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Abstract: Prior work suggests humans can differentiate between bitter stimuli in water.
Here, we describe three experiments that test whether beer consumers can discriminate between
different bitterants in beer. In Experiment 1 (n = 51), stimuli were intensity matched; Experiments
2 and 3 were a difference from control (DFC)/check-all-that-apply (CATA) test (n = 62), and an
affective test (n = 81). All used a commercial non-alcoholic beer spiked with Isolone (a hop
extract), quinine sulfate dihydrate, and sucrose octaacetate (SOA). In Experiment 1, participants
rated intensities on general labeled magnitude scales (gLMS), which were analyzed via ANOVA.
In Experiment 2, participants rated how different samples were from a reference of Isolone on a
7-point DFC scale, and endorsed 13 attributes in a CATA task. DFC data were analyzed via ANOVA
with Dunnett’s test to compare differences relative to a blind reference, and CATA data were analyzed
via Cochran’s Q test. In Experiment 3, liking was assessed on labeled affective magnitude scales,
and samples were also ranked. Liking was analyzed via ANOVA and rankings were analyzed
with a Cochran–Mantel–Haenszel test. Experiment 1 confirmed that samples were isointense.
In Experiment 2, despite being isointense, both quinine (p = 0.04) and SOA (p = 0.03) were different
from Isolone, but no significant effects were found for CATA descriptors (all p values > 0.16).
In Experiment 3, neither liking (p = 0.16) or ranking (p = 0.49) differed. Collectively, these data confirm
that individuals can discriminate perceptually distinct bitter stimuli in beer, as shown previously
in water, but these differences cannot be described semantically, and they do not seem to influence
hedonic assessments.
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1. Introduction

Bitterness is classically considered to be monogeusic (i.e., one singular, indistinguishable percept),
and bitter stimuli that lack other side tastes are traditionally labeled with a singular semantic label
in English (i.e., bitter) that lacks any additional subgroupings. However, research over the past
quarter century suggests that bitterness may actually be multigeusic [1–4]. Collectively, these prior
studies suggest bitter stimuli dissolved in water can be discriminated by humans. The potential ability
to discriminate between bitter stimuli has important implications for the food and pharmaceutical
industries, and such differences might help explain why some bitter products are more accepted
(or rejected) than others. For example, learning to like one type of bitter (e.g., hops in beer) may
not generalize to another type of bitter (e.g., quinine in tonic water) if the neural code for these
bitters remains distinct despite a common semantic label. Here, we tested whether self-reported
beer consumers could discriminate between three bitter stimuli believed to be perceptually distinct
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when presented within the context of a food product (here, non-alcoholic beer). After spiked beer
samples were confirmed to be isointense, we tested whether participants could discriminate between
the beer samples in a difference from control test. Subsequently, beer samples were also tested for
affective differences.

Whether mammals can discriminate between bitter stimuli is highly controversial, as evidence for
and against such an ability has been reported in humans and rats using psychophysical, behavioral, and
electrophysiological data. Spector and Kopka designed a behavioral task to train rats to discriminate
different taste stimuli, and at the end of training, rats were unable to discriminate quinine and
denatonium [5]. This study was later extended by Martin and others, who found that rats were
unable to discriminate quinine from denatonium, cycloheximide, and 6-n-propylthiouracil (PROP) [6].
Conversely, the rats showed weak discrimination of SOA from quinine. In mice, electrophysiological
data shows differential responses in neural coding for a range of bitter stimuli [7]; such differential
signaling would presumably be required for any behavioral discrimination.

Data from humans also presents mixed evidence of an ability to differentiate bitter stimuli.
Research using semantic-free sorting and napping methods suggests that bitter stimuli can be grouped
based on their perceived similarities [1,2]. Other psychophysical data in humans also suggest that bitter
stimuli can be differentiated based on their temporal [3,8,9] and regional perception [4,10]. However, in
a learning task designed to condition participants to associate a taste (i.e., one sweet, three bitter)
with a specific color cue, participants were only able to associate the sweet sample significantly above
chance; that is, there was no evidence for discrimination between the bitterants in a brief conditioning
paradigm [11]. Collectively, these mixed findings suggest a need for additional research to investigate
the possibility of multiple bitter percepts in humans. Further, much of the prior work has been
conducted using bitter stimuli dissolved in water and some bitter stimuli have notable side tastes (e.g.,
bitter and astringent or bitter and salty). More work is needed to determine whether prior findings
can be replicated in a more complex system that is more similar to bitter products encountered in the
normal food environment. Here, we measured taste perception in humans and used a beer model
system to increase the ecological validity of the data.

Humans have consumed beer for ~4 to 8 millennia [12]. More recently, the explosion of the craft
beer market has increased the availability of a wide variety of beer styles, including pale ales such as
IPAs and APAs (India Pale Ales, and American Pale Ales). Here, we attempted to match the flavor
profile of a pale ale style beer, a style where high bitterness is accepted and even desired by consumers
of these beers. Further, we recruited regular beer consumers, as they are more likely to be aware of
the various flavor profiles of beer and respond positively to the bitter qualities of our samples during
affective testing. Further, beer consumers’ familiarity and repeated exposure to beer makes them ideal
candidates for discrimination testing. For our discrimination task, we used a difference from control
(DFC) test [13,14] in lieu of more widely known discrimination methods like triangle or tetrad tests [15],
given certain advantages of a DFC test. Specifically, use of a DFC test allowed us to determine whether
participants could discriminate samples while also obtaining a quantitative measure for the magnitude
of the perceived difference between samples.

Here, we used both a discrimination test and an affective test; neither of these tests requires
participants to generate their own verbal descriptors. The ability to accurately and descriptively discuss
chemosensory perceptions often requires repeated trainings and exposure to increase recognition and
recall of sensations [16]. The inability of naïve participants to describe sensations is especially pertinent
to bitter taste, as bitter taste is often confused with sour taste [17] or astringency, and consumers
typically lack the vocabulary to describe bitterness further without the use of hedonically loaded
adjectives (e.g., “gross”, “yucky”). Still, we did add a semantic task to the DFC test in an attempt to
gain additional insights on how our samples might differ. The check-all-that-apply (CATA) test is a
useful tool when using untrained consumers because a CATA question provides participants with a
word bank of descriptors to use to describe samples (e.g., [18]). Providing an attribute list reduces the
cognitive load required of participants to generate their own descriptors.
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Three experiments are reported here: an initial intensity scaling study to confirm the samples were
effectively intense matched for multiple sensory attributes, a DFC test, and an affective test. Based on
data from prior research on the regional [4] and temporal (Higgins, Gipple, and Hayes, under review)
perception of bitter stimuli, we added quinine, SOA, or Isolone (a commercial hop extract) to beer.
We hypothesized that self-reported beer consumers would be able to discriminate between the beer
samples via (a) their DFC and (b) liking ratings. First, we hypothesized that Isolone and quinine would
have the most different ratings in the DFC test, as these samples were most different in their regional
and temporal perceptions [4]. In the affective test, we hypothesized the beer sample made with Isolone
would be the most liked sample, as it is a hop extract used by the beer industry and its bitter perceptual
qualities would be most similar to the bitterness normally experienced when drinking pale ale-style
beers. As an exploratory measure, we also added a sensation seeking questionnaire to the affective test
to explore potential relationships between personality traits and liking of the different beer samples,
as other work has linked sensation seeking and the liking of a pale ale style beer (Higgins, Bakke,
Hayes, in press).

2. Experiment One: Intensity Matching

2.1. Overview

Convenience samples of reportedly healthy individuals who had previously indicated interest
in participating in taste and smell research were recruited on separate occasions to participate in
three separate single-session (~20 min) laboratory studies. Potential participants first completed an
online questionnaire. This questionnaire included eligibility screening questions, and questions about
beer intake frequency. Eligible participants (described below) were invited to taste tests in a controlled
laboratory setting at the Sensory Evaluation Center in the Erickson Food Science Building at Penn State.
Three different studies are described here: in the first (Experiment 1), participants rated the intensity of
various attributes of the beer samples; in the second (Experiment 2), participants rated how different beer
samples were from a reference in a DFC task; in the final study (Experiment 3), participants provided
liking/disliking ratings and a forced choice ranking of the beer samples, and also completed a personality
questionnaire on sensation seeking. Data collection for all three studies occurred in semi-isolated testing
booths using a computer and mouse under red light located directly overhead. Red lighting was used to
minimize visual differences between the samples (see photograph in Supplementary Figure S1). All data
were collected using Compusense Cloud, Academic Consortium (Guelph, ONT). Participants were
compensated for their time with a cash payment of $5 and gave informed consent via a click-through
yes/no question on the computer screen for all studies. All procedures were approved by professional
staff in the Office for Research Protections at The Pennsylvania State University (protocol #000012467).

2.2. Materials and Methods

2.2.1. Participants

Participants (n = 55) were recruited from the main Penn State campus and surrounding community
(State College, PA, USA). The participant database maintained by the Sensory Evaluation Center at
Penn State contains 1400+ individuals and is composed of students, university staff, and members
of the surrounding community who are age diverse (i.e., not a typical psychology study pool
of undergraduates). Screening criteria included no chest cold, flu, or upper respiratory illness; currently
in good health; non-smoking (i.e., no use of tobacco products in the past 30 days); not pregnant
or breastfeeding; no lip/tongue/cheek piercings; no known taste or smell defects; no known allergies
to quinine; no difficulty swallowing or history of choking; not under the age of 21; not taking
prescription pain medication; not taking medications known to influence taste or smell function; no
history of chronic pain; not abstaining from alcohol consumption for any reason (health concerns,
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recommendation from a health care provider, religion reasons, etc.); and willingness to consume a
non-alcoholic beer sample.

Participants were also screened based on their beer intake, and only those who reported consuming
beer at least 2–3 times per month were recruited. To measure frequency of beer consumption in
screening, we asked “How often do you consume beer (not including ciders, malt beverages, or spiked
seltzers)” and participants indicated their intake frequency [every day, 5 to 6 days a week, 3 to 4
days a week, 2 days a week, 1 day a week, 2 to 3 days a month, 1 day a month, 3 to 11 days in the
past year, 1 or 2 days in the past year, never]. The bitterness level of the non-alcoholic beer sample
used here was intended to approximate the bitterness of a typical bitter pale ale style beer; thus,
individuals reportedly consuming pale ales at least once per month were also recruited to participate.
To avoid a demand characteristic in recruitment, lager intake was also measured. Pale ale and lager
frequency of consumption were measured by asking “How often do you consume [lager-style beers
(ex. Budweiser, Coors); pale ale-style beers (ex. IPAs or APAs)]?” Response options were the same as
those provided for the overall beer frequency question above.

2.2.2. Stimuli

The non-alcoholic beer test stimuli were made by adding various bitterants and a flavor mixture
to a commercial non-alcoholic beer. We used O’Doul’s Premium (Anheuser-Busch, St. Louis, MO,
USA) as the base non-alcoholic beer; it was purchased locally from the same beer distributor for
all experiments. The beer came packaged in 12 oz glass bottles (~355 mL) and it was stored at room
temperature prior to preparing the spiked samples. The bitter stimuli added to the non-alcoholic
beer were quinine sulfate dihydrate (USP), sucrose octaacetate (FG), and Isolone® (FG). As supplied
by the manufacturer, Isolone is a commercial hop extract for use by the brewing industry that is a
solution of 30% (w/w) iso-alpha-acid in water. These specific bitterants were chosen in light of prior
work investigating temporal and regional differences of bitter stimuli [4]. Initially, we tried to use
Tetralone® (a hop extract of 9.5% (w/w) tetra-hydro-isoalpha-acid in water) as one of the bitterants;
however, in pilot attempts to match intensity (not shown), we found Tetralone had a higher hop aroma
than the other samples, which would allow participants to differentiate it from the other samples.
Accordingly, Tetralone was replaced with Isolone, a similar but more concentrated extract; this allowed
us to reduce odor cues while still achieving the desired amount of bitterness.

The non-alcoholic beer was spiked with stock solutions of the three bitter stimuli: quinine
(4.05 mM), SOA (2.32 mM), Isolone (1% and 0.8% of extract (v/v)). Two concentrations of the Isolone
solution were prepared to increase the likelihood of matching the intensity of the Isolone-spiked beer to
the quinine- and SOA-spiked beers, which had intensity matched in a previous study (data not shown).
Stock solutions were made by dissolving the bitter stimuli in a 90:10 water:ethanol solution (200 proof
ethanol (USP grade) in filtered water). Spiked samples were prepared by adding 5 mL of the stock and
2 mL of a flavor mixture to a room temperature bottle of beer. The flavor mixture was a 60/40 (v/v)
blend of a natural grapefruit and natural orange flavoring (Brewer’s Best, Kent, OH) purchased from
an online homebrewing retailer. This flavor mixture was added to help mask any additional hop aroma
and flavor of the Isolone sample. After the bitter stock solutions and the flavor mixture were added to
the individual beer bottles, bottles were resealed by securely twisting the cap in place. Each bottle was
then inverted three times before storing under refrigeration (below 40 ◦F/~4.4 ◦C) overnight. All beer
samples were prepared within 24 h of testing, and inverted again three times while capped ~30–60 min
before serving. The final concentrations of the spiked beers are listed in Table 1. Final concentrations
were calculated based on a final estimated 362 mL volume of beer (355 mL volume as manufactured,
plus 5 mL of bitter stock and 2 mL of the flavor mixture). A control sample without any added bitterant
(vehicle only) was also tested—it was prepared by adding 5 mL of a 10% (v/v) ethanol/water solution
and 2 mL of the flavor mixture, to achieve the same final volume.
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Table 1. Bitterants used to spike beer samples in Experiments 1, 2, 3. Note: the high Isolone
concentration was only used in Experiment 1.

Stimulus Final Concentration Source

Quinine sulfate dihydrate 0.056 mM Fisher Scientific, Fair Lawn, NJ
Sucrose octaacetate 0.032 mM SAFC Supply Solutions, St. Louis, MO

Isolone (High) 0.014% (v/v) Kalsec, Kalamazoo, MI
Isolone (Low) 0.011% (v/v) Kalsec, Kalamazoo, MI

All samples were presented as 1.5 oz aliquots (~44 mL) in 4 oz plastic cups (~118 mL) labeled
with random three-digit blinding codes. Samples were poured when participants indicated they were
ready for their samples. To minimize potential differences in the samples from any separation of the
added components of the bottles, participants received the same pour from each bottle (i.e., Participant
1 received only the 1st pour from all bottles, Participant 2 received only the 2nd pour, etc.). To maintain
consistent carbonation and temperature, bottles were only used within 10 min of opening; any remaining
beer was discarded, and fresh bottles were opened as needed. All samples were served on a single tray,
evaluated one at a time, and presented in counterbalanced order using a Williams design [19].

2.2.3. Procedures for Experiment One

Participants were asked to rate the intensity of multiple attributes of the beer samples.
The attributes were sweetness, sourness, bitterness, citrus flavor, other hop flavor, and carbonation/tingling.
Written definitions for citrus flavor [the flavor associated with citrus fruits such as orange, grapefruit,
and lemon] and other hop flavor [the flavor associated with hops such as floral, fruity, herbal, etc.,
(excluding citrus flavor)] were provided to participants before and during ratings. Participants were
instructed to take a sip of the sample, and to swallow before rating the intensity. Also, participants
were instructed to rate the maximum perceived intensity of each attribute whether or not the maximum
intensity was perceived while the sample was in the mouth or after swallowing. The specific instruction
to swallow before rating intensity was given because prior research indicates that the maximum
perceived intensity of a bitterant can occur in mouth or after swallowing, depending on the bitterant
(Higgins et al., under review). An interstimulus interval (ISI) of 90 s was enforced via software
after each evaluation. During this break, participants were instructed to rinse their mouths with
room temperature filtered water until no sensations persisted. Spit cups with lids were provided if
participants needed to expectorate during the break.

All intensity ratings were made on a general labeled magnitude scale (gLMS). A gLMS is a
semantically labeled line scale with anchors at 0 (“no sensation”), 1.4 (“barely detectable), 6 (“weak”),
17 (“moderate”), 35 (“strong”) and 51 (“very strong), 100 (“strongest sensation of any kind”) [20].
Before evaluating any samples, participants completed a scaling orientation with instructional text
explaining proper scale usage and practiced using the scale by rating 15 remembered or imagined
sensations [21]. Proper scale usage during the practice ratings was then evaluated using criteria from
Nolden and Hayes [22]. Briefly, improper scale usage was defined as failure to correctly rank the
three remembered light sensations in monotonic order, allowing for up to a 5.0 unit deviation on the
100 unit scale. Based on these criteria, four participants failed to use the scale correctly, and their ratings
were excluded from subsequent analyses, resulting in a final n of 51. All other participant’s ratings in
the warm-up met criteria for proper scale usage. Demographic information for the participants in all
three experiments are summarized in Table 2.
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Table 2. Demographic information for participants from all experiments.

Experiment n Age
(Mean, ± SD)

Frequency
Group

Beer Intake
(n)

Pale Ale
Intake (n)

AISS
(Mean, ± SD)

1
n = 51

(20 men,
31 women)

35.0 ± 11.3
Weekly 40 25

-Monthly 9 21
Yearly 2 5

2
n = 62

(20 men,
42 women)

37.3 ± 13.4
Weekly 48 32

-Monthly 14 27
Yearly 0 3

3
n = 81

(35 men,
46 women)

38.0 ± 12.8
Weekly 64 42 Total: 50.2 ± 7.3

Monthly 16 34 Men: 52.8 ± 7.6
Yearly 1 5 Women: 48.3 ± 6.5

(-) indicates not measured.

2.2.4. Data Analysis

All data were analyzed using SAS statistical software version 9.4 (SAS Institute, Cary, NC, USA).
The Shapiro–Wilks test was used to test for normality of the intensity ratings (all p values < 0.001).
To improve data normality, intensity ratings were square root transformed. Normality of the attribute
ratings improved, but the Shapiro–Wilks test was still significant for all attributes (p values < 0.01).
After reviewing the transformed distributions and the residual plots of the individual attribute ANOVAs,
we determined that the transformations adequately improved normality, and proceeded with analysis.

Multivariate analysis of variance (MANOVA) was performed via PROC GLM on the intensity
ratings to test for an overall sample and participant effect. Following the observation of a significant
sample effect using Wilk’s lambda criteria, repeated measures analysis of variance (ANOVA) were
performed via PROC MIXED on each attribute using sample as a fixed effect and participant as a
random effect. The Tukey–Kramer method was used to test for differences between samples following
a significant F value for an individual attribute. No adjustment was made for multiple comparisons to
decrease the likelihood of a Type II error. An α level of 0.05 was set for all analyses.

2.3. Results for Experiment One

The results of the MANOVA indicated that there was a significant sample effect
[F(4, 200) = 4.29, p < 0.001]. The subsequent analysis of the individual attribute ratings also showed a
significant sample effect for sweetness [F(4, 200) = 9.37, p < 0.001], sourness [F(4, 200) = 4.55, p = 0.002],
bitterness [F(4, 200) = 21.89, p < 0.001], and other hop flavor [F(4, 200) = 5.52, p < 0.001]. The sample effect
for citrus flavor [F(4, 200) = 0.49, p = 0.74] and carbonation [F(4, 200) = 0.11, p = 0.98] was not significant.
Mean attribute ratings and sample comparisons are shown in Figure 1. Overall, the high concentration
of Isolone sample was rated significantly higher in bitterness and other hop flavor. Upon this observation,
the high concentration of Isolone (0.014%) was dropped from further testing. The lower concentration
of Isolone (0.011%) was equi-intense with the quinine and SOA beers for all attributes, so these
samples and concentrations were used for Experiments 2 and 3. As would be expected, the control
sample containing no bitterant was significantly lower in bitterness, sourness, and other hop flavor, but
significantly higher in sweetness. These data confirm the influence of the added bitterants on taste and
flavor attributes in the beer.
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Figure 1. Square root transformed mean attribute intensity ratings and SEM made on a general
labeled magnitude scale (gLMS). The hatched region at the bottom of the figure indicates ratings below
barely detectable. The letters above the intensity ratings indicate the Tukey groupings for the least
square means (lsmeans) comparisons. Samples that do not share a letter are significantly different
via Tukey’s HSD at p < 0.05. Attributes with no significant sample effect are noted using “ns” above
the ratings. No adjustments for multiple comparisons were made.

3. Experiment Two: Difference from Control (DFC) with Check all that Apply (CATA)

3.1. Materials and Methods

3.1.1. Participants and Stimuli

Participants (n = 62) were recruited using the same screening criteria as Experiment 1. The reference
sample used in the DFC test was the beer sample spiked with Isolone. The test samples were beer
samples spiked with quinine, and SOA; a blind replicate of the reference (i.e., Isolone) was also
presented as one of the unknown samples, as is common practice in a DFC test. Specifically, this blind
duplicate is used as the point of comparison against which the other test samples are judged statistically.
All samples were prepared in the same manner and the same concentrations as stated above in
Experiment 1.

3.1.2. Study Procedures

In a DFC test, participants are asked to compare unknown samples to a reference and rate how
different the unknown samples are from the reference on a 7-point scale (0 = no difference, 6 = very
large difference). Here, the Isolone-spiked sample was provided as the reference, so a blind duplicate
of Isolone-spiked beer was included with the SOA- and quinine-spiked beers. Statistical comparisons
are then made between the two test samples and the blind reference—this accounts for the differential
willingness of participants to indicate two samples are identical (i.e., give a difference rating of zero).

Samples were served under the same conditions as Experiment 1 (i.e., red lighting, 1.5 oz aliquots,
bottles discarded after 10 min, etc.) with the exception of serving design. The reference sample
was presented to all participants first, followed by the three unknowns (two test samples, one blind
reference) presented using a counterbalanced Williams design [19]. The unknown samples were
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evaluated one at a time; participants retained the reference sample and were able to retaste the reference
during the evaluations of the unknown samples.

After the DFC ratings were obtained, a check-all-that-apply (CATA) question was asked to further
characterize the samples. Participants were instructed to take a sip of the sample and check all of the
flavor and mouthfeel attributes that applied to the sample. Attributes from Experiment 1 were included
as CATA terms and additional terms were generated via an initial pilot tasting by our team and from
previous research. Specifically, terms specifying temporal percepts (e.g., slow onset, lingering aftertaste)
were added based on our previous findings [4] (Higgins et al., under review). The final list of CATA
items were: sweet, bitter, carbonated, hop flavor, citrus flavor, tingling, lingering aftertaste, quick onset,
off flavor, sour, slow onset, quickly decreasing aftertaste, and other (with an open-ended comment box).
For the CATA ratings, we emphasized temporal aspects, as we hypothesized that Isolone would be
characterized by lingering aftertaste and slow onset while quinine would be characterized by quick
onset and quickly decreasing aftertaste, based on other work in our laboratory. The CATA attributes
were presented to each participant using a modified Williams design. The order of attributes was
counterbalanced across participants but fixed within a participant; this was done to eliminate order
effects while also reducing potential confusion/cognitive load that would result from randomizing the
order for each sample [23,24].

To begin the test, participants first tasted the reference. The instructions were to take at least
one sip, swallow, and make a mental note of the flavor and mouthfeel of the sample. The tasting
was followed by CATA ratings for the reference. Next, participants were instructed to rinse their
mouths with water during a 60 s break and wait to receive their first unknown sample. To evaluate the
unknown samples, participants were instructed to taste and swallow the sample and then indicate
the size of the difference between the sample and the reference sample. The difference was rated on
a 7-point category scale labeled as follows: “no difference” (0), “very slight difference” (1), “slight
to moderate difference” (2), “moderate difference” (3), “moderate to large difference” (4), “large
difference” (5), and “very large difference” (6). Following the DFC rating for a sample, participants
completed the CATA question as above. After the DFC and CATA questions were completed for
each unknown, participants received a 60 s ISI where they were instructed to rinse their mouths with
water before continuing to the next sample.

3.1.3. Data Analysis

The DFC ratings were analyzed using SAS statistical software. ANOVA via PROC GLM was
used to test for significant differences between the ratings. Dunnett’s test was used to compare the
DFC ratings of the SOA and quinine samples to the blind Isolone sample. CATA data were analyzed
using XLStat version 201.9.4.1 (Addinsoft Inc., New York, NY, USA). Cochran’s Q test was used to
compare the CATA responses for each attribute for the beers spiked with SOA, quinine, and Isolone
(the blind duplicate); multiple pairwise comparisons using the critical difference (Sheskin) procedure
were used to test for significant differences between the samples. An α level of 0.05 was used for
all analyses.

3.2. Results for Experiment Two

As shown in Figure 2, the mean DFC rating for the blind Isolone sample was greater than zero,
suggesting that we were correct in thinking that some participants would be hesitant to use the ‘no
difference’ category on the scale (i.e., an end use avoidance bias). The results of Dunnett’s test (the
p values shown in Figure 2) indicate that the quinine- and SOA-spiked beers were both rated as
being significantly different from this blind reference, indicating that both quinine and SOA can be
differentiated from Isolone in a DFC task. However, the similar DFC means for quinine and SOA
suggest that neither is more different from Isolone than the other.
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Figure 2. Rated differences (mean and SEM) of the test samples from the Isolone reference sample
in Experiment 2. Comparisons between samples are from Dunnett’s test using the Isolone (the blind
reference) sample as a control. Higher ratings indicate a larger difference from the reference sample
while lower ratings indicate a smaller difference from (i.e., more similarity with) the reference sample.

Frequencies of the CATA attributes selected for each sample are shown in Figure 3. Cochran’s Q test
using the Isolone (blind duplicate), quinine, and SOA samples found no significant differences between
the attributes (all p values > 0.17). The Isolone (reference) sample was not included in Cochran’s test,
as differences between the test samples was the primary objective of the task. Collectively, the DFC
and CATA data suggest that individuals are able to differentiate some bitter stimuli in a beer model
system, but that they are unable to describe the differences using a list of descriptive attributes.
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(all p values > 0.17). Aftertaste is abbreviated as AT.
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4. Experiment Three: Liking

4.1. Materials and Methods

4.1.1. Participants and Stimuli

Participants (n = 81) were recruited using the same screening criteria as above. The test samples
used in Experiment 3 were the beer samples spiked with quinine, SOA, and Isolone (0.011%), prepared in
the same concentration and manner as Experiment 1.

4.1.2. Study Procedures

Liking ratings for the spiked beer samples were made on labeled affective magnitude (LAM)
scales [25]. A LAM scale is a bipolar scale with semantic affective labels [26]. The scale proceeds from left
to right with the labels “greatest imaginable dislike” (−100), “dislike extremely” (−75.5), “dislike very
much” (−55.5), “dislike moderately” (−31.9), “dislike slightly” (−10.6), “neither like nor dislike” (0.0),
“like slightly” (11.2), “like moderately” (36.2), “like very much” (56.1), “like extremely” (74.2), and
“greatest imaginable like” (100.00). Prior to evaluating the beer samples, participants rated their liking
of various food items on the LAM scale to practice using the scale (e.g., [27]). The questionnaire
included food and beverage items generally well liked (i.e., mozzarella cheese) and disliked (i.e.,
oysters) to encourage participants to use the full range of the scale. A list of all mean ratings for the
food and beverage items is included in Supplementary Table S1. Participants were instructed to rate
their liking/disliking of the items by clicking anywhere on the line that best represented their answer;
they were told to skip an item and leave the scale blank if they had never experienced an item.

Following the practice food and beverage questionnaire, participants evaluated the three different
spiked beer samples. Participants were instructed to taste, swallow, and rate their liking/disliking after
they had swallowed the sample. Participants were allowed to retaste if they wished. Samples were
served as stated in Experiment 1 (i.e., red lighting, 1.5 oz aliquots, bottles opened every 10 min, served
on one tray and evaluated one at a time, etc.). Between samples, participants were asked to rinse
their mouths with water until no sensations persisted during a 60 s ISI. After all samples were rated,
participants ranked them in a forced choice ranking (i.e., 1 = most liked, 3 = least liked). If needed,
participants were instructed to retaste the samples.

Next, participants completed Arnett’s Inventory of Sensation Seeking (AISS; [28]), a 20-item
replacement for Zuckerman’s Sensation Seeking Scale-V (SSS-V) [29]. Responses for individual AISS
items were recorded on a 4-point category scale ranging from “does not describe me at all” (1) to
“describes me very well” (4) and reverse coded when needed; these responses were summed to get an
overall score. Sensation seeking is defined as “the need for varied, novel, and complex sensation and
experiences, and the willingness to take physical and social risks for the sake of such experiences” [30].
Throughout this manuscript, sensation seeking (lower case) is used to indicate the underlying construct,
while Sensation Seeking (capitalized) is used to indicate the summed AISS scores. A measure of
sensation seeking was included here to determine whether high sensation seekers were more likely to
prefer the sample spiked with Isolone. Other research on the influence of personality measures on the
liking of various beer styles (Higgins et al., in press) suggests that those high in Sensation Seeking may
like a bitter pale ale style beer more than those lower in Sensation Seeking. We wanted to test whether
those high in Sensation Seeking might rate the Isolone sample higher in liking because this sample
would be most similar to a commercial pale ale.

4.1.3. Data Analysis

All data were analyzed using SAS statistical software. To test for significant differences in the
liking/disliking ratings, repeated measures ANOVA was performed via PROC MIXED using sample
as a fixed effect and participant as a random effect. The rank data were analyzed via PROC FREQ
using the Cochran–Mantel–Haenszel test to compare the rank orders. Relationships between Sensation
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Seeking and liking/disliking ratings for the beer samples were analyzed using PROC CORR. An α

level of 0.05 was set for all analyses.

4.2. Results for Experiment Three

As shown in Figure 4, ANOVA using the liking/disliking ratings of the non-alcoholic beer samples
showed no significant differences in the ratings [F(2, 160) = 1.85, p = 0.16]. Notably, means for all
samples were positive, and ranged from neither like nor dislike to like slightly. Although the ratings
were not very high (in terms of widely accepted products), the samples were liked overall, not disliked.
Consistent with the liking ratings, the analysis of the ranking data showed that the rank order did
not significantly differ (χ2 = 1.41, p = 0.49) across samples. The frequency of the rank orders and
the total sum of all rankings for each sample are shown Figure 5. All samples were ranked 1st at
approximately an equal frequency. Notably, the Isolone sample was ranked 3rd most frequently,
suggesting that the sample might be more polarizing than the other samples. No correlations between
the Sensation Seeking scores and the liking/disliking ratings of the samples (Table 3) were observed (all
p values > 0.91).
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Table 3. Pearson correlation coefficients of liking/disliking ratings of the non-alcoholic beer samples,
demographics, and Sensation Seeking. Bolded values indicate significant correlations.

Quinine SOA Total Liking AISS Age Sex

Isolone 0.56 *** 0.48 *** 0.81 *** −0.01 −0.06 −0.04
Quinine 0.63 *** 0.87 *** 0.00 0.10 −0.12

SOA 0.83 *** −0.01 0.10 −0.17
Total Liking −0.01 0.05 −0.13

AISS −0.20 +0.31 **
Age −0.17

** p < 0.01, *** p < 0.001; for the sex variable, women were coded as 0 and men were coded as 1; total liking is the
sum of all liking/disliking ratings for each participant.

5. Discussion

The overall goal of the research described here was to determine whether self-reported beer
consumers could differentiate perceptually distinct bitter stimuli (Isolone, quinine, and SOA) in a beer
model system, and whether certain types of bitter stimuli were more liked or disliked. Experiment 1
demonstrated that the spiked beers were isointense for bitterness and other attributes, while in
Experiment 2, the DFC data showed that individuals were able to differentiate a sample spiked with
Isolone from samples spiked with quinine and SOA. However, the non-significant results from the
CATA data suggest that consumers, as a group, were unable to describe the differences between the
samples, even when provided a list of attributes. In the affective tests in Experiment 3, the absence of
significant differences for liking ratings or rank orders suggests that, as a group, the self-reported beer
consumers tested here equally liked all beer samples and did not differentiate the samples in terms of
liking or preference.

Our original hypotheses were only partially supported by present data. Namely, quinine and SOA
samples were differentiated from Isolone in the DFC test, even when intensity matched. Reasons for
the inability to support the remaining hypotheses are unknown, but may include our use of a DFC
test rather than more comprehensive and exhaustive methods like descriptive analysis, or use of
a beer matrix where additional ingredients can mask subtle differences in bitter taste perception.
The premise of this research was based on evidence from previous research demonstrating that humans
can discriminate bitter stimuli in water based on differences in bitter percepts [1,2,4] (Higgins et al.,
under review). Notably, all this previous work was conducted in water, and we cannot assume
that all perceptual qualities of bitterants in water would be salient in a more complex beverage
matrix like non-alcoholic beer. While ethanol greatly enhances and contributes to the flavor profile
of beer [31–33], non-alcoholic beer remains a complex matrix, containing iso-alpha-acids, glycerol,
carbonation, and flavor compounds which contribute to its taste, aroma, and mouthfeel. Knowing this,
it is possible that certain perceptual qualities of the bitter stimuli were masked or altered in our beer
model system. Further, the DFC test did not detect differences between the beers spiked with SOA
and quinine because the Isolone-spiked beer was the reference. That is, the focus of the task was to
determine whether the samples could be differentiated from the Isolone reference sample, not each other.
Further, the results of the affective test can only demonstrate whether differences in liking exist between
the beer samples, not whether or not the samples are perceptibly different. Collectively, it seems our
participants were able to perceive a difference between the samples in Experiment 2, but based on our
data in Experiment 3, these perceptual differences did not affect liking or preference.

The failure to observe significant differences for the liking of the beer samples may stem from
the underlying process through which individuals learn to tolerate or like bitter-tasting products.
Humans are born with the innate disliking of bitterness [34], but this initial aversion may be overcome
through a variety of potential means, such as flavor-consequence learning (FCL) [35]. FCL occurs when
a flavor in a food or beverage (the conditioned stimulus, e.g., coffee flavor and aroma) is paired with a
positive post-ingestive effect (the unconditioned stimulus, e.g., caffeine) and the repeated pairing of the
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conditioned stimulus and the unconditioned stimulus in the food of beverage leads to a modification
in the affective response to the conditioned stimulus. However, once liking or acceptance is established
for a product, liking does not necessarily generalize to other products with similar taste qualities.
For example, in a study where participants repeatedly consumed a sweet/bitter beverage (SanBitter),
affective ratings increased for the beverage, but not for other products with bitter and sweet tastes [36].
We originally hypothesized that this relationship may be due to different bitter percepts found in
the products. For example, the lingering, back-of-mouth bitterness from the iso-alpha-acids in pale ales
may prevent gin-and-tonic drinkers from becoming pale ale consumers if tonic drinkers are familiar
with and prefer the quick onset, quick decaying bitterness of quinine. However, the failure to observe
significant differences in liking ratings here in Experiment 3 led us to reconsider our original hypothesis.
Accordingly, we now speculate that when individuals are repeatedly exposed to bitter food or beverage
products, any learned liking occurs for the product or the product category, rather than the unique
bitter percepts found within that product. Under this revised hypothesis, we can presume participants
in Experiment 3 (i.e., pale ale consumers) were previously conditioned to like bitterness within the
context of pale ales, and not the specific bitterness from the hop extracts. Accordingly, replacing the
bitterness from hops with the bitterness of quinine or SOA did not meaningfully affect liking because
the subtly different bitter subqualities (if they exist) all occurred in the same beverage context. More
work is needed to confirm this revised hypothesis.

Additionally, previous data indicate that craft beer consumers generally report higher overall
liking of beer [37,38], and it is possible that the participants in Experiment 3 would report equal liking
for all beer samples, regardless of bitter quality or beer style (e.g., pale ale, lager). Because of this,
we added the forced choice rank question in Experiment 3. However, the results of the forced choice
rankings aligned fully with rated liking and no significant differences were observed, providing further
evidence that beer consumers generally like most beers.

Our exploratory hypothesis regarding the effect of sensation seeking on the liking of the beer
samples was also not supported. Other data suggest that personality traits can influence oral burn,
an innately disliked sensation [39,40]. Because bitter is also innately disliked, we reasoned that
we would observe a similar relationship here, where individuals high in Sensation Seeking would
also report higher liking ratings for the beer samples. This relationship was observed in a separate
study, where liking ratings for a bitter pale ale beer was positively correlated with Sensation Seeking
(Higgins, et al., in press). Here, however, we did not observe any significant correlations between
Sensation Seeking and total liking of all beers or liking of an individual beer. Reasons behind the
absence of a relationship here are unknown, but may be due to the isointense bitterness of all beers;
that is, variation in bitterness intensity across products may be needed to observe a relationship with
sensation seeking, and we eliminated any such variation with our intensity matching procedure.

Additionally, our findings demonstrate mixed support of previous research studies comparing
the perceptions of multiple bitter stimuli. In rats, Martin and others noted a weak discrimination
between quinine and SOA [6] and in humans, Paravisini and colleagues noted similar placement of
the two stimuli in a napping experiment [2]. Conversely, when using data from a sorting task in
humans, analysis by McDowell placed quinine, SOA, and a hop extract into three separate groups [1],
and Higgins and Hayes noted that SOA and a hop extract shared more regional and temporal qualities
than quinine [4]. Notably, our conclusions here regarding comparisons between SOA and quinine
are limited because all rated differences were made in comparison to the Isolone sample. A new DFC
test with quinine or SOA as the reference would be necessary to compare quinine and SOA. Still, our
findings show that a beer spiked with Isolone, a hop extract, was perceivable different from those
made with quinine and SOA, partially supporting the findings of McDowell, and Higgins and Hayes.
Further, discrepancies with prior data may have occurred because the prior research used bitter stimuli
dissolved in water, not a complex matrix like beer. Additionally, the sorting studies used distinct
methods (i.e., sorting versus sorted napping; see [41] for an overview of the methods) and a distinctive
set of bitter stimuli which affects the placement and groupings of stimuli and, ultimately, the overall
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comparisons and findings. For example, Paravisini and others used bitterants with additional side
tastes and non-taste qualities—magnesium sulfate is salty [42], while catechin and epicatechin are
astringent [43]. These other qualities may have been major drivers of their placement and groupings,
as the addition of side tastes alters the placement of stimuli on a perceptual map [44]. In contrast,
McDowell [1] only used bitter stimuli with minimal or no side tastes.

The napping experiment by Paravisini and others served as preliminary data for a subsequent
study on the influence of bitterness on retronasal aroma in a coffee model system [2]. In their data,
they found the perceived aroma of a coffee isolate varied based on the added bitterant (e.g., the coffee
isolate paired with caffeine and catechin had a higher perceived hazelnut aroma than coffee isolates
paired with quinine and L-tryptophan). Those authors speculated that the perceived differences were
caused by the cognitively driven cross-modal interaction between taste and aroma. This hypothesis is
also supported by work involving hop extracts, where increased levels of hop aroma extract altered
the perceived bitterness and bitter character (i.e., harsh versus round) of beer [45]. While we have
no direct evidence on the interaction between our bitter stimuli and the flavor constituents of our
beer samples, it seems reasonable to suspect this phenomenon may have contributed to the perceived
differences between our beer samples. Notably, the Isolone hop extract used here has an aroma.
However, the added citrus flavors were used to help mask the aroma, and the intensity ratings from
Experiment 1 show no evidence that the Isolone sample had a higher perceived hop aroma. Additional
methods, such as descriptive analysis [46,47] could be used to confirm the intensity ratings using a
trained panel, versus the naïve consumers used here. Further, descriptive analysis methods might
also determine whether there is evidence of cross-modal interactions between taste and aroma in
the beer samples used here. However, findings using descriptive analysis methods may be limited
as prior research suggests that analytical evaluation methods (i.e., the separation of taste and flavor
components of a product [48]) minimize or eliminate cross-modal interactions shown using synthetic
(i.e., holistic) evaluation methods [49].

Some limitations of the current research should also be noted. One issue with the approach used
here was our choice to intensity match the bitterants at a group level rather than at an individual level.
Bitter taste perception can vary between individuals due to polymorphisms in TAS2R bitter taste
genes that influence receptor function [50–52]. If some individuals were genetically predisposed
to perceive various bitter stimuli at different intensities, differences in bitter intensity (rather than
differences in bitter quality) might conceivably explain the significant DFC ratings found in Experiment 2.
However, for multiple reasons, we do not believe genetic differences in bitterness can explain our results
and interpretation. First, we drew participants for all three studies from the same general population,
so there is no reason to suspect the proportion of functional alleles will vary systematically across the
three studies (as might occur with studies at different locations drawn from different populations).
Second, the number of participants in each study are greater than numbers classically used in many
psychophysical experiments; critically, with a larger sample size, the potential for an atypical random
sample that has a genetic makeup which differs idiosyncratically from the population the sample is
drawn from decreases substantially, both because sampling bias drops, but also because any potential
influence of a few atypical genotypes on overall group performance drops as well. Further, two of
the three compounds used in our study bind to TAS2R receptors with no known functional variation.
Specifically, the isohumolones found in hops ligate TAS2R1 and TAS2R14, and sucrose octacetate
(SOA) ligates TAS2R46: none of the genes that encode these receptors are known to contain functional
polymorphisms. Accordingly, the discrimination of SOA from Isolone in Experiment 2 cannot be
attributed to genetic variation (also see [53]). Still, we should note that quinine, the third compound
used here, does show some functional variation with polymorphisms in TAS2R31 [52,54]. Given the
other points above, however, we do not believe this variation meaningfully influences our conclusions,
as it cannot speak to the difference between SOA and Isolone. Finally, other evidence from humans
suggests that even when clear intensity differences are present, bitterants are still sorted into the same
group based on qualitative differences. Specifically, McDowell [1] found high and low concentrations
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of Tryptophan clustered together in free sorting, despite having clearly different intensities. Thus,
while we cannot completely rule out any genetic effects (as participants in the present experiments
were not genotyped), we do not believe that such functional differences would be able to systematically
bias the results reported here.

Further, we were able to observe significant differences in sweetness, bitterness, sourness, and other
hop flavor for the Isolone (high) and control (no bitterant) samples (Figure 1), indicating that our sample
cohort was able to detect differences in intensity of samples of distinct concentrations. Further, the CATA
data from Experiment 2 showed no significant differences for the bitter attribute. Nevertheless, an
alternative approach to reduce the effect of individual variation in bitter taste perception would be
to intensity match all compounds for each participant. However, this approach would be extremely
resource intensive in terms of experimenter time, and places a heavy burden on participants—both of
which would reduce the number of participants that could be tested, which would then reduce the
power of the statistical tests. Accordingly, we decided against this approach, but cannot rule out the
possibility that doing so might provide different results.

Additional limitations of our research include use of naïve consumers rather than
trained participants. We used untrained consumers in Experiment 3 as classical dogma in sensory
and consumer science indicates liking tests should not be performed with trained panelists [55].
Further, we used untrained consumers for the DFC task, as training does not affect the ability to
discriminate beers: previous research has shown that trained and untrained beer consumers perform
equally when asked to sort [56–58] or discriminate unfamiliar beers [59,60]. Nevertheless, our use of
naïve consumers may limit utility of the CATA ratings in Experiment 2, as prior work shows that terms
generated by untrained panelists to describe beer lack consensus and are less specific than those of
trained panelists [57,60]. Notably, we provided a list of pre-generated terms to our participants. In other
work, providing a long list of terms (i.e., [44]) did not improve trained or untrained panelist’s ability
to later match beers to their selected descriptors [58]. Conversely, in wine, when untrained panelists
are provided with a shorter list of descriptors (i.e., 14 terms), matching performance improves [61].
Here, our CATA list had 13 attributes, which presumably lessened effects of using untrained consumers.
Still, some participants may not be familiar with all attributes in our CATA list, so our non-significant
CATA findings may be due to a lack of consensus in the meaning of terms. Further, additional relevant
CATA attributes, such as chemesthetic sensations, may have been overlooked during creation of the
attribute list. Collectively, these limitations could be reduced by using a trained descriptive panel,
as the attribute trainings and term generation exercises in descriptive analysis might allow for deeper
characterizations and descriptions of the samples, thereby reducing error.

Finally, while our current model is more complex than simple aqueous solutions, it remains less
multifaceted than solid foods, and additional variables such as mastication may also play a role in the
discrimination of bitter perceptual qualities, given the relationship between chewing and salivary flow.

6. Conclusions

Our results provide some evidence to support the notion that humans are able to discriminate
between bitter stimuli. Self-reported beer consumers were able to distinguish a beer sample containing
Isolone, a hop extract, from beer samples containing quinine or SOA. However, we were unable to
identify semantic labels for the perceptual qualities of these stimuli, as no attributes from the CATA
data were significant. In affective testing, we did not observe any significant differences in the liking
ratings or rank orders for the beer samples, suggesting the perceptual qualities of the specific bitter
stimuli did not influence liking. This led to the generation of an alternative hypothesis—when learned
liking for bitter food and beverage products occurs, liking develops for the product or the product
category, and not the unique bitter percepts of those bitterants. Additional research is needed to test
this hypothesis and to identify the perceptual qualities of the beer samples tested here; more generally,
additional work is also needed to explore how the perceptual qualities of bitter stimuli influence flavor
perception of other complex food and beverages.
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