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Abstract

Two honokiol dimers, houpulins A and B (1 and 2), and two magnolol derivatives, houpulins C and D (3 and 4), were isolated
and characterized from an ethanol extract obtained from the roots of Magnolia officinalis. The chemical structures were
determined based on spectroscopic and physicochemical analyses, which included 1D and 2D NMR, as well as mass
spectrometry data. These four oligomers possess new carbon skeletons postulated to be biosynthesized from the coupling
of three or four C6-C3 subunits. In addition, the new oligomers were evaluated for inhibition of superoxide anion generation
and elastase release, and houpulin B (2) was identified as a new anti-inflammatory lead compound.

Citation: Shih H-C, Hwang T-L, Chen H-C, Kuo P-C, Lee E-J, et al. (2013) Honokiol Dimers and Magnolol Derivatives with New Carbon Skeletons from the Roots of
Magnolia officinalis and Their Inhibitory Effects on Superoxide Anion Generation and Elastase Release. PLoS ONE 8(5): e59502. doi:10.1371/journal.pone.0059502

Editor: Andrea Motta, National Research Council of Italy, Italy

Received August 17, 2012; Accepted February 15, 2013; Published May 7, 2013

Copyright: � 2013 Shih et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant from the National Science Council, Taiwan, Republic of China, which was awarded to T.S. Wu. This study was also
supported, in part, by the National Cheng Kung University. The funders had no role in study design, data collections and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tswu@mail.ncku.edu.tw

. These authors contributed equally to this work.

Introduction

Magnolia officinalis Rehd. et Wils. (Magnoliaceae) is called Hou-

pu in Chinese, and is a rare and endangered species listed under

Class II National Protection in China. It’s roots, stems, and

branches are used in traditional Chinese medicine for the

treatment of various disorders, such as depression coughing,

asthma, liver disease, shoulder pain, urinary problems, and

diarrhea [1], [2]. Neolignans, sesquiterpenes, sesquiterpene

neolignans [3], [4], [5], phenylpropanoids[6], [7] have been

identified from prior phytochemical studies of M. officinalis [4].

These constituents exhibit antimicrobial [8], [9], anticancer [10],

[11], [12], anti-epileptic [13], antitumor [3], antibacterial [14],

cytotoxic [6], and anti-inflammatory effects [7], [15], [16]. The

various oligomeric neolignans in the plant are linked through the

aromatic rings, including ortho, ortho (o,o)-linked dimers, (o,o)-linked

trimers, dimers and trimers with o,O-linkages, and o,o-/o,p-linked

trimers [17], [18], [19]. These neolignans have significant

potential as new anti-inflammatory lead drugs. However, the

chemical and biological studies of the Magnolia species have

focused mainly on the constituents obtained from the stems and

bark, because of the rareness of the roots. In the present work, we

investigated the ethanol extract obtained from the roots of M.

officinalis and reported two honokiol dimers and two magnolol

derivatives, as well as possible biogenetic pathways. In addition,

these isolates were examined for inhibition of superoxide anion

generation and elastase release to evaluate their anti-inflammatory

potential.

Materials and Methods

Ethics statement
Blood was taken from healthy human donors (20–30 years old)

by venipuncture, using a protocol approved by the Institutional

Review Board at Chang Gung Memorial Hospital. All donors

gave written consent. The Medical Ethics Committee of Chang

Gung Memorial Hospital approved this consent procedure.

General experimental procedures
Optical rotations were measured using a JASCO DIP-370

digital polarimeter. IR spectra were obtained with a Shimadzu

FT-IR DR-8011 spectrophotometer. 1HNMR, 13C NMR, COSY,

HMQC, HSQC, HMBC and NOESY spectra were recorded on

Bruker AVANCE III-400 spectrometer. Chemical shifts are shown
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in d values (ppm) with tetramethylsilane as an internal standard.

Mass spectra were measured on Bruker APEXII spectrometer with

ESI ionization (positive-ion mode). Column chromatography was

performed in silica gel (70–230 mesh, 230–400 mesh), and PTLC

was executed on Merck pre-coated Si gel 60 F254 plates, using UV

light to visualize the spots.

Plant material
The root of M. officinalis was provided by Chuang Song-Zong

Pharmaceutical Factory and authenticated by Prof. C. S. Kuo,

Department of Life Science, National Cheng Kung University. A

voucher specimen (2010000013) has been deposited in the

Herbarium of National Cheng Kung University, Tainan, Taiwan.

Extraction and isolation
Dried and powdered roots of M. officinalis (5.0 kg) were refluxed

with ethanol (6620 L) and filtered. The filtrate was concentrated

to afford the crude extract (2.0 kg). The crude extract was

suspended in water and partitioned with dichloromethane. The

organic layers were combined and concentrated to yield a

dichloromethane extract (550.0 g). The dichloromethane extract

was further partitioned with 5% HCl aqueous solution to afford

dichloromethane solubles (440.0 g) and 5% HCl aqueous extract

(90.0 g). The dichloromethane solubles were subjected to open

column chromatography over silica gel by eluting with a mixture

of n-hexane and EtOAc (19:1) and stepwise gradient of EtOAc to

obtain 10 fractions. Fraction 6 was further purified by column

chromatography over silica gel with a mixed eluent of n-hexane

and acetone (4:1) followed by repeated column and thin-layer

chromatography to afford compounds 1 (17.4 mg) and 2
(14.7 mg). Similarly, repeated column chromatography, prepara-

tive thin-layer chromatography, and HPLC of fraction 7 yielded 3
(2.2 mg) and 4 (5.8 mg).

Houpulin A (1): brown syrup; [a]D
25 27.88 (c 0.83, MeOH);

IR (KBr) lmax 3502, 3390, 3078, 1639, 1604, 1504, 1465, 1226,

914, 756 cm21; 1H NMR: see Table 1; 13C NMR: see Table 1;

ESI-MS m/z: 553 ([M+Na]+); HR-ESI-MS m/z: 553.2357

([M+Na]+) (Calcd for C36H34O4Na, 553.2355).

Houpulin B (2): brown syrup; [a]D
25 27.98 (c 0.7, MeOH);

IR (KBr) lmax 3501, 3410, 3074, 1639, 1600, 1504, 1465, 1222,

914, 756 cm21; 1H NMR: see Table 1; 13C NMR: see Table 1;

ESI-MS m/z: 553 ([M+Na]+); HR-ESI-MS m/z: 553.2353

([M+Na]+) (Calcd for C36H34O4Na, 553.2355).

Houpulin C (3): brown gum; [a]D
25 265.74 (c 0.11, MeOH);

IR (KBr) lmax 3375, 3352, 2924, 1639, 1612, 1496, 1465, 1226,

914, 756 cm21; 1H NMR: see Table 1; 13C NMR: see Table 1;

ESI-MS m/z: 421 ([M+Na]+); HR-ESI-MS m/z: 421.1782

([M+Na]+) (Calcd for C27H26O3Na, 421.1780).

Houpulin D (4): brown syrup; [a]D
25 257.64 (c 0.23,

MeOH); IR (KBr) lmax 3356, 3340, 2924, 1697, 1608, 1496,

1465, 1226, 914, 756 cm21; 1H NMR: see Table 1; 13C NMR: see

Table 1; ESI-MS m/z: 553 ([M+Na]+); HR-ESI-MS m/z:

553.2352 ([M+Na]+) (Calcd for C36H34O4Na, 553.2355).

Preparation of human neutrophils
Blood was taken from healthy human donors (20–30 years old)

by venipuncture, using a protocol approved by the Institutional

Review Board at Chang Gung Memorial Hospital. All donors

gave written consent. The Medical Ethics Committee of Chang

Gung Memorial Hospital approved this consent procedure.

Neutrophils were isolated with a standard method of dextran

sedimentation prior to centrifugation in a Ficoll Hypaque gradient

and hypotonic lysis of erythrocytes. Purified neutrophils that

contained .98% viable cells, as determined by the trypan blue

exclusion method, were re-suspended in calcium (Ca2+)-free HBSS

buffer at pH 7.4, and were maintained at 4uC before use.

Measurement of O2N2 generation
The O2N2 generation assay was based on the SOD-inhibitable

reduction of ferricytochrome c. In brief, after supplementation

with 0.5 mg/mL ferricytochrome c and 1 mM Ca2+, neutrophils

(66105 cells/mL) were equilibrated at 37uC for 2 min and

incubated with test compound or an equal volume of vehicle (0.1%

DMSO) for 5 min. Cells were activated with 100 nM FMLP

during the preincubation of 1 mg/mL cytochalasin B (FMLP/

cytochalasin B) for 3 min. Changes in the absorbance with a

reduction in ferricytochrome c at 550 nm were continuously

monitored in a double-beam, six-cell positioner spectrophotometer

with constant stirring (Hitachi U-3010, Tokyo, Japan).

Measurement of elastase release
Degranulation of azurophilic granules was determined by

elastase release as described previously. Experiments were

performed using MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide as the

elastase substrate. Briefly, after supplementation with MeO-Suc-

Ala-Ala-Pro-Val-p-nitroanilide (100 mM), neutrophils (66105/ml)

were equilibrated at 37uC for 2 min and incubated with test

compound or an equal volume of vehicle (0.1% DMSO) for

5 min. Cells were activated by 100 nM FMLP and 0.5 mg/mL

cytochalasin B, and changes in absorbance at 405 nm were

continuously monitored to assay elastase release. The results were

expressed as the percent of elastase release in the FMLP/

cytochalasin B-activated, drug-free control system.

Statistical analysis
Results were expressed as mean 6 S.E.M. Computation of 50%

inhibitory concentration (IC50) was computer-assisted (PHARM/

PCS v.4.2). Statistical comparisons were made between groups

using Student’s t test. Values of P less than 0.05 were considered to

be statistically significant.

Results

Characterization of new compounds
Repeated silica gel and RP-C18 column chromatography of the

dichloromethane-soluble fraction from the ethanol extract ob-

tained from the roots of M. officinalis afforded four novel oligomeric

neolignans (1–4) with new carbon skeletons. Compound 1 was

obtained as optically active syrup. The positive-mode HR-ESI-MS

of 1 showed a sodiated molecular ion peak at m/z 553.2357

([M+Na]+), corresponding to a molecular formula of C36H34O4

with 20 indices of hydrogen deficiency (IHD). The absorption

bands in the IR spectrum indicated the presence of hydroxy

(3502 cm21) and phenyl groups (1639 and 1504 cm21). Analysis

of the 13C NMR, DEPT135 and HMQC spectral data identified

36 carbon signals consistent with four oxygenated quaternary

aromatic carbons at d 155.2, 153.3, 151.9, and 149.6; eleven

tertiary aromatic carbons at d 132.0, 131.4, 131.4, 131.4, 131.3,

131.1, 131.0, 129.4, 128.9, 117.0 and 115.8; nine quaternary

aromatic carbons at d 133.2, 132.2, 131.8, 130.6, 129.1, 128.6,

127.6, 127.2, and 126.9; eight olefinic carbons at d 139.3, 139.1,

138.1, 138.0, 115.8, 115.7, 115.6, and 115.5; and four aliphatic

methylene carbons at d 40.1, 40.1, 35.6, and 35.1. The 1H NMR

spectrum of 1 displayed two sets of ABX-type aromatic signals at d
6.88 (1H, d, J = 8.1 Hz, H-5), 7.00 (1H, dd, J = 8.1, 2.2 Hz, H-6),

and 7.13 (1H, d, J = 2.2 Hz, H-2), as well as 6.91 (1H, d,

J = 8.1 Hz, H-590), 7.28 (1H, dd, J = 8.1, 2.1 Hz, H-490), and 7.32

(1H, d, J = 2.1 Hz, H-290). In addition, there were two sets of meta-

Honokiol Dimers from Magnolia Officinalis

PLOS ONE | www.plosone.org 2 May 2013 | Volume 8 | Issue 5 | e59502



coupled aromatic protons at d 7.09 (1H, brs, H-20) and 7.09 (1H,

brs, H-60) and 7.36 (1H, d, J = 2.2 Hz, H-49) and 7.37 (1H, d,

J = 2.2 Hz, H-69). Based on the 1H-1H COSY spectrum, four sets

of allyl groups were found at d 3.34 (2H, d, J = 6.7 Hz, H-7), 5.96

(1H, m, H-8), and 5.00 (2H, m, H-9); 3.51 (2H, d, J = 6.7 Hz, H-

79), 6.10 (1H, m, H-89), and 5.14 (2H, m, H-99); 3.39 (2H, d,

J = 6.9 Hz, H-70), 6.00 (1H, m, H-80), and 5.03 (2H, m, H-90); and

3.43 (2H, d, J = 6.7 Hz, H-790), 6.04 (1H, m, H-890), and 5.08 (2H,

m, H-990). From the above spectroscopic data and the proposed

biomimetic synthesis in prior studies [17], [18], [19], the chemical

structure of 1 should be an o,o-/o,p-linked tetramer containing four

C6-C3 subunits (moieties A–D shown in Figure 1). The connec-

tions of these moieties were further elucidated via 2D-correlational

techniques, including HMBC and NOESY analyses. In the

HMBC spectrum, 2J, 3J-correlations from d 3.34 (H-7) to d
128.9 (C-6), 131.4 (C-2), and 132.2 (C-1), from d 3.51 (H-79) to d
128.6 (C-19), 131.1 (C-69), and 151.9 (C-29), and from d 6.88(H-5),

7.36 (H-49), and 7.37 (H-69) to d 129.1 (C-3) indicated that

Table 1. 1H and 13C Spectroscopic Data of 1–4.

1a 2a 3 b 4 a

position dH mult. (J, Hz) dC dH mult. (J, Hz) dC dH mult. (J, Hz) dC dH mult. (J, Hz) dC

1 132.2 132.1 132.1 131.7

2 7.13 d (2.2) 131.4 7.12 d (2.2) 131.2 7.08 d (2.4) 131.3 7.03 d (2.2) 132.4

3 129.1 128.9 126.6 127.1

4 153.3 153.2 152.1 153.8

5 6.88 d (8.1) 117.0 6.88 d (8.2) 116.9 6.88 d (8.3) 117.5 6.80 d (8.18) 117.1

6 7.00 dd (8.1, 2.2 ) 128.9 6.97 dd (8.2, 2.2 ) 128.8 7.09 dd (8.3, 2.4 ) 129.1 6.96 dd (2.2, 8.18) 129.3

7 3.34 d ( 6.7) 40.1 3.33 d (6.7) 40.0 3.34 brd 39.5 3.23 d (6.7) 40.0

8 5.96 m 139.3 5.96 m 139.2 5.04 m 137.9 6.00 m 139.2

9 5.00 m 115.5 5.02 m 115.4 5.95 m 115.7 4.98 m 115.4

1’ 128.6 128.5 132.9 132.5

2’ 151.9 7.37 brs 131.4 6.99 brs 130.5 6.95 brs 130.6

3’ 127.6 7.37 brs 126.1 126.4 127.8

4’ 7.36 d (2.2) 131.3 131.2 149.6 151.5

5’ 131.0 131.7 122.3 123.2

6’ 7.37 d (2.2) 131.1 151.7 6.96 brs 129.4 6.95brs 129.8

7’ 3.51 d (6.7) 35.6 35.4 3.36 brd 39.4 40.9

8’ 6.10 m 138.0 137.9 5.11 m 137.6 139.2

9’ 5.14 m 115.8 115.8 6.00 m 115.7 115.6

1’’ 133.2 132.8 134.8

2’’ 7.09 brs 131.4 7.20 d (8.69) 127.4 7.35 d (2.1) 130.3

3’’ 131.8 6.70 d (8.69) 115.4 127.1

4’’ 149.6 155.4 154.4

5’’ 126.9 6.70 d (8.69) 115.4 6.94 d (8.1) 117.4

6’’ 7.09 brs 131.4 7.20 d (8.69) 127.4 7.32 dd (8.1, 2.1 ) 127.4

7’’ 3.39 d (7.0) 40.1 5.07 m 78.5 5.12 m 78.7

8’’ 6.00 m 139.1 a: 2.25 m
b: 2.15 m

29.4 a: 2.29 m
b: 2.10 m

30.6

9’’ 5.03 m 115.6 a: 3.04 m
b: 2.89 m

25.2 a: 3.08 m
b: 2.87 m

26.2

1’’’ 127.2 132.9

2’’’ 7.32 d (2.1) 132.0 7.09 d (1.8) 132.7

3’’’ 130.6 127.1

4’’’ 7.28 dd (2.1, 8.1) 129.4 153.1

5’’’ 6.91 d (8.1) 115.8 6.92 d (8.1) 117.4

6’’’ 155.2 7.05 dd (8.1, 1.8) 129.7

7’’’ 3.43 d (6.7) 35.1 3.37 d (7.6) 40.1

8’’’ 6.04 m 138.1 5.90 m 139.1

9’’’ 5.08 m 115.7 5.03 m 115.5

a: d (ppm); 400 MHz for 1H and 100 MHz for 13C; acetone-d6; J values (Hz) in parentheses.
b: d (ppm); 500 MHz for 1H and 125 MHz for 13C; CDCl3; J values (Hz) in parentheses.
doi:10.1371/journal.pone.0059502.t001
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subunits A and B were linked through C-3/C-59 similarly to

honokiol. In addition, the long range HMBC cross-peaks from d
3.39 (H-70) to d 131.4 (C-20), 131.4 (C-60), and 133.2 (C-10); from

d 3.43 (H-790) to d 127.2 (C-190), 132.0 (C-290) and 155.2 (C-690);

from d 7.28 (H-490) to d 131.8 (C-30); and from d 7.09 (H-20) to d
130.6(C-390) revealed that subunits C and D were also connected

similarly to honokiol. The NOE correlations of H-2/H-7, H-7/H-

6, OH-4/H-5 in subunit A; H-69/H-79 in subunit B; H-20/H-70,

H-70/H-60 in subunit C; H-290/H-790, OH-690/H-590 in subunit

D; H-2/H-49 between subunits A and B; and H-49/H-60 between

subunits B and C established the connectivity of the two honokiol

fragments to be C-39/C-50, and the structure of 1 was determined

conclusively, as shown in Figure 1. Compound 1 was named

houpulin A.

The positive-mode HR-ESI-MS of compound 2 displayed a

sodiated molecular ion peak at m/z 553.2353 ([M+Na]+) consistent

with a molecular formula of C36H34O4 with 20 degrees of

unsaturation, as also found in 1. The UV absorption maxima and

IR absorption bands of 2 were very similar to those of 1. The 1H

NMR spectrum of 2 exhibited symmetric proton signals including

one set of ABX-type aromatic signals, two overlapped meta-

coupled signals, and two allyl groups. The HMBC correlations

from d 7.37 (H-69) to d 126.1 (C-59), 128.9 (C-3), 131.2 (C-49), and

151.7 (C-29); from d 3.53 (H-79) to d 128.5 (C-19), 131.4 (C-69),

and 151.7 (C-29); and from d 3.33 (H-7) to d 128.8 (C-6) and 131.2

(C-2) supported the presence of a C-3/C-59 linkage between

subunits A and B, as also found in 1. However, a comparison of

the proton and carbon NMR spectra of 2 with those of 1 suggested

that the two honokiol moieties in 2 are connected symmetrically.

Thus, the two honokiol fragments are connected between C-39

and C-30, rather than C-39 and C-50. Therefore, the structure of 2
was elucidated as shown in Figure 1, and the compound has been

named houpulin B.

Figure 2 depicts our proposed biogenetic pathway to com-

pounds 1 and 2, with the compounds being derived by

bimolecular coupling between two honokiol radical derivatives.

Because the radical intermediate would be more stable if the

radical was located at the ortho-position to the hydroxy group, the

major honokiol radical intermediates are 5 and 6, and the

resultant coupling products are compounds 1 and 2, which exhibit

the new carbon skeletons characterized in the present work.

Compound 3 was purified as an optically active gum with a

molecular formula of C27H26O3, which was deduced by HR-ESI-

MS analysis. The IR absorption bands at 3375, 1612, and

1496 cm-1 indicated the presence of hydroxy and phenyl groups in

3. The 1H NMR spectrum of 3 exhibited ABX-type aromatic

Figure 1. Structures of 1–4.
doi:10.1371/journal.pone.0059502.g001

Honokiol Dimers from Magnolia Officinalis

PLOS ONE | www.plosone.org 4 May 2013 | Volume 8 | Issue 5 | e59502



signals at d 6.88 (1H, d, J = 8.3 Hz, H-5), 7.08 (1H, d, J = 2.2 Hz,

H-2), and 7.09 (1H, dd, J = 8.3, 2.2 Hz, H-6); one set of A2B2

signals at d 6.70 (2H, d, J = 8.7 Hz, H-20) and 7.20 (2H, d,

J = 8.7 Hz, H-30); one set of meta-coupled signals at d 6.96 (1H, br

s, H-69) and 6.99 (1H, br s, H-29); and two allyl groups at d 3.34

(2H, brd, H-7), 5.95 (1H, m, H-8), 5.04 (2H, m, H-9), and 3.36

(2H, brd, H-79), 6.00 (1H, m, H-89), 5.11 (2H, m, H-99). In

addition, there were five aliphatic proton signals at d 5.07 (1H, m,

H-70), 2.25 (1H, m, Ha-80), 2.15 (1H, m, Hb-80), 3.04 (1H, m, Ha-

90) and 2.89 (1H, m, Hb-90). The 13C-, DEPT-135, and HSQC

NMR spectra revealed 27 carbon signals, three oxygenated

quaternary aromatic carbons at d 149.6, 152.1, and 155.4; nine

tertiary aromatic carbons at d 115.4, 115.4, 117.5, 127.4, 127.4,

129.1, 129.4, 130.5, and 131.1; nine quaternary aromatic carbons

at d 122.3, 126.4, 126.6, 132.2, 132.8, 132.9, 149.6, 152.1, and

155.4; four olefinic carbons at d 137.9, 137.6, 115.7, and 115.7;

one oxygenated aliphatic carbon at d 78.5; and four methylene

aliphatic carbons at d 25.2, 29.4, 39.4, and 39.5. These

spectroscopic data suggested the presence of two neolignan

moieties (IHD = 10) and one p-disubstituted benzene ring

(IHD = 4), which leaves one degree of unsaturation. In the HMBC

spectrum, the long-range correlations from d 6.88 (H-5) to d 126.6

(C-3), 132.2(C-1), and 152.1 (C-4); from d 6.99 (1H, br s, H-29) to

d 39.4 (C-79), 126.6 (C-3), and 149.6 (C-49); and from d 5.07 (1H,

m, H-70) to d 127.4 (C-20 and C-60) indicated that subunits A and

B were linked through C-3/C-39 similarly to magnolol and that

subunit C was attached to subunit B between C-49 and C-59 to

form a dihydrobenzopyran ring. In the NOESY spectrum of 3, the

cross-peaks corresponding to H-7/H-2 and H-6; H-79/H-29 and

H-69; H-69/H-90; and H-70/H-20 and H-60 allowed for the

complete assignment of the proton and carbon signals. Further-

more, compound 3 displayed a negative Cotton effect at 280 nm

[20], [21] in the CD spectrum. Therefore, the absolute

configuration at C-70 was assigned as S. The structure of 3 was

elucidated as shown in Figure 1, and the compound given the

name houpulin C.

Compound 4 was obtained as optically active syrup with a

molecular formula of C36H34O4, which was determined by a

pseudomolecular ion peak at m/z 553.2352 in the HR-ESI-MS

analysis. The IR spectrum displayed absorption bands at 3356,

1608, and 1496 cm21, which are consistent with the presence of

hydroxy and benzyl functionalities, respectively. The 1H NMR

spectrum of 4 exhibited three sets of ABX-type aromatic signals,

three sets of allyl groups, one set of meta-coupled protons, and five

aliphatic protons, which were very similar to those of compound 3.

From the MS and NMR (13C, DEPT135, and HSQC) data, one

additional C6-C3 subunit was present in compound 4. This

postulation was further corroborated by HMBC analysis. In the

HMBC spectrum of 4, 2J, 3J-correlations from d 7.03 (H-2) to d
127.8 (C-39) and from d 6.95 (H-29) to d 127.1 (C-3) established

the C-3/C-39 connectivity of subunits A and B; correlations from d
5.12 (H-70) to d 130.3 (C-20) and 134.8 (C-10) indicated the

formation of a dihydrobenzopyran subunit C connected to subunit

B at C-49 and C-59; and finally, correlations from d 7.35 (H-20) to

d 127.1 (C-390) and from d 7.09 (H-290) to d 127.1 (C-30) showed

Figure 2. Plausible biosynthetic pathway to 1 and 2.
doi:10.1371/journal.pone.0059502.g002

Table 2. Inhibitory effects of 1–4 on superoxide anion
generation and elastase release by human neutrophils in
response to FMLP/CB.

compound IC50 (mM)a

superoxide anion generation elastase release

1 3.260.16*** 2.360.17***

2 2.960.16*** 2.060.50***

3 -b 3.460.53***

4 12.764.11*** 8.761.15***

magnolol 19.561.40*** 8.562.87***

honokiol -b 5.761.30***

sorafenibc 3.260.42 2.060.13

aConcentration necessary for 50% inhibition. Results are presented as the mean
6 S.D. (n = 3).
***P,0.001 compared with the control value.
bAlone induced superoxide generation by human neutrophils.
cSorafenib, a tyrosine kinase inhibitor, was used as a positive control.
doi:10.1371/journal.pone.0059502.t002

Figure 3. Compound 2 did not alter activation of ERK, p38
MAPK, JNK, and Akt.
doi:10.1371/journal.pone.0059502.g003
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that the fourth C6-C3 subunit was attached at the C-30 position of

subunit C. The NOESY cross-peaks corresponding to H-79/H-69

and H-69/H-90 as well as H-70/H-20 and H-60 confirmed the

connectivities of subunits B and C, as well as subunits C and D,

respectively. Furthermore, the stereochemical configuration at C-

70 of compound 4 was assigned as R based on a positive Cotton

effect at 280 nm [20], [21] observed in the CD spectrum.

Consequently, the structure of 4 (Figure 1) was established

unambiguously, and the compound has been named houpulin D.

Biological results
Compounds 1–4 were evaluated for inhibition of superoxide

anion generation and elastase release by human neutrophils in

response to FMLP/cytochalasin B [22], and the data are shown in

Table 2. Compounds 1, 2, and 4 inhibited superoxide anion

generation and elastase release in FMLP/cytochalasin B activated

human neutrophils in a concentration-dependent manner. Al-

though compound 3 significantly inhibited elastase release with an

IC50 value of 3.4060.53 mM, it also induced superoxide

generation by human neutrophils. Among the tested compounds,

compound 2 demonstrated the most significant inhibition towards

superoxide anion generation and elastase release with IC50 values

of 2.8560.16 and 2.0060.50 mM, respectively, compared with the

reference compound sorafenib (IC50 of 3.2360.42 and

2.0160.13 mM for inhibition of superoxide anion generation

and elastase release, respectively).

The anti-neutrophilic effect of compound 2 was further

evaluated in preliminary mechanistic studies. Compound 2 did

not alter activation of ERK, p38 MAPK, JNK, or Akt (Figure 3).

Notably, compound 2 failed to alter the peak [Ca2+]i values in

FMLP-induced cells, but the time it took for [Ca2+]i to return to

half of the peak value (t1/2) was significantly shortened by

compound 2 (Figure 4). Many neutrophil functions, such as

respiratory burst and degranulation, are regulated by calcium

signals; thus, calcium clearance mechanisms are increasingly

viewed as novel targets for pharmacological control of neutrophilic

inflammation [23]. Compound 2 merits further investigation and

development as an anti-inflammatory clinical trial candidate.
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