) for different

levels of TADs from the active model, where the gene expression

data were downloaded from NCBI under accession number

GSE184697. The result shows that the gene expression value

is positively correlated with the SD-RCI level (Figure 4D),

whereas the log (RPKM) calculated from the repress model

shows an opposite change (Figure 4G). The results further

proved that the repress model could detect more chromatin in-

teractions related to inhibition of transcription, and the active

model can detect more chromatin interactions related to the pro-

motion of transcription. We also calculate the difference (p value)
loops

R2A ChIA-PET data.

-enhanced-hic and Raw-hic.

hanced-hic.

ChIP-seq tracks.
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between the RPKM distribution of genes corresponding to

different SD-RCI levels, where the p values were calculated by

the two-sided Mann-Whitney-Wilcoxon test with Bonferroni

correction. The result shows a large difference (p <= 1e�5) be-

tween the low SD-RCI level and other SD-RCI levels in the active

model. This means that there is a large differential gene expres-

sion when the SD-RCI levels are from low to middle. To explore

the regulatory element distribution in different SD-RCI levels, we

downloaded the super-enhancer (SE) and typical-enhancer (TE)

datasets in the HepG2 cell line from the Sedb database (http://

www.licpathway.net/sedb/) and statistically analyzed the pro-

portion of SE and TE number and density (Figure S7). The results

show that the TE accounts for a higher proportion at the low SD-

RCI level, the SE accounts for a higher proportion at the middle

SD-RCI level. Then, we analyzed the gene expression ([FPKM]

fragments per kilobase of exon model per million mapped frag-

ments) changes with the culture time of HepG2 cells, where

the genes anchored at SE and TE at low and middle SD-RCI.

The gene expression data of HepG2 cultured in 0, 1, 3, and

5 days were downloaded from NCBI with accession number

GSE128763. Figure S7C shows that the average FPKM of SE

at middle SD-RCI level is much higher than SE in low SD-RCI

level. This means that SE can work at the middle SD-RCI level

in the process of cell culture. Therefore, an analysis of the chro-

matin regions at middle SD-RCI level can effectively help re-

searchers to explore the relevant genes or regulatory elements

that play important roles in cell differentiation.

To explore the reason for the differences in gene expression

between the active model and the repressive model at different

SD-RCI levels, we developed aMINE-viewer tool to do 3D struc-

ture visualization with the gene expression for the four levels of

TADs using the Pastis-PM235 algorithm (Figures 4H and 4I).

The results show that the spatial density of TAD in the high level

is higher than in middle and low levels. Then, we visualized the

loops, CTCF, H3K27ac, H3K27me3, and H3K9me3 histone

ChIP-seq tracks in the active and repress high-level TADs. We

found that the active high-level TAD regions are enriched with

CTCF and H3K27ac, the repressive high-level TAD regions are

enriched with H3K9me3, which represses the transcriptional

activity of genes (Figure 4J). The visualization of the other three

SD-RCI levels in active or repressive regions can be seen in

Figures S8 and S9. We quantified the enrichments by calculating

the average signal p value (where the p value is extracted from

the bigwig file of CTCF, POLR2A, or EZH2 target ChIP-seq) at

different SD-RCI levels. Tables S1 and S2 show that, for the

active model, CTCF and POLR2A in a higher SD-RCI level ob-

tained a larger average p value than in a low SD-RCI level for
Figure 4. SD-RCI is correlated with gene expression

(A) Schematic diagram of SD-RCI calculation.

(B and E) The distribution of the number of active loops changes with the SD-RC

(C and F) The dot plot of the number of RCIs and volume of TADs.

(D and G) The boxplot of RPKM and SD-RCI degree, where p values were calcula

SD-RCI is divided into 4� according to the value of d in the Gaussian distribution

(H and I) The 3D genome TAD structure visualization with the gene expression str

region corresponds to the active (repress) high level in (B) and (C).

(J) Visualization of loops, CTCF, and histone mark ChIP-seq tracks. Loops are id

(K) Four types of hubs are defined by the active or repressive SD-RCI.
the active model, and EZH2 in a higher SD-RCI level obtained

a larger average p value than in a low SD-RCI level for the repres-

sive model. The above results show that RCIs called from an

active model or repressive model are enriched with active-

related TFs or repressive-related TFs.

Based on the active or repressive loops identified by active

model or repressive model, the genome regions can be

spatially divided into active and repressive hubs, with active

hubs in regions enriched with active TFs (e.g., CTCF,

POLR2A, and SMC3) and repressive hubs in regions enriched

with transcriptional repressors (e.g., EZH2). Using SD-RCI

values, active and repressive hubs can be further defined into

developed hubs, which have high SD-RCI (middle, high, and ul-

tra-high level) or developing hubs, which have lower SD-RCI

(SD-RCI levels low) (Figure 4K). By observing the TAD volume

and loop number distribution of the different hubs (Figure S33),

we find that the developing hubs own high TAD volume and low

loop number. This result is consistent with the definition of

these hubs. Hubs form in chromatin regions through active or

repressive loops with TFs. Active or repressive hubs form

where corresponding regulatory elements anchor to ensure

the transcription or repression of genes required or not, respec-

tively, for organismal function. When the proportion of RCIs in

the chromatin space increases (i.e., forms a developed hub),

then there is a higher frequency of anchoring by the corre-

sponding regulatory element at a gene requiring its regulation.

When the proportion of regulatory elements in the chromatin

space is low (i.e., in developing hubs), the frequency of the

required regulatory interaction is lower. So, genes in these

developing hubs are upregulated more slowly, or require addi-

tional recruitment factors, while repression from an active state

is also slower. This conclusion is consistent with the results that

the average gene expression is higher in a higher SD-RCI level

in the active model, and the average gene expression is lower

in a higher SD-RCI level in the repressive model, as shown in

Figures 4D and 4G.

In conclusion, the MINE-density and MINE-Viewer tools pro-

vide us with a view of the 3D visualization of spatial density of

RCIs, and allow us to explore the active and repressive genome

by calculating the SD-RCI of active and repressive interactions,

respectively.

Spatial RCI density reflects changes in chromosome
structure
MINE was next applied to data obtained from an LLPS experi-

ment36 reported in 2021 to verify whether MINE could identify

the effects of 1,6-hexanediol-mediated LLPS disruption on
I value calculated by the SD-RCI method.

ted by two-sided Mann-Whitney-Wilcoxon test with Bonferroni correction, the

of (A).

ength in four levels from the active and repress model. The 3D structure of this

entified from MINE-enhanced-hic by using MUSTACHE.
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Figure 5. SD-RCI is correlated with chromosome structure before and after the effects of 1,6-hexanediol-mediated LLPS disruption

(A and B) The distribution of the volume of TADs changes with the SD-RCI value before and after liquid-liquid phase separation.

(C) The boxplot of the volume of TADs and the range of SD-RCI.
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RCIs (Figures 5 and 6). For this analysis, Hi-C and epigenomic

data obtained from the HeLa cell line treated (Hex group) or

not (control group) with 1,6-hexanediol were downloaded and

processed according to the MINE workflow described above.

First, we examined the relationship between these TAD vol-

umes and SD-RCI values calculated from the active and repres-

sive models before and after phase separation, and fitted the

corresponding power function curve. We found that the active

volume was larger than the repressive volume under the same

SD-RCI condition when the SD-RCI of the HeLa cell line was

<0.38 (i.e., the intersection value in Figure 5A), whereas the

active volume was smaller than the repressive volume when

the SD-RCI was >0.38 (Figure 5A). By comparing the volume of

TADs at active and repressive states under the same SD-RCI

condition, we could determine that, if the volume of active

TADs is larger than repressive TADswith the sameSD-RCI value,

then the number of active loops is less than the repressive loops

(Figure S33). As we know, active regulatory interactions promote

higher gene expression and repressive regulatory interactions

repress gene expression. Therefore, when SD-RCI is lower

than the intersection value (0.38) in Figure 5A, the active or

repressive TADs both tend to have low gene expression. When
10 Cell Reports Methods 3, 100386, January 23, 2023
SD-RCI is higher than the intersection value (0.38), the active

or repressive TADs both tend to have high gene expression.

Enhanced Hi-C data revealed that the TAD volume was larger

after drug treatment than before treatment under the same

SD-RCI conditions (Figures 5B and 5C). TADs were then catego-

rized into four types ((1) SD-RCI <0.6 and control volume < Hex

volume, (2) SD-RCI R 0.6 and control volume > Hex volume,

(3) SD-RCI <0.6 and control volume > Hex volume, (4) SD-RCI

R 0.6 and control volume < Hex volume, where 0.6 was the

SD-RCI inflection point when count became positive calculated

from the count-SD-RCI curve, as shown in Figure S11A) accord-

ing to the change in TAD volume (whether increased or

decreased) and the size of SD-RCI before and after drug

treatment.

To further determine whether changes in volume from pre-

to post-phase separation were related to the intensity of

gene transcription, we calculated the gene counts ratio (i.e.,

count=jVbefore � Vafter j, where count is gene count, Vbefore is the

volume before LLPS, Vafter is the volume after LLPS) for the four

types of changes in TAD volume. The results showed that TADs

with high gene counts ratio were more likely to increase in vol-

ume, while TADs with low gene counts would likely decrease in
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volume (Figure 5D). Previous studies37–39 have established that

regionswith a high density of genes aremostly in open chromatin

regions (A compartment), while regionswith low gene density are

generally in closed chromatin regions (B compartment). We

therefore concluded that, in the A compartment, the volume of

TADs was more likely to increase following LLPS, while the

volume of TADs was likely to decrease in the B compartment

after LLPS. This conclusion is consistent with the established

findings.36,40

To explore the reason for the volume change after LLPS, we

calculated the CTCF count distribution of the four types of

TADs and found TADs with high CTCF counts were more likely

to increase in volume (Figure 6A). The four types of TADs were

then visualized as three-dimensional structures marked with

CTCF anchor intensity before and after LLPS (CTCF intensity

is shown in Figures 6B and S11B). Set the type of ‘‘SD-

RCI<0.6 & control Volume � Hex Volume’’ as an example,

the visualization of 3D structure and loops showed the control

group obtained more loops than the Hex group (Figure 6C). The

visualization of other three type can be found in Figures S12A–

S12C. This means that the 1,6-hexanediol (Hex) breaks or

forms some loops, which makes the volume of TAD increase

or decrease. In the discussion, we use the SBS (Figure 6D)15,41

model to describe the reason for an increase in chromosome

volume.
DISCUSSION

In consideration of these RCIs identified throughMINE-Loop, SD-

RCI can serve as a metric for quantitative exploration of the rela-

tionship between active or repressive chromatin interactions and

the gene transcriptional status for a given TAD region. In this

work, we define four levels of SD-RCI (ultra_high, high, middle,

and low) toassess the relationshipbetweenSD-RCIandgenetran-

scription. By comparing the expression strength of genes at

different SD-RCI levels in the HepG2 cell line, we found that a

higherSD-RCI in theactivemodel ismoreconducive for gene tran-

scription, and conversely in repressive models, higher SD-RCI is

associated with greater transcriptional inhibition.

In analyses investigating the relationship between SD-RCI and

chromosomal structure, SD-RCI values were used to compare

HeLa cell volumes before and after LLPS (i.e., the HeLa cell line

treated or not with 1,6-hexanediol). We found that the overall vol-

ume population cells increased following drug treatment. We pro-

pose that the SBS15,41 model can explain this change in volume

through the formation of loops and domains resulting from chro-

matin contacts between distant loci mediated by molecular fac-

tors, such as TFs. Before treating the HeLa cell with 1,6-hexane-

diol, the density of CTCF in 3D structure is higher in the control

group (Figures 6A and 6C), a stable chromatin loop is formed

through entropic force42 exerted by other small molecular factors
Cell Reports Methods 3, 100386, January 23, 2023 11
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in the nucleus localized in complexes attached to the chromatin.

After treating the HeLa cell with 1,6-hexanediol, the density of

CTCF in the 3Dstructure is lower (Figures 6A and 6C), the complex

isno longerattached to the samechromatin location, and the small

molecular factors in the nucleus exert entropic force on each

complex individually, resulting indisruptionof thepreviouslystable

chromatin loops, loosening the chromatin, and resulting in

increased volume. Previous study1 has shown that TAD structures

and theA/B compartments are primarily formedbychromatin loop

extrusion, ultimately resulting in a higher overall cell volume after

treatment with 1,6-hexanediol.

In summary, we established a deep-learning-based framework

by integrating multiple omics datasets (i.e., ATAC-seq and ChIP-

seq) to reduce noise and increase the proportion of detectable

RCIs. Comparedwith themethods of simple overlapping between

histone modification and raw loops manually, MINE-Loop can

detect a highproportionofRCIs by just inputtinga few types of his-

tonemodificationChIP-seqandHi-Ccontactmatrixdata.Applying

theMINE pipeline to explore the relationship between SD-RCI and

gene transcriptional status led to the discovery of four levels of

spatial density in chromatin interactions that reflect the relationship

between SD-RCI and gene regulation. We then applied MINE to

data obtained from a LLPS experiment (i.e., treating the HeLa cell

with 1,6-hexanediol), which showed that the 3D conformation of

active and repressive models are consistent with the results36

that the 1,6-hexanediol treatment caused the enlargement of

nucleosome clutches and theirmore uniform distribution in the nu-

clear space. Finally, the mechanism underlying structural changes

in TADs before and after LLPS was explained by SBS model.15,41

Limitations of the study
(1) This paper lacks enough physical characteristics of

the four types of chromatin hubs and their epigenetic

makeup; although examples of analyzing the changes of

RNA-seq expression during cell differentiation, and chro-

mosome formation change. There is still no proper char-

acterization of those regions together with a mechanistic

explanation of their formation.

(2) The Hi-C datasets with more than 400 million filtered

reads as the inputs of MINE-Loop model are suggested

to get a better prediction performance.

(3) The MINE toolkit is limited for two loop callers (FitHiC2

andmustache). In the future, wemay improve it to accom-

modate more loop callers.
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Deposited data

GM12878, Hi-C https://data.4dnucleome.org/

files-processed/4DNFI1UEG1HD/

4dnucleome: 4DNFI1UEG1HD

GM12878,ATAC-seq https://www.encodeproject.org/

experiments/ENCSR637XSC/

ENCODE: ENCSR637XSC

GM12878, H3K27ac ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000AKC/

ENCODE: ENCSR000AKC

GM12878, H3K4me3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR057BWO/

ENCODE: ENCSR057BWO

GM12878, Cis-Regulatory Elements https://www.encodeproject.org/

annotations/ENCSR820WFY/

ENCODE: ENCSR820WFY

GM12878, H3K27me3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000DRX/

ENCODE: ENCSR000DRX

GM12878, H3K9me3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000AOX/

ENCODE: ENCSR000AOX

GM12878,CTCF ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000DKV/

ENCODE: ENCSR000DKV

GM12878,RAD21 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000BMY/

ENCODE: ENCSR000BMY

GM12878,SMC3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000DZP/

ENCODE: ENCSR000DZP

GM12878,POLR2A ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000EAD/

ENCODE: ENCSR000EAD

GM12878,EZH2 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000ARD/

ENCODE: ENCSR000ARD

GM12878,Annotation file ftp://ftp.ensembl.org/pub/

release-104/gff3/homo_sapiens/

Homo_sapiens.GRCh38.104.chr.gff3.gz

Ensembl: Homo_sapiens.

GRCh38.104.chr.gff3.gz

H1-hESC, Hi-C https://data.4dnucleome.org/

files-processed/4DNFI2TK7L2F/

4dnucleome: 4DNFI2TK7L2F

H1-hESC, ATAC-seq https://data.4dnucleome.org/

files-processed/4DNFICPNO4M5

4dnucleome: 4DNFICPNO4M5

H1-hESC, H3K27ac ChIP-seq https://www.encodeproject.org/

experiments/ENCSR880SUY/

ENCODE: ENCSR880SUY

H1-hESC, H3K4me3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR443YAS/

ENCODE: ENCSR443YAS

H1-hESC, Cis-Regulatory Elements https://www.encodeproject.org/

annotations/ENCSR597SZL/

ENCODE: ENCSR597SZL

H1-hESC, CTCF ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000BNH/

ENCODE: ENCSR000BNH

H1-hESC, RAD21 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000BLD/

ENCODE: ENCSR000BLD

H1-hESC, POLR2A ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000BHN/

ENCODE: ENCSR000BHN

K562,Hi-C https://data.4dnucleome.org/

files-processed/4DNFITUOMFUQ/

4dnucleome: 4DNFITUOMFUQ

K562,ATAC-seq https://www.encodeproject.org/

experiments/ENCSR483RKN/

ENCODE: ENCSR483RKN
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K562,H3K27ac ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000AKP/

ENCODE: ENCSR000AKP

K562,H3K4me3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000AKU/

ENCODE: ENCSR000AKU

K562,H3K9me3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000APE/

ENCODE: ENCSR000APE

K562,H3K27me3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000EWB/

ENCODE: ENCSR000EWB

K562,Cis-Regulatory Elements https://www.encodeproject.org/

annotations/ENCSR301FDP/

ENCODE: ENCSR301FDP

K562,CTCF ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000DMA/

ENCODE: ENCSR000DMA

K562,RAD21 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000BKV/

ENCODE: ENCSR000BKV

K562,SMC3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000EGW/

ENCODE: ENCSR000EGW

K562,POLR2A ChIP-seq https://www.encodeproject.org/

experiments/ENCSR388QZF/

ENCODE: ENCSR388QZF

K562,EZH2 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000AQE/

ENCODE: ENCSR000AQE

IMR90,Hi-C https://data.4dnucleome.org/

files-processed/4DNFIH7TH4MF/

4dnucleome: 4DNFIH7TH4MF

IMR90,ATAC-seq https://www.encodeproject.org/

experiments/ENCSR200OML/

ENCODE: ENCSR200OML

IMR90,H3K27ac ChIP-seq https://www.encodeproject.org/

experiments/ENCSR002YRE/

ENCODE: ENCSR002YRE

IMR90,H3K4me3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR087PFU/

ENCODE: ENCSR087PFU

IMR90,H3K9me3 ChIP-seq https://www.encodeprojct.org/

experiments/ENCSR055ZZY/

ENCODE: ENCSR055ZZY

IMR90,Cis-Regulatory Elements https://www.encodeproject.org/

annotations/ENCSR599FOY/

ENCODE: ENCSR599FOY

IMR90,CTCF ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000EFI/

ENCODE: ENCSR000EFI

IMR90,RAD21 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000EFJ/

ENCODE: ENCSR000EFJ

IMR90,SMC3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000HPG/

ENCODE: ENCSR000HPG

IMR90,POLR2A ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000EFK/

ENCODE: ENCSR000EFK

HepG2,Hi-C https://data.4dnucleome.org/

experiment-set-replicates/

4DNESC2DEQIJ/

4dnucleome: 4DNESC2DEQIJ

HepG2,ATAC-seq https://www.encodeproject.org/

experiments/ENCSR042AWH/

ENCODE: ENCSR042AWH

HepG2,H3K27ac ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000AMO/

ENCODE: ENCSR000AMO

HepG2,H3K4me3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR575RRX/

ENCODE: ENCSR575RRX

HepG2,H3K9me3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000ATD/

ENCODE: ENCSR000ATD

HepG2,H3K27me3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000AOL/

ENCODE: ENCSR000AOL
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HepG2,CTCF ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000AMA

ENCODE: ENCSR000AMA

HepG2,RAD21 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000EEG/

ENCODE: ENCSR000EEG

HepG2,SMC3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000EDW/

ENCODE: ENCSR000EDW

HepG2,POLR2A ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000EEM/

ENCODE: ENCSR000EEM

HepG2,EZH2 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000ARI/

ENCODE: ENCSR000ARI

HepG2,CEBPB ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000BQI/

ENCODE: ENCSR000BQI

Hela,Hi-C https://data.4dnucleome.org/

experiment-set-replicates/

4DNESCMX7L58/

4dnucleome: 4DNESCMX7L58

Hela,Hi-C https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE138543

NCBI: GSE138543

Hela,H3K27ac ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000AOC/

ENCODE: ENCSR000AOC

Hela,H3K4me3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000AOF/

ENCODE: ENCSR000AOF

Hela,H3K27me3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000APB/

ENCODE: ENCSR000APB

Hela,H3K9me3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000AQO/

ENCODE: ENCSR000AQO

Hela, CTCF ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000AOA/

ENCODE: ENCSR000AOA

Hela, CTCF ChIP-seq (Hex5) https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE138543

NCBI: GSE138543

Hela, POLR2A ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000BGO/

ENCODE: ENCSR000BGO

Hela,RAD21 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000EDE/

ENCODE: ENCSR000EDE

Hela, SMC3 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000ECS/

ENCODE: ENCSR000ECS

Hela, EZH2 ChIP-seq https://www.encodeproject.org/

experiments/ENCSR000ATC/

ENCODE: ENCSR000ATC

Prediction of model trained using

Hi-C, ATAC-seq and H3K4me3

ChIP-seq in GM12878 cell line

http://mged.nmdms.ustb.edu.cn/

storage/data/28463526

NMDMS: https://doi.org/10.12110/

mater10.121.NKRDP.20221209.ds.

63930883e571e2448aaed532

Prediction of model trained using

Hi-C, ATAc-seq and H3K27ac

ChIP-seq in GM12878 cell line

http://mged.nmdms.ustb.edu.cn/

storage/data/28463525

NMDMS: https://doi.org/10.12110

/mater10.121.NKRDP.20221209.ds.

63930883e571e2448aaed532

Prediction of model trained using

Hi-C, ATAC-seq H3K4me3 and

H3K27ac ChIP-seq in GM12878 cell line

http://mged.nmdms.ustb.edu.cn/

storage/data/28463524

NMDMS: https://doi.org/10.12110/

mater10.121.NKRDP.20221209.ds.

63930883e571e2448aaed532

Prediction of model trained using

Hi-C, H3K9me3 and H3K27me3

ChIP-seq in GM12878 cell line

http://mged.nmdms.ustb.edu.cn/

storage/data/28463523

NMDMS: https://doi.org/10.12110/

mater10.121.NKRDP.20221209.ds.

63930883e571e2448aaed532

Software and algorithms

fithic2 https://github.com/ay-lab/fithic github: fithic

mustache https://github.com/ay-lab/mustache github: mustache
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Yang Chen

(yc@ibms.pumc.edu.cn).

Materials availability
This study did not generate new unique reagents.

Data and code availability
This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key resources table.

The full processed data (ie, the model predictions when trained on different datasets) has been deposited at a general use repository

NMDMS (http://nmdms.ustb.edu.cn/),43 and the accession number of datasets is https://doi.org/10.12110/mater10.121.NKRDP.

20221209.ds.63930883e571e2448aaed532. In addition, this data will be shared directly by the lead contact upon request.

The analysis code is available in the GitHub repository (https://github.com/MICL-biolab/MINE). The pipeline of using MINE toolkit

is provided in Methods S1I–S1N).

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.

METHOD DETAILS

Data description
The description of Hi-C data. Hi-C data for six human cell lines (GM12878, IMR90, K562, H1-hESC, HepG2, and Hela) are down-

loaded from https://data.4dnucleome.org/ 31 under accession number 4DNFI1UEG1HD, 4DNFIH7TH4MF, 4DNFITUOMFUQ,32

4DNFI2TK7L2F,44 4DNFICSTCJQZ, and 4DNESCMX7L, respectively.

The description of epigenome data that are used for training. For the active model, ATAC-seq data and ChIP-seq data of H3K27ac

and H3K4me3 mainly target transcription-related factors are selected, for the repressive model, ChIP-seq data of H3K9me3 and

H3K27me3 that are associated with gene repression are selected.

To verify that the MINE-Loop method can help identify more regulatory chromatin interactions, the CTCF, RAD21, SMC3, POLR2A

ChIP-seq data are selected to verify the gene transcription-related interaction, and POLR2A, EZH2 ChIP-seq data are selected to

verify the gene repression-related interactions.

To verify whether the loops called from the MINE-enhanced-hic can overlap the loops called from ChIA-PET data, CTCF and

POLR2A ChIA-PET data in HepG2 cell line were obtained from ENCODE45 under accession number ENCSR411IVB and

ENCSR857MYZ, respectively.

Down sampling Hi-C data
Downsampling Hi-C matrix were simulated by downsampling the VC-normalized Hi-C matrix obtain from.hic format file using juicer-

box46 (In order to ensure that the contact matrix of all chromosome can be extracted from the hic format file (hic is a popular used

format), we choose VC-normalization method. Because KR-normalization method may not support for some chromosomes at 1kb

resolution due to high sparsity (Knight and Ruiz, 2013), ICE is provided by hiclib with the input format of hdf5, hm, bychr (HDF5), or is

provided by HiC-Pro the input format of SAM, validpair, but is not supporting for hic format file. In the future, we will consider train the

KR-normalized and ICE-normalized contact matrix provided by other data format. But, up to now, in order to ensure that most of the

obtained HI-C data can be used for mine-loop prediction, we only train MINE-Loopmodel using VC-normalized Contact matrix.). The

downsampling strategy is described as Methods S1C: downsampling ratio = 1
s3s is defined, then, values of the s3s window were all

set as the average value of the s3s window.
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Complete downsampling Hi-C matrices
To obtainmoreHi-Cmatrix features, we first synthesize these downsampling Hi-Cmatrices by point-to-point addition, and then com-

plete the Hi-Cmatrix after addition through the FANmethod,25 amatrix completion algorithm suited for the sparse inputmatrix whose

99%pixels are randomlymissing. For the FANmethod, we first define the row or column of thematrix after superimposing as f, define

the signal as g containing ones and zeros with similar length of f, as described in Equation 1. Then, f and g are convolved with the

same kernel h. Finally, we can obtain the completed matrix by performing an element-wise division of the two convolved signals,

as Equation 2 shows.

g½n� =

�
1 if df ½n�
0 otherwise

(Equation 1)
HRc½n� =
ðf � hÞ½n�
ðg � hÞ½n� (Equation 2)

Where n represents the position of the signal, g[n], f[n], and HRc½n� represent the signal g, f, and the finally obtained complete Hi-C

data at position n, respectively.

Preproces epigenome data (Generation of Correlation matrix)
Same as Hi-Cmatrix, we divided the chromosome into n fragments with a length of len (in this paper, len = 1000 base), and calculated

the signal p value fi of the ith fragment using ChIP-seq or ATAC-seq data as the following formula to get a n31 matrix.

fi =

Psi
j = 1ðlocationðendjÞ � locationðstartjÞÞ3p valuej

len
(Equation 3)

Where si is the number of fragments divided by ChIP-seq data within the fragment i, locationðstartjÞ and locationðendjÞ is the start and
end location of the jth fragment in ChIP-seq data, p valuej is the signal p value of the jth fragment in ChIP-seq data.

Thenwecombinemultiplematrixes in columns toobtain a featurematrixF = ½F1 F2 ::: Fm �T and normalize it to be0�1withn3m

size, where m is the sample number of the epigenomics data. We define the i-th row of feature matrix F as Fi = ½ fi;1 fi;2 ::: fi;n �,
the average of matrix F as F, ~F = F � F = ½F1 � F1; F2 � F2; :::; Fn � Fn �T = ½ ~F1; ~F; :::; ~Fn �T , the transpose of

~F as ~F
0
, dot =

�
~F1

2
; ~F2

2
; :::; ~Fn

2 �T , then the Pearson correlation coefficient between pairwise of F can be calculated as

PCCF =
~F, ~F

0ffiffiffiffiffiffiffiffiffiffiffiffiffi
dot,dot0

p , where dot0 is the transpose of dot.

In order to explore the biological patterns represented by the relationship matrix, we count the number of loops identified by FitHiC

from Hi-C matrix, ATAC-Seq, H3K27ac, CTCF, and H3K27me3 Chain-seq peaks in GM12878 cell line. Methods S1E shows that the

number of loops identified by the Hi-C data is much smaller than the number of peaks identified by the epigenomic data, suggesting

that a high proportion of regulatory chromatin interactions cannot be identified solely by the method of identifying loops from Hi-C

data. Since the formation of chromatin loops is related to the two boundaries of chromatin topological domains (TADs) in a certain

proportion (Anania et al., 2022; Crane et al., 2015; Tang et al., 2015), and a large number of epigenomic signals, such as CTCF, his-

tone marker H3K4me3 and other factors, are enriched at the boundaries of TADs (Dixon et al., 2012) (Yu et al., 2017). Therefore, we

add the loops (TADs boundaries) features by calculating the epigenomic correlation matrix. If the signals have same trends, then the

correlation value is positive, else the correlation value is negative. For example, we visualize the ChIP-seq/ATAC-seq correlation ma-

trix (lower triangle in Methods S1F) and the corresponding Hi-C matrix (upper triangle in Methods S1F) in the NBN genomic region

(chr8: 89,920,000–90000000). We choose the genomic regions of A, B, C, D, E, where B, C, E have peaks in the ChIP-seq track, A, D

do not have signals in theChIP-seq track. Methods S1F shows that the correlation values between A andB, A andC, A andD, B andD

are�1, the correlation values between A and D, C and E are +1. The results show that the peaks in the correlation matrix can anchor

the locations of loops in the Hi-C matrix. It can be seen that the loops in the Hi-C matrix can be well increased by adding epigenomic

relationship matrix for model training.

Matrix normalization
For the data used in the training, the completed matrix obtained from section ‘‘Complete downsampling Hi-C matrices’’, Pearson

correlation coefficient matrix obtained from section ‘‘Preproces epigenome data (Generation of Correlation matrix)’’ and VC-

normalized Hi-C matrix obtain from.hic format file using juicerbox46 all need to be normalized as Equations 4, 5, 6, and 7 shows.

We define Valij as the value of row i and column j, num pairs as the number of pairs whose value is not zero, nums as the 1/1000

of the sum of num pairs as Equation 1, max num as the minimum value of the largest nums value in the matrix. We first set the values

greater thanmax num to bemax num for thesematrices, then do normalization as Equations 6 and 7 to limit the value to be between

0 and 255.

nums =
�X

num pairs
�.

1000 (Equation 4)
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Valij = max num if Valij R max num (Equation 5)
Valij =

� ðValij
�
10Þ3 lgð10Þ if Valij % 10
lgðValijÞ if Valij > 10

(Equation 6)
Val = ðVal =maxðValÞÞ3255 (Equation 7)

Generation of Masked-hic

In order to ensure that the MINE-Loop method can obtain more regulatory chromatin interactions, the VC-normalized Hi-C matrix

after normalization as Equations 4, 5, 6, and 7 was masked with the Candidate Cis-Regulatory Elements or other ChIP-seq data

to be the target high-resolution Hi-C used in training (Masked-hic). The mask operation obeys the following principle: for ChIP-

seq data, only these interaction values with peaks in the ChIP-seq data at both positions will be retained; for the cis-regulatory

element, we first set values of all locations in the cis-regulatory element file to be 1, then retain the interaction values of Hi-C matrix

when values of both ends in the cis-regulatory element file are 1.

With the above operations, we can obtain all data for training: completed Hi-C (Completed-hic), Pearson correlation coefficient

matrix (Mc) and the target high-resolution Hi-C (Masked-hic).

In order to compare with the raw high-resolution Hi-C matrix at the same scale, the raw high-resolution Hi-C matrix was also

normalized to be 0–255 as Equations 4, 5, 6, and 7. In the remaining manuscript, we name the Hi-C used for comparison with

the enhanced Hi-C as Raw-hic.

Matrix-based sample division
Divide the Masked-hic, Completed-hic andMc into n3K3K sub-matrices, where n represents the number of sub-matrices, K is the

dimension of sub-matrix (in this paper, we define K = 400), each sub-matrix is treated as a sample. The reason for choosing a4003

400 size is that the average size of TADs is 0.4Mb�2Mb,47 according to the previous data enhancement algorithm HiCPlus,48 the

interaction within the genomic distance of 0:4Mb30:4Mb can retain more local information. As shown in Methods S1D, since the

Hi-Cmatrix is a symmetric matrix, only the upper right part of the diagonal is reserved. Along the upper right corner of the Hi-Cmatrix,

sub-matrices of4003400 are taken as samples from top to bottom in a step of 400 kb. Each small square in the figure represents

a4003400 sub-matrix, and 5 sub-matrices are taken (that is, the two interaction sites are within the 2Mb genome range, because

the average size of TADs is within the 1Mb genome distance range. Outside of TADs, few significant interactions are existing).

Structure of the MINE-loop network
The implementation of the network is shown in Methods S1A. The network structure is divided into three type layers: MINE_Conv,

maxPool2D, and ConvTranspose_2D as Equations 8, 9, 10, and 11 show. The first type (i.e., MINE_Conv in Methods S1A, containing

Conv2d, BatchNorm2d, ReLU, Conv2d, BatchNorm2d, and ReLU, is proposed to extract and present the Hi-C pattern. The second

(i.e., MaxPool2d in Methods S1A), is designed to perform dimensionality reduction operations. The third (i.e., ConvTranspose2d in

Methods S1A), is designed to perform an upsampling operation. As Methods S1A shows, we divided the network’s input into two

parts: the completed Hi-C data HRc and the correlation matrix of the epigenomics data Mc. For HRc, we use MEMR_Conv Module

following with amax pool layer to do downsampling, and ConvTranspose 2D layer to do upsampling times to get a result (c5). ForMc,

we use MINE_Conv Module three times to get a result (e3) and merge c5 and e3, and put them into the network (MINE_Conv Module

two times) to get the final enhanced Hi-C matrix.

fðXÞ = maxð0;w1 � X + b1Þ (Equation 8)
w1 =
gw0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXÞp
+ ε

(Equation 9)
b1 =
gðX � meanðXÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðXÞp
+ ε

+ b (Equation 10)
F1 = fðfðXÞÞ (Equation 11)
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where eps = 1e � 5, Var represents the variance, g;b represent the learned coefficient matrix gamma and beta, F1 represents the

output of MINE_Conv.

Model training and testing for MINE-loop
Data (Completed-hic, correlation matrix and Masked-hic) of chromosome 1–17 in GM12878 cell line are used for training the

model in this paper, data of chromosome 18–22 in GM12878 are used for testing, and the ChIP-seq data of transcription factors

(RAD21, SMC3, POLR2A) from GM12878, IMR90, K562, H1-hESC and HepG2 cell lines are used for verification.

MINE-enhanced-hicmatrix andMasked-hicmatrix are used as the input of L1 Loss (Equation 12) and Perceptual Loss49 (Equa-

tion 13) for comparison and scoring. Since MINE-enhanced-hic may be very sparse in some subgraphs, this will affect the judgment

of the Perceptual Loss on the result and indirectly affect the training result. Therefore, we remove these training data, if the number of

value points of the attention interaction sub-matrix is less than 10% of the sub-matrix scale.

L1 = jy0 � yj (Equation 12)
l ðy0; yÞ =
1

CjHjWj

k4jðy0Þ � 4jðyÞk22 (Equation 13)

Where 4jðyÞ is a feature map of shape Cj 3 Hj 3 Wj, the loss is a loss using the squared, normalized Euclidean distance between

features.

As Table 1 shows, MINE-loop can be divided into active model and repress model with different epigenome data as the input of

model training and Masked-hic. For the active model, ATAC-seq, H3K27ac, H3K4me3 ChIP-seq are chose to be epigenome data to

train model; For the repressive model, H3K27me3, H3k9me3 ChIP-seq are chose to be epigenome data to train model. For the

training of active model, we chose the cis-regulatory element file as the data source of the attention matrix for training, since there

are many attention interactions and the model can be fully trained, we choose the best result when the loss score of the test set is the

lowest. For the training of repressivemodel or when the number of attention points in thematrix is too small, we believe that themodel

is prone to functional overfitting due to too few comparison points. Therefore, we use the iterative version model of the test dataset

with the lowest validation loss score as the final trained model.

Spatial density of regulatory chromatin interactions
The calculation steps of SD-RCI are as follows: (1) the Pastis-PM235 algorithm was used to get the 3D coordinates of these bins for

the TADs; (2) calculate the volume of TADi (volumeTADi
) constructed by the 3D coordinates (X, Y, Z) of these bins as the raw volume of

TADi; (3) calculate the raw SD-RCI of TADi:SD � RCIi =
numLoops

volumeTADi
, where numLoops is the total number of loops in each TAD region. (4)

the number of total loops may increase or decrease as sequencing depth or loop-calling algorithms changes. Same as SDOC,20 we

used quantile normalization to normalize the raw SD-RCI value to Gaussian distribution (mean = 0, SD= 1). (5) the SD-RCI of the ith

TAD in a chromosome can be formulated as follows. Where the TADs are identified by predicted by HiCDB50 using the following pa-

rameters: HiCDB({’/home/data/sample’},10,000,’hg380,’ref’,’hg380), where resolution = 10,000, chrsizes = hg38; ref = hg38.

SD � RCIi =
Xn;jsi

j = 0

SD � RCIjFijnorm (Equation 14)

Where n is the number of TADs predicted by HiCDB,50 SD � RCIi is the ith TAD on a same chromosome, Fijnorm is the TAD-TAD

normalized contact frequency between TADi and TADj can be formulated as follows:

Fi;j =
m

Li 3Lj

(Equation 15)
Fijnorm =
Fi;j � md

dd
(Equation 16)

Where Li, Lj represent the length of TADi, TADj in a chromosome, m is the sum of contact frequency between TADi and TADj, md is the

loess regressed pairwise contact frequency, dd is the loess regressed SD calculated by the lowess function of statsmodels Python

library. We let Fijnorm = 0 if genomic distancedist genomicðTADi; TADjÞ< 2Mb or Fijnorm < 1.

Detail of Pastis-PM2

Pastis-PM235 algorithm assumes that the counts between two loci in Hi-C contact matrix follow a Poisson distribution whose inten-

sity decreases with the physical distances between the loci. Pastis-PM2 can automatically adjust the transfer function relating the

spatial distance to the Poisson intensity and infer a genome structure that best explains the observed data. Pastis-PM2 treats

each loci as a point, therefore, the output of Pastis-PM2 is the 3D coordinates of all loci.
Cell Reports Methods 3, 100386, January 23, 2023 e7



Article
ll

OPEN ACCESS
Calculation of TAD volume

Given a TAD, the 3D coordinates of all loci in the TAD can be calculated by Pastis-PM235 algorithm. Then, the 3D coordinates of all loci

in the TAD are used to calculate a convex hull, where the volume of the convex hull is defined as the TAD volume.

Expression changes associated with level changes in HepG2 cell line

Genes were classified based on the levels (ultra_high, high, middle, low) divided by SD-RCI in HepG2 cell line. The counts file of RNA-

seq data in the HepG2 cell line was obtained from GEO under accession number GSE117815, RPKM value was calculated as the

following formula.

RPKMi =

counti

	
Pn

i
counti

1000000

�

leni

(Equation 17)

Where RPKMi is the ith gene’s RPKM value, counti is the ith gene’s count number, leni is the length of the ith gene.

Important definitions in MINE work
1) Hi-C: High-through chromosome conformation capture.

2) RCI: regulatory chromatin interaction.

3) Raw-hic: the raw high-resolution Hi-Cmatrix calculated fromdeeply sequencedHi-C data using VC-normalizedmethod used to

do comparative analysis.

4) Masked-hic: the 1 kb high-resolution Hi-C matrix from raw high-resolution Hi-C masked by location of interest like candidate

Cis-Regulatory Elements.

5) MINE-enhanced-hic: the 1 kb resolution Hi-C matrix predicted by MINE method.

6) Completed-hic: Hi-C matrix completed frommany downsampling Hi-C matrix with different downsampling ratio (the visualiza-

tion of Raw-hic, MINE-enhanced-hic, and Completed-hic can be seen from Methods S1G).

7) active model: The MINE-Loop model trained using ATAC-seq data and ChIP-seq data for different targeted factors (e.g.,

H3K4me3 and H3K27ac) specifically involved in DNA transcription.

8) repressive model: The MINE-Loop model trained using ChIP-seq data target with suppression-related epigenomic marks (i.e.,

H3K27me3, H3k9me3).

9) active loops: loops identified from the active model.

10) repressive loops: loops identified from the repressive model.

11) raw-Loop-fithic: loops called from Raw-hic using FitHiC2.

12) active-Loop-fithic: loops called from MINE-enhanced-hic of active model using FitHiC2.

13) raw-Loop-mustache: loops called from Raw-hic using mustache.

14) active-Loop-mustache: loops called from MINE-enhanced-hic of active model using mustache.

15) SD-RCI: the spatial density of regulatory chromatin interactions, i.e., the ratio of the total number of active or repressive inter-

actions in a TAD to the entire 3D space taken up by the physical structure of the TAD.

16) Four levels of TADs’ SD-RCI value: ultra-high, high, middle and low based on the value of d in the Gaussian distribution of

SD-RCI.

17) The TADs were categorized into four types (①SD-RCI <0.6 and control volume < Hex volume,②SD-RCIR 0.6 and control

volume > Hex volume,③SD-RCI <0.6 and control volume > Hex volume,④SD-RCIR 0.6 and control volume < Hex volume, where

0.6 was the SD-RCI inflection point when count became positive calculated from the gene count - SD-RCI curve as shown in Fig-

ure S11) according to the change in TAD volume (whether increased or decreased) and the size of SD-RCI before and after drug

treatment.

18) active hubs: TAD regions that are enriched with active factors.

19) developed active hubs: TAD regions that are enriched with active factors, and the SD-RCI level is middle, high and ultra-high.

20) developing active hubs: TAD regions that are enriched with active factors, and the SD-RCI level is low.

21) repressive hubs: TAD regions that are enriched with repressive factors.

22) developed repressive hubs: TAD regions that are enriched with repressive factors, and the SD-RCI level is middle, high and

ultra-high.

23) developing repressive hubs: TAD regions that are enriched with repressive factors, and the SD-RCI level is low.

QUANTIFICATION AND STATISTICAL ANALYSIS

In this paper, we mainly verify whether the MINE-enhanced-hic matrix can be used to detect more regulatory chromatin interactions

than from the Raw-hic matri from the following aspects:

Model verification
As shown in Methods S1B, we move some import network model and train network again.
e8 Cell Reports Methods 3, 100386, January 23, 2023
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Verify Biologically
1) for the active model aimed at enhancing the interactions related to the promotion of transcription, we choose to explore the

overlap number of loops identified by MINE-enhanced-hic and Raw-hic within different genomic distance range (2-100kb,

2-300kb and 2-500kb genomic distance), the number of CTCF, RAD2, SMC, POLR2A TFs, and transcription start site (TSS)

anchoring around loops called from MINE-enhanced-hic and Raw-hic, to verify the MINE-Loop method can help to identify

more loops related to the promotion of transcription.

2) Verify the influence of different types of ChIP-seq data combinations on the effect of MINE-Loop: study the influence of the

model obtained by combining different epigenome data used for MINE-Loop training input on the data enhancement effect.

3) Verify whetherMINE-enhanced-hic can enrichmore functional genes: Go enrichment analysis was performed on immune-acti-

vated cells (humanB lymphocyte lineGM12878) and human liver cancer cell line (HepG2) to verify whetherMINE-enhanced-hic

can enrich more functional genes.

Verify the general applicability of MINE-Loop model
1) the ability to do prediction in other cell lines data by using the active model trained by the GM12878 cell line.

2) the ability to do prediction with different combinations of histone target ChIP-seq data as the prediction input.

Call loops using FitHiC2 and mustache

By surveying the input data requirements for different loop callers (Methods S1H), we found only MUSTACHE and Fithic2 can identify

loops with contact matrix (or some kind of data format that the contact matrix can be converted to) as input, while HiCCUPS28 call

loops from.hic format file, cLoops29 call loops require Mapped PETs info, HiC-ACT30 call loops from the output file from other

methods (such as Fit-Hi-C/FitHiC2). Due to the output file predicted by MINE-Loops being only a contact matrix (n3n size), we

only integrated MUSTACHE and Fithic2 in our MINE-Loop tool to call loops by transforming the Hi-C contact matrix (n3 n size).

Loops from Hi-C data are called by FitHiC226 with parameters as the following: resolution = 1kb, distLowThres = 2kb, and dis-

tUpThres = 100, 300 or 500kb, p value<0.015, q-value (FDR obtained by applying Benjamini-Hochberg correction to the p values)

<0.015. We renamed loops called from Raw-hic using FitHiC2 as raw-Loop-fithic, loops called from MINE-enhanced-hic of active

model using FitHiC2 as active-Loop-fithic.

For the mustache27 tool, loops from raw high-resolution Hi-C data were called from the.hic format file with default parameters.

loops from MINE-enhanced-hic matrix were called from text format with parameters as the following: resolution = 1kb, pt (p-Value

threshold) = 0.5. We renamed loops called from Raw-hic using mustache as raw-Loop-mustache, loops called from MINE-

enhanced-hic of active model using mustache as active-Loop-mustache.

Overlap of raw-hic and MINE-enhanced-hic

Both ends of loops called separately from Raw-hic and MINE-enhanced-hic are anchored within 2kb genomic distance are defined

as overlapping.

Call loops using ChIA-PET2

Loops from ChIA-PET data are called by ChIA-PET2 tool10 with parameters and limitations as the following: -m 1 -A

ACGCGATATCTTATC -B AGTCAGATAAGATAT.

Analysis of loops anchoring transcription factor

Calculate counts of CTCF, RAD21, SMC3, POLR2A, EZH2 CTCF, RAD21, SMC3 peak around loops (distance to the loop anchor

point:�40kb�+40kb) called from Raw-hic and MINE-enhanced-hic. curves of factors peak count with distance to loop anchor point

were plotted using python library matplotlib.51

Go enrichment analysis in differential loop anchors

The differential loops called from MINE-enhanced-hic and Raw-hic refer to the un-overlapped loops regions (the pink and green

regions) as shown in Figure S2A. Gene Go enrichment analysis were performed using R package org.Hs.eg.db52(3.14.0),

clusterProfiler53 (4.0), dplyr54 (1.0.7) and ggplot255 (3.3.5).
Cell Reports Methods 3, 100386, January 23, 2023 e9
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