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Abstract

Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly

into a shared environment. For locomotion, these environments resemble traversable areas

which are shared between multiple agents like humans and robots. The seamless integra-

tion of mobile robots into these environments requires accurate predictions of human loco-

motion. This work considers optimal control and model predictive control approaches for

accurate trajectory prediction and proposes to integrate aspects of human behavior to

improve their performance. Recently developed models are not able to reproduce accu-

rately trajectories that result from sudden avoidance maneuvers. Particularly, the human

locomotion behavior when handling disturbances from other agents poses a problem. The

goal of this work is to investigate whether humans alter their trajectory planning horizon, in

order to resolve abruptly emerging collision situations. By modeling humans as model pre-

dictive controllers, the influence of the planning horizon is investigated in simulations. Based

on these results, an experiment is designed to identify, whether humans initiate a change in

their locomotion planning behavior while moving in a complex environment. The results sup-

port the hypothesis, that humans employ a shorter planning horizon to avoid collisions that

are triggered by unexpected disturbances. Observations presented in this work are

expected to further improve the generalizability and accuracy of prediction methods based

on dynamic models.

Introduction

A wide variety of robotic applications has emerged recently. Sensor driven driver assistance

systems are commonly available and vacuum cleaner robots already have a strong position in

the consumer electronics market. Autonomous cars and trucks are being developed to take

over in traffic on highways, where they are required to progress in the planned journey while

safely moving amongst other human steered cars. Robots that carry supplies to workstations

and replenish parts for assembly at a production line are being deployed at factories alongside

automated forklifts. With the additional upgrowth of industry 4.0, many applications arise

where robots could share a workspace with humans. Current trends aspire mobile robots that
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deliver packages in cities and move freely in factories or warehouses along with humans.

Robots deployed in the logistics sector for fulfillment tasks directly share a workspace with

humans during locomotion and picking. Furthermore, collaborative assembly tasks are envi-

sioned, where one or multiple intelligent robot arms assist a human by providing tools or

parts.

These tasks require robots to integrate seamlessly into these environments. When multiple

agents, meaning robots and humans, must traverse a shared environment in a seamless man-

ner, mutual prediction is a key ability. Therefore, robots must be able to accurately predict

human locomotion. Accurate predictions allow a robotic system to move seamlessly among

the surrounding interaction partners and to minimize disturbances since collisions are

avoided prematurely. This ability benefits the applications since a are more efficient and con-

venient collaboration and interaction is enabled [1, 2]. Thus, understanding human motion

planning will allow us to improve prediction methods and raise the efficiency of robots in

shared workspaces.

Numerous approaches for motion prediction are already available [3–6]. State-of-the-Art

methods are based on learning approaches or use dynamic models which approximate the

human musculosceletal system. Machine learning methods usually consider fully observable

environments with features that determine the motion and thus allow for predictions. These

approaches yield a probability for a human to occupy a certain position [6]. Methods based on

dynamic models mostly apply optimal control methods, where specifically designed objective

functions lead to trajectories that closely resemble human locomotion [4, 7–9]. An advantage

of the latter approaches is the resulting continuous trajectory, which describes all attributes of

a motion from positions down to torques.

Yet, efficient and reliable prediction over a large horizon is still an ongoing research topic.

Especially the varying collision avoidance behaviors of humans pose a challenging aspect for

optimal control based methods. Current models for human locomotion do not generalize to

the wide variety of observed situations and the respective human behaviors. Literature shows,

that current models are especially not able to accurately represent the observed trajectories

from a moving human that is disturbed by another agent [4, 10]. These disturbances are unex-

pected events, e.g. due to uncertainty or prediction errors, that influence the agent’s path. They

lead to specific avoidance or recovery behaviors, i.e. short-term reactions with sudden path or

velocity adaptations, and result in suboptimal trajectories. As this is not covered by the models,

they are not able to produce a suitable trajectory prediction. Especially, research towards colli-

sion avoidance behaviors encounters this problem [4, 10, 11]. It is reported that the applied

optimal control approaches do not resemble the observed behaviors well [4, 10]. Obviously,

the objective functionals of the methods, which are usually driven by energy minimization,

curvature constraints or velocity adjustments, do not cover these short-term behaviors.

Our work addresses this problem and aims to identify human locomotion behaviors that

account for these situations and have the potential to enhance prediction algorithms for

robotic applications in shared environments. Previous research demonstrated, that the consid-

eration of human behaviors can significantly improve the performance of tracking and predic-

tion methods [12]. Specifically optimal control and model predictive control (MPC) methods

are to be improved [4, 10, 11]. The incorporation of the identified behaviors is anticipated to

enable a prediction of human locomotion in cases where the initial optimal solution is dis-

turbed and short term reactions are applied.

The particular factor of interest addressed here, is the applied planning horizon of a

human. This aspect specifies how far into the future a human plans its motion. For locomo-

tion, this comprises how far a human looks ahead, to what extent he predicts other agents’

motions, and whether he plans the full trajectory to the goal or only a few steps ahead. Our
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hypothesis is that humans resolve situations such as near-collisions, unanticipated occurrences

or cases of failed prediction by adapting their planning horizon. This behavior is necessary,

since these situations are the result of the human’s uncertainty about the exact motions of all

other agents within the current environment. We summarize these uncertain situations as

“partially observable environments” and assume that our hypothesis generalizes to most of this

collectivity [13]. Within this work, sufficiently complex environments are also assumed as par-

tially observable, because a human being is not able to track more than a certain number of

agents at once [13]. In contrast to the posed hypothesis, a human is expected to follow the

unique optimal solution, if the environment is “fully observable” and thereby carries no

uncertainties.

Within recent literature, humans are usually considered to plan an optimal trajectory from

their current position to a defined goal. The applied planning horizon covers the whole trajec-

tory, while factors like time, path length and energy expenditure are optimized [7, 8, 14]. How-

ever, these methods are not able to reproduce the exact strategy employed by humans, if

unpredicted disturbances occur [4, 10, 15]. Therefore, different approaches are found in litera-

ture that are applicable as corrective measures: constant re-planning [16, 17], re-planning at

specific states [18, 19], integration of intermediate goals [4], or reactive approaches without

prior planning [20]. With these approaches, the observed trajectories are replicable but the

underlying human locomotion behavior remains unclear. A detailed model for the human

behavior to handle disturbances would thus allow for more accurate predictions. In order to

tackle this problem, we must explore whether humans employ different behaviors within fully

observable and partially observable environments. In this work, we follow the idea that

humans employ a shorter planning horizon in complex or uncertain scenarios [16]. Thereby,

it is not known how much complexity humans can handle before they start to adapt their plan-

ning. A second issue is the fact that the executed trajectory may diverge from an optimal solu-

tion and lead to a suboptimal motion [10]. Therefore, it is also of interest if the executed

trajectories stay within certain boundaries around the initial optimal solution. The resulting

goal is a specialized experiment, which aims to determine if a shorter planning horizon consti-

tutes a specific human re-planning strategy.

Throughout this work, human locomotion prediction is approached from a control per-

spective, assuming a human as a dynamic system that optimizes its locomotion with respect to

aspects like energy consumption. Based on existing models [4, 8], the prediction problem is

formulated within a nonlinear model predictive control (NMPC) framework. The influence of

the planning horizon is then initially analyzed within simulations. This framework and the

respective simulation results allow us to illustrate the problem regarding the human planning

horizon from a control theoretic point of view. Detailed statements about this human behav-

ior, however, require further evaluations in user studies.

In order to investigate the mentioned aspect, an experiment is devised and conducted,

which aims to yield basic insights into the human motion planning process. Indeed, measuring

the currently applied planning horizon of a human is challenging, as it is the product of cogni-

tive elements which currently cannot be detected directly by sensor-based approaches. The

complexity of this process is illustrated by Goffman’s theory about interactive human locomo-

tion behavior [21]. On this basis the “sense-plan-act” architecture [22] is established as a cogni-

tive model. It stipulates that pedestrians attempt to sense where other humans intend to go

and then adapt their own plans to move accordingly. This cognitive model comprises the idea

of a planning horizon which starts with sensing and ends with the action. Thus, three distinct

tasks define this process: perception of the environment, planning of a path taking into

account the predictions of all agents and execution of the trajectory. This point of view also

establishes an association between the planning horizon and the visual look-ahead. Clearly,
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planning further into the future requires humans to gather more visual information and to

extend their predictions. In order to measure this process empirically, the start- and end-

points are of main interest. Therefore, we propose an experimental setup that measures the

visual focus and the trajectories of subjects that perform movements within a specifically

designed virtual environment. The subjects’ movements are additionally disturbed by other

virtual objects to trigger the anticipated avoidance behaviors. Changing the observability and

therefore raising the uncertainty is accomplished by altering the complexity of the virtual envi-

ronment based on the number of obstacles [16]. This experimental design is expected to reveal

information about the planning horizon applied by humans and the accepted deviation of tra-

jectories from distinct optimality criteria.

In summary, this work features empirical research, which investigates adaptations in the

human motion planning horizon in order to enhance human locomotion prediction. Based on

theories regarding the cognitive process of trajectory formation, an experimental setup is pro-

posed to verify the hypothesized behavior. The experiment further constitutes a foundation for

future investigation of this aspect, since the planning horizon was only marginally considered

in previous research. Analyzing how humans adapt their planning horizon, yields the opportu-

nity to improve optimal control based motion prediction methods by incorporating the identi-

fied behavior. Especially the prediction of specific avoidance and recovery motions, which

emerge from reactions to high collision risk, is expected to be improved. In addition, it is

investigated whether humans deviate from an optimal solution during an avoidance motion

and, if so, to which extent. Thereby, the presumed behavior is a confinement to a convex hull

which forms a corridor between the current and the goal location. This would further indicate

that complex scenarios are handled with a shorter planning horizon.

Clearly, dynamic environments require a human to re-plan and adapt its locomotion trajec-

tory in case of disturbances. Therefore, knowledge of the way humans adapt their planning

horizon will allow robots to predict human motion more accurately in complex situations.

Since the planning horizon seems to be strongly connected to collision avoidance behaviors,

the varying results towards velocity and path adaptation shown in literature may find more

explanation within our work [10, 11]. The results of the proposed study and possible continua-

tions potentially influence future motion prediction approaches, such that a wider variety of

human behaviors is accurately represented. This advance can influence the collaboration with

robots during locomotion as well as collaborative manipulation. The accuracy of predictions

strongly determines the seamless integration of robots in a shared workspace and eventually

the efficiency of this collaboration. Robots that move along with humans in warehouses or pro-

vide them with tools or parts during assembly must become convenient and efficient collabo-

ration partners and therefore support as well as utilize mutual predictions.

Subsequent work has the following structure: In the Related Work section literature regard-

ing motion prediction and avoidance behaviors is discussed. The Problem Description elabo-

rates the applied cognitive model and formalizes an NMPC framework accordingly. The

following section regarding the Empirical Exploration of the Human Planning Horizon in

NMPC Locomotion Prediction describes the design and procedure of the conducted experi-

ment. Obtained results are presented in the Main Experiment Results section. After a short

summary, the experiment is discussed and conclusions are drawn in the Discussion and Con-

clusions section.

Related Work

The following section discusses literature which is of relevance to this work. Firstly, the mini-

mum effort principle is presented, which is a fundamental pattern within human locomotion.
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This is followed by a short overview of common motion prediction approaches that integrate

human behaviors. Thereafter, prediction of human locomotion trajectories based on optimal

control is discussed. Correspondingly, works on predicting avoidance behaviors are discussed,

which are based on optimal control models as well. Specific weaknesses within these respective

models are revealed and their relation to the planning horizon are highlighted. In opposition

to the optimal control based models, literature on behavioral locomotion models is briefly dis-

cussed. Furthermore, cognitive models are accounted for, which support the paradigm of an

adaptive planning horizon in human locomotion. Lastly, literature on the relation of the plan-

ning horizon to the behavior of looking ahead is briefly depicted.

Motion prediction is a wide field applicable to any mobile agent, e.g. humans, cars or

robots. The methods are widespread and usually generalize to a large variety of situations. A

fundamental fact that influences many prediction algorithms is that humans intend to walk

with minimum effort regarding energy and cognitive strain [23–25]. In a fully observable envi-

ronment, humans are able to follow this principle successfully. Accordingly, effort is minimal

since the initial locomotion plan is not disturbed. On the contrary, to cope with partially

observable environments, re-planning and trajectory adaptations are necessary, which cost

energy and lead to cognitive load. This is not desirable for a human but certain situations

require this flexibility in order to circumvent dynamic obstacles successfully. This correlation

strongly influences our work as it yields a measure for seamlessness and a feature which marks

the desired undisturbed motions. Accordingly, high efforts due to uncertain situations or dis-

turbances from surrounding agents are to be avoided by modeling human trajectory planning

more accurately and by improving the prediction of humans. The mentioned feature is used in

our analysis and allows us to interpret whether a subject has used an undisturbed trajectory or

had to re-plan.

A survey on recent prediction methods applied to autonomous cars is found in [3]. Many

prediction algorithms are based on Kalman filtering [5, 26, 27], which does not yield good per-

formance for complex environments. Multiple hypotheses are fused with a Kalman filter in

[28], to predict future positions of humans. Here, social aspects are considered to play a crucial

role in avoidance and prediction. A very influential work towards prediction of pedestrian

locomotion is proposed by Ziebart et al. [6]. Inverse optimal control is applied on top of a Mar-

kov decision process to learn the preferred paths of pedestrians with respect to the environ-

ment. The approach enables a robot to position itself in a least interfering way or plan its path

according to this measure. Incorporation of human behaviors is implicit and generalization to

arbitrary environments is possible. Yet, for applications where the accurate trajectory as well as

accelerations and torques are necessary, dynamic model based approaches are advantageous.

The work of Kuderer et al. [29] is methodologically similar to [6] as it proposes to learn fea-

tures of the environment in a similar way. Indeed, this work also shows the importance of con-

tinuous trajectories and the consideration of velocities as well as accelerations. In accordance

to that, the work at hand is concerned with accurate prediction methods based on dynamic

models and optimal control theory.

Accurate prediction of human locomotion trajectories using optimal control and a unicycle

model is widely studied [4, 7, 8, 30, 31]. These works propose different objective functions that

reduce the solution space to a subset that closely resembles human locomotion trajectories.

Thereby, some works focus on minimization of energy, path length and time, whereas others

follow specific curvature constraints. In fact, most approaches are developed with the goal of

locomotion prediction. An inverse optimal control approach is shown by Mombaur et al. [8].

The method allows to incorporate new objective functions into a holonomic model and esti-

mates their influence. In [14, 32], prediction for arm movements based on the same methodol-

ogy is presented. These approaches also opt to generate human-like motions and investigate

Assessing the Human Planning Horizon

PLOS ONE | DOI:10.1371/journal.pone.0167021 December 9, 2016 5 / 39



the underlying objectives. In [9] the generation of human locomotion paths is addressed simi-

larly to aforementioned works. Here, the problem is reduced to the path data in order to gain

invariance to velocity, although other works consider both aspects to be strongly correlated.

The authors reformulate the problem from a constrained into a convex unconstrained least-

squares optimization. An adapted inverse optimal control approach is applied that incorpo-

rates the discrete Frechét distance and leads to new cost functionals for human locomotion. A

comparative evaluation is shown in [33]. In [34] trajectory prediction methods based on opti-

mal control and spline fitting techniques are compared. Multiple predictions between a cur-

rent position and all estimated goals are taken into account. Selection of the most likely

trajectory is done using minimum curvature variation, path length and execution time. In [35]

authors propose that humans plan full trajectories to a goal rather than a series of steps. Sub-

jects varied their foot placement within repetitions of the same path, suggesting that goal-ori-

ented locomotion is related to higher level trajectory planning rather than step planning.

Humans are also considered as optimal controllers in [36]. Here, the optimal control approach

is used to predict pedestrian behavior in order to improve building layouts. Bascetta et al. [26]

combine the optimal control procedure with Kalman and particle filters. This enables short

term prediction for a human-aware robot cell but only for a single human.

All mentioned approaches consider humans as optimal controllers and aim to identify the

composition of objective functions, which are used to predict human locomotion. For this pre-

diction it is assumed that humans always plan trajectories between their current position and a

defined goal. Our work adopts this methodology but directs the attention to the inherent

aspect of the real planning horizon, which is barely addressed. The results of the work at hand

will provide insights into human behaviors which could improve the precision of existing pre-

diction models and methods.

Avoidance behaviors of humans are often investigated in user studies where an interfering

but not interacting person (often called intruder) crosses the subjects path from the side [4, 10,

11, 37–39]. This case is studied intensively based on optimal control models which are applica-

ble to robot navigation. Interest is particularly set on avoidance strategies employed by the

human being. Authors repeatedly report either velocity or path adaptations as the reasons for

observed trajectories, but a common principle is not defined. Some approaches assume veloc-

ity adaptations as the typical behavior [10], whereas others propose the combination with path

adaptation as the underlying principle [39]. Rule based behaviors following time-to-collision

or minimal-predicted-distance [18, 19], pose another method to model the timing of avoid-

ance movements. These features model the re-planning at specific positions relative to the

obstacle. The most influential idea to our work is followed by [4], which applies an adaptation

to its initial methodology. Albrecht et al. integrate obstacles into their framework which makes

it well applicable to trajectory prediction problems and to predict avoidance behaviors. Indeed,

the authors successfully predict a trajectory of a free-space walk, but need to add a re-planning

structure based on a distance rule to approximate human data that contains disturbances from

an interfering agent. Clearly, the human data shows a behavior that strongly diverges from the

optimal control idea of full observability and a fixed control horizon. The approach to replan

and thus adapt the optimal trajectory leads us to the question whether humans behave in a

similar way and adapt their planning horizon.

The inaccuracy of current optimal control models and the disagreement between different

avoidance studies arises from missing knowledge about underlying parameters and behaviors.

Especially the inaccuracies reported in [4, 10] have not been addressed, yet. We assume that

the planning horizon is one important parameter in this regard. Hence, the results of this work

yield valuable ideas and insights to clarify this divergence. In order to investigate this factor on
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a model based level, the work of Albrecht et al. [4] is used and reimplemented using the

ACADO Toolkit [40, 41].

In contrast to the optimal planning procedures, some works analyzed the reactions of

humans during locomotion and provide behavioral models to describe the short term behav-

iors. These approaches often consider humans as simple controllers that change their behavior

based on a set of rules. Obstacle avoidance is thereby based on distances rather than a predic-

tion horizon. This rule based behavior resembles a very short planning horizon in contrast to

the mentioned optimal control methods. Some related publications are presented in the fol-

lowing. A fundamental work in the field of human locomotion behavior is provided by [20].

Fajen et al. propose a human inspired constant velocity steering model. Their experiments val-

idate the approach for static environments where obstacles may suddenly appear. Fink et al.

[42] evaluate the difference of locomotion paths in real and virtual environments. The results

show that humans are able to project their physical behavior. This supports the use of virtual

environments for experiments regarding human motion. In [43] a velocity based model for

the locomotion behavior of a human crowd is proposed. This model employs the principles of

personal space, least effort and time-to-collision. Using a fixed horizon for taking obstacles

into account is also proposed in [44]. In relation to a planning horizon, obstacles are consid-

ered only within a certain distance and independent of the individual speed. In [45], aspects

that influence the use of an open-loop or closed-loop methodology for locomotion control are

investigated. This matter is specifically investigated for the absence of visual feedback and for

varying velocities. Pham et al. attempt to clarify whether humans use a feedback scheme for

locomotion, given they act like a controller. The consideration of closed-loop and open-loop

structures shows many parallels to our work.

Behavioral models where humans react to obstacles based on a fixed set of rules, resemble a

very short planning horizon. Planning ahead in order to find an optimal solution, as it is the

case for optimal control methods, is not considered. The results of these methods show that

human locomotion behavior is also predictable with a very short horizon. Yet, optimal control

methods yield a better performance when optimal solutions are required to reproduce human

behavior in comparison to a forward simulation of the short-term behaviors.

Human locomotion planning is a complex cognitive process, which is investigated in this

work. Fundamental literature that describes the cognitive processes considered in this work is

posed by Goffman [21] and Reich [15]. Goffman describes the human locomotion behavior as

a series of actions. Humans “externalize” their intention (e.g. their goal) nonverbally by stereo-

typical movements, gaze or heading. Then they try to “sense” what others intend and incorpo-

rate this into their own planning process. Finally, under consideration of sensed information

and own intentions a trajectory is executed. This sequence is repeated constantly in order to

avoid collisions and reach the personal goal. This loop is termed “sense-plan-act” in [15],

resembling a typical cognitive control loop used in robotics [22]. A faster model is proposed as

“sense-control-act” that reduces the trajectory planning to an adaptive steering to the intended

goal position. Apart from that, [15] also poses the question for the correct timing to initiate re-

planning. The present work yields results towards an answer. The authors of [16] propose to

model the cognitive path planning process in the human brain with an MPC approach. They

hypothesize that the cognitive load rises with more complex and longer paths to be planned.

The two cognitive loops proposed in literature obviously postulate a long (start to goal) and

a short (reactive) planning horizon. The “sense-plan-act” idea favors the planning of longer

progression periods, which could be whole trajectories, while “sense-control-act” reduces the

planning to a short term reactive behavior. Similar to the different approaches of modeling

human locomotion behaviors, this disagreement supports our assumption that this matter is

not unanimously defined.
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Perception plays a central role during motion planning and is also a key action in the pre-

sented cognitive models. It is thus considered as an indicator for the planning horizon in our

work. Some experiments in literature are concerned with the visual look-ahead that humans

employ during navigation tasks. Look-ahead during steering around obstacles on a bike in a

virtual environment is considered in [46]. Authors analyze how the fixation of near and far

obstacles develops during the course and find that fixation occurs with regard to the closest

obstacle and switches to the next obstacle at a distinct distance. Look-ahead during foot place-

ment on a predefined parcour is the topic of [47]. Results point towards interesting behaviors

when the final pose is approached. The influence of the planning horizon of a robot on its

apperception is addressed in [37]. It is shown how constant re-planning leads to undesired

behavior if the environment is not fully observable or the planning horizon is too short.

Clearly, findings about look-ahead behavior relate to the planning horizon addressed here.

However, apart from [45], a change in the planning horizon has not yet been investigated

directly or considered as a critical factor in human behavior.

Literature in the area of robotics, optimal control, experimental psychology and clinical

research has not directly evaluated the applied planning horizon within human locomotion

planning as an influential parameter for prediction. The idea of a change in the hypothesized

planning horizon is also not further investigated in the literature regarding control theoretical

models. Therefore, the investigation of the applied planning horizon can contribute towards

identifying the set of behaviors that are necessary for accurate human locomotion prediction.

Problem Description

In the following, a model for the planning horizon applied by humans during locomotion is

defined. The framework comprises a cognitive process suggested in literature and a control

theoretic structure which defines the planning behavior in more detail. Simulations of the

planning architecture allow for basic insights into the effects of a change to the applied plan-

ning horizon. The results will further motivate the investigation of this aspect.

Cognitive Architecture for Human Locomotion

Human behavior during locomotion is described as a repetitive process consisting of: gather-

ing visual information [47], constructing a trajectory to the goal [35] and executing this trajec-

tory. Planning and acting are thereby strongly affected by the human ambition for minimum

effort [24]. A descriptive cognitive process, which underlies human motion, is supplied by

Goffman [21] and Reich [15]. The cycle is summarized as “sense-plan-act” in [15] and already

found application in the early years of robotics [22]. Reich [15] builds upon this model and

proposes a “faster” loop: “sense-control-act”. This structure is cognitively less demanding and

allows a human to walk towards its goal while steering around obstacles without the planning

or re-planning of a detailed path. A realization of this shorter cycle is described within [20] in

the Related Work section. Both cognitive models are applicable to reproduce human locomo-

tion paths, but the actual human planning horizon and whether this horizon can change, is

not yet clarified.

Investigating the human planning horizon requires the measurement of automatic pro-

cesses that occur in a subject’s mind. However, this cognitive loop is neither directly observable

for sensors nor derivable from questionnaires. The described models are therefore an indica-

tion of how an experimental setup is able to measure the process. Only input and output infor-

mation are measurable entities. Following the models, the input consists of visual information

and the output is posed by the traversed trajectory.
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Accordingly, an experiment needs to be designed that asks a subject to plan and execute a

motion in a visually observable environment. Further, in order to trigger changes in the plan-

ning horizon, the experiment needs to provide fully and partially observable situations. As

mentioned before, the complexity and therefore the observability of a virtual environment is

easily adapted by changing the number of obstacles. Thus, the development of the gaze and

trajectory data is evaluated, while subjects are presented with various situations. The expecta-

tion for simple unobstructed environments is to observe a smooth and immediate movement

from a defined start to a defined goal location. Measured sensing data, i.e. gaze, is expected to

focus on the goal mostly. On the contrary, a jerky motion is expected for partially observable

environments, with stepwise movements (acceleration and braking) and delimited looking

ahead. Following this, we expect that the human planning horizon is proportional to the

applied visual anticipation of the person. If the extent of visual anticipation is a precondition

for the planning horizon, a correlation to the smoothness of executed motions must be visible.

Given that the result of a measurement is a two dimensional planar trajectory ξ = [(px(t), py(t))|
t = 0, . . ., T], which describes a change of position over time, between a start point (px(0),

py(0)) and an end position (px(T), py(T)). The trajectory ξ and especially the velocity profile

vðtÞ ¼ _x, are smooth between ξ(0) and ξ(T), if the obstacles are well predictable for the subject.

This implies that the trajectory smoothness is proportional to the planning horizon and the

visual look-ahead. Given a complex scenario, smoothness is expected to be maintained

between an arbitrary starting point and a position close to a predicted obstacle trajectory. It is

assumed that smoothness diminishes to a concatenation of movements for more complex

environments. Generally, complex situations pose a high level of uncertainty for a human

agent. Therefore, the applied planning horizon is assumed to depend on the uncertainty about

an environment.

Overall, the cognitive models and literature about human locomotion lead to a set of pro-

portions which are measurable during an experiment: visual fixation, smoothness of velocity

and path and the complexity of an environment, which we assume to correlate with observabil-

ity and uncertainty [16]. From these factors, adaptations of the planning horizon of a human

subject are deduced. The specific methods for measuring these aspects are explained in detail

in the section regarding the Empirical Exploration of the Human Planning Horizon.

Planning Horizon in NMPC Locomotion Prediction

In this section, the influence of the planning horizon in human locomotion prediction is elabo-

rated. The basic problem is posed by a moving human which is disturbed in his progression by

another agent in the same environment. Optimal control methods usually yield accurate pre-

diction results for this situation, if the interfering agent is well predictable. These methods

assume a planning horizon that spans the whole trajectory between a start pS(0) and an end

position pG(T). Optimal control thereby follows the theory that humans intend to walk with

minimum effort [23]. In a fully observable environment, where the trajectories of all agents are

reliably predicted, humans are able to follow this principle. Thus, optimal control methods will

produce reliable predictions. However, many experiments in literature show that humans tend

to deviate from this minimum effort behavior [4, 10, 11]. Predictions with optimal control

methods are shown to be unable to reproduce the trajectories observed in these cases. Hence,

human locomotion appears to follow different suppositions for some situations. Optimal con-

trol based prediction approaches do not generalize to these changes in behavior and therefore

need to be improved. Fig 1 illustrates the results of these previous investigations. In order to

obtain a suitable prediction for this case, the optimal control structure is changed to an MPC

structure in [4]. This approach basically re-plans the trajectory based on a simple distance rule.
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It appears that humans do not necessarily consider all obstacles from the beginning and apply

a shorter planning horizon than the optimal control methods assume.

Given that even a single obstacle leads to sudden avoidance behaviors, it can be assumed

that humans change their behavior if they are confronted with uncertainties. For example,

unreliable predictions for other agents or high complexity of the environment (e.g. many

obstacles) lead to large uncertainties for a human. Surprising behavior of an agent, like a sud-

den change of direction, may have equal effects. These situations require the flexibility from

humans to omit their minimum effort strategy. Our work summarizes situations with high

uncertainty as partially observable environments and proposes that humans alter their plan-

ning horizon to cope with them. The subsequent simulations investigate this proposition and

show that a shorter planning horizon reproduces the observed behavior in [4].

In order to illustrate the problem in more detail, humans are modeled using NMPC, as it is

proposed in [4, 35]. This allows to analyze effects of the adaptation of the planning horizon

within the modeled human locomotion behavior. Notation from [41] and simulations with the

ACADO Toolkit [40] are used to recapitulate the problem. The NMPC model gives an estima-

tion of the trajectory for the considered situation. As the controls are not applied to a system,

the simulation results resemble a model based prediction rather than the controlling of a

human. For prediction of human locomotion, control and prediction horizon have equal

length TC = TP. This originates from the incorporation of a goal pose which is necessary to

constrain the infinitely possible motions to a reasonable set. Based on that, a two-point bound-

ary value problem is solved directly at each time-step δ. The initial boundary is formed by the

current closed-loop states x(t) and the closed-loop controls u(t) at the starting time t. As a final

boundary the goal pose pG(T) = (xG(T), yG(T), φG(T)) is used which also serves as set-point.

Solving the problem yields state predictions �xðtÞ and the inputs �uðtÞ. Fig 2 illustrates the

NMPC process.

As already proposed in [4, 7, 8], the dynamic model _xðtÞ ¼ f ðxðtÞ;uðtÞÞ with x(0) = x0,

resembles a unicycle:

_xðtÞ :¼
d
dt

pxðtÞ
pyðtÞ
φðtÞ
vðtÞ
oðtÞ
avðtÞ
aφðtÞ

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

¼

vðtÞ cos ðφðtÞÞ
vðtÞ sin ðφðtÞÞ

oðtÞ
avðtÞ
aφðtÞ
u1ðtÞ
u2ðtÞ

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

;

Fig 1. Illustration of an observed deviation from the typical avoidance behavior of humans.

doi:10.1371/journal.pone.0167021.g001
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with constrained states and inputs:

xðtÞ 2 X ; 8t � 0;

uðtÞ 2 U ; 8t � 0;

where xðtÞ 2 Rn and uðtÞ 2 Rm. Following [41], the sets X and U are compact, e.g.

box constraints:

X :¼ fx 2 Rnjxmin � x � xmaxg;

U :¼ fu 2 Rmjumin � u � umaxg;

Fig 2. Illustration of the NMPC process.

doi:10.1371/journal.pone.0167021.g002
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where xmin, xmax, umin, umax are constant vectors. Within NMPC, an optimal control problem

with finite horizon is solved repeatedly by optimizing an objective functional J with runtime

cost ϕ weighted by θi:

argmin
�uð�Þ

JðxðtÞ; �uð�Þ;TC;TPÞ;

with

JðxðtÞ; �uð�Þ;TC;TPÞ :¼ yi

Z tþTP

t
�ð�xðtÞ; �uðtÞÞdt;

subject to equality constraints:

_�x ðtÞ ¼ f ð�xðtÞ; �uðtÞÞ with �xðtÞ ¼ xðtÞ;
�uðtÞ ¼ �uðtþ TCÞ; 8t 2 t þ TC; t þ TP½ �;

TP free;

inequality constraints:

�u 2 U ; 8t 2 ½t; t þ TC�;

�x 2 X ; 8t 2 ½t; t þ TP�;

and boundary conditions:

bð�xðtÞ; �xðt þ TCÞ; �uðtÞ; �uðt þ TCÞÞ ¼ 0:

Iteratively solving this optimization problem results in the open-loop solution for the prob-

lem �u�ð�;xðtÞ;TPÞ : ½t; t þ TP� ! U . The optimal solution for the closed-loop system is a

sequence of open-loop solutions:

u�ðtÞ :¼ �uðt;xðtÞÞ with t 2 ½t; d�:

The “nominal closed-loop system” is:

_xðtÞ ¼ f ðxðtÞ;u�ðtÞÞ

For the direct solution a finite parametrization of the controls is used, which leads to a finite

dimensional dynamic optimization problem. Therefore, the controls are constant over each

sampling interval M ¼ TP
d

such that �uðtÞ ¼ �u i for τ 2 [τi, τi+1) with τi = t + iδ. Applying a

“sequential approach” [41], the control vector �u i ¼ f�u1; � � � ; �uMg is optimized, resulting in

the optimization problem:

argmin
�u i

JðxðtÞ; �u i;TPÞ

where only x(t), the input vector �u i and TP = t + Mδ appear. With this NMPC framework and

the objective function as well as the constraints from [4], simulation results are obtained that

highlight the influence of the planning horizon. We compare an optimal control (OC) solution

with the NMPC solution to determine which method replicates the behavior shown in litera-

ture best.

The OC method uses a time horizon of 7.2s which covers the whole trajectory from the

start to the end. For the NMPC the planning horizon is set to TP = TC = 2.4s. The set-point at

pG(T) = (6.0, 0.0) is necessary to constrain the solution space of the unicycle model to a reason-

able set. Most constraints in the objective function of [4] also depend on this final pose. Thus,

it is assumed that the set-point is known, whereas in a prediction scenario this is not the case.

Assessing the Human Planning Horizon

PLOS ONE | DOI:10.1371/journal.pone.0167021 December 9, 2016 12 / 39



Omitting the final pose in order to generate a more generalizable OC based prediction method

is not in the focus of this work. Fig 3 illustrates the comparison of the methods. We consider

the scenario where an intruder is crossing the human’s path at 90 degree and interferes with its

intention to walk straight to the goal. The intruder starts its slow walk with 1.0m/s at a position

(3.0, −3.0), which is also three meters away from the crossing point of the straight paths of

both agents. A subject has two options in this case, to pass behind or in front of the intruder.

With the desired velocity of the human set to 1.4m/s, see [4], the OC and the NMPC solution

let the interfering agent pass first. The black path in Fig 3 is the result of the OC method,

which considers a fully observable environment. Clearly, the avoidance maneuver is initiated

right from the beginning, because the future positions of the interferer are known. Controls,

velocities and states progress smoothly without extensive energy expenditure. The velocity v(t)
reveals, that the OC solution brakes and accelerates to let the intruder pass. For comparison,

the colored paths show the NMPC result. The obstacle is not considered in the first part (blue)

because the planning horizon is reduced. Within the second part (green), the planning horizon

reaches the obstacle and a reaction is initiated. State and control plots reveal, that this reaction

requires far higher energy expenditure than the OC solution. The velocity plot also indicates

the braking, but a smooth progression is not achieved due to the reconsideration of the prob-

lem after the first prediction horizon. The last part of the NMPC result (red) predicts a swerve

back to the set-point, which shows smooth states and controls due to the free path. Necessary

controls during the shorter planning horizon illustrate why the OC solution is usually pre-

ferred. Yet, these results appear very similar to the observations of related literature, as illus-

trated in Fig 1.

The differences in the paths from these simulated situations match the statements of [4, 10],

that humans do not strictly follow the OC idea. Within mentioned work, the OC approach

shows inaccurate predictions. It is further shown, that humans seem to resolve collision situa-

tions with a shorter planning horizon. Presented simulations support this observation. We fol-

low the idea that humans walk smoothly from start to goal if no information is hidden for

them. In case of unexpected events, unreliable predictions or other uncertainties, we assume

that humans employ quick adaptations which lead to suboptimal and jerky recovery motions.

OC is able to produce a prediction for the optimal trajectory, whereas the NMPC solution is

Fig 3. OC solution (black) compared to NMPC solution with the shorter planning horizon (three steps colored). States and controls are subject to

time (t). The path of the intruder that disturbs the motion is depicted as a dashed line. The lengths of the lines match the time horizons.

doi:10.1371/journal.pone.0167021.g003
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not necessarily optimal but resembles the solution for a shorter planning horizon. NMPC is

further capable of attuning to model inaccuracies and changing environments, e.g. when a

dynamic obstacle suddenly stops or its prediction is inaccurate.

Viewing human locomotion as a NMPC framework, allows us to correlate the human plan-

ning horizon with a methodology. As the simulations illustrate, changes of this aspect with

respect to environment observability, lead to very different results. Considering the influence

of the planning horizon on prediction accuracy, it appears beneficial to investigate this aspect.

Accordingly, the properties of the planning horizon that humans employ during locomotion

are explored within subsequent experiments.

Empirical Exploration of the Human Planning Horizon

This section describes the experimental design which is developed to tackle the difficulty of

measuring the planning horizon employed by humans. The experiment is designed as a study

with human subjects that perform a goal-directed motion. As mentioned before, measuring a

cognitive process is not achievable using sensors. An experiment needs to visualize the aspects

that are associated to the process, to eventually allow for conclusions about the underlying

planning behavior.

Experiment Design

At first, a setup is needed where a subject is required to perform a goal directed motion. A

large room equipped with a tracking system or a virtual environment are suitable setups, as

they allow to measure the motions. In order to measure changes in the applied planning hori-

zon, the experiment must feature multiple comparable conditions. Thus, a subject will perform

the goal directed motion multiple times in varying environments. Generally, the environments

will differ in the number of moving obstacles that need to be passed without colliding. There-

fore, stable environment conditions must be provided for all subjects to support comparable

and unbiased data. This includes that interfering obstacles move equally for all repetitions of

the experiment. Within a motion capture area, where subjects walk freely to their goal, moving

obstacles are representable by interfering human agents. However, providing consistent condi-

tions for all subjects is exceedingly difficult to achieve in such a setup. A solution would be to

use multiple robots or other controllable hardware which behaves in exactly the same manner

towards all subjects; but apart from the excessive effort and cost, safety for the subjects is a

major concern with this approach. Therefore, we consider virtual environments as they offer

measurability and control of all parameters as well as flexibly adjustable complexity. Walking

in virtual reality unfortunately requires hardware that was not commonly accessible when the

experiments were conducted. Hence, an alternative is needed that allows subjects to perform a

goal directed motion in a natural and intuitive way. Since the planning of arm motions and

locomotion show comparable aspects and are based on similar control theoretic foundations

[8, 14], arm motions were considered as a substitute. In literature, the direct comparison of

both motion types reveals clear similarities [48, 49]. It was also shown that locomotion and

arm motions are controlled by the same region of the brain [50]. Models developed to describe

arm or hand movements are also successfully applied to model locomotion [32, 35]. For this

substitutional setup a kinesthetic device with a virtual representation of the motion was avail-

able [51]. The “Desktop Kinesthetic Feedback Device” (DeKiFeD) [51] is a four degree of free-

dom (DoF) interface. By using this device, subjects perform a natural and intuitive motion

with their arm to follow a trajectory which they have planned. The “sense–plan–act” model is

triggered as subjects see their progress as well as obstacles in the virtual representation. This

enables us to ask subjects to perform goal-directed motions in an observable and fully
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controllable environment. Since it was not clear whether the experiment yields data to support

the hypothesis of a changing planning horizon, we choose this setup as it poses an appropriate

trade off between installation effort and expected outcome.

Measuring Parameters of the Planning Horizon. With subjects performing motions in a

virtual environment, we are able to provide them with different conditions to elicit changes in

their planning horizon. As it is not possible to directly measure the planning horizon, other

parameters must be observed to gather interpretable information. As stated in [16], with an

increasing complexity of the environment (e.g. dynamic obstacles), cognitive load for locomo-

tion planning will rise and a shorter planning horizon is employed. However, measuring the

cognitive load is not sufficient within the proposed study setup, as the increase in cognitive

load due to planning may be superimposed by the effort for steering and observing the envi-

ronment. This issue is tackled by recording other parameters which resemble the planning

horizon. With respect to the overall design, gaze tracking offers a direct measurement of the

“sense” input to the cognitive process. Under the assumption that the planned trajectory is

restricted to the observed part of the environment, a human is expected to look ahead less far

if the planning horizon is short. In addition, measuring path and velocity data yields further

information about the smoothness of the planned motion. We assume that subjects avoid one

or two moving obstacles easily, while maintaining smooth progression. However, the smooth-

ness of both path and velocity should diminish with a shorter planning horizon in more com-

plex scenarios.

Triggering Adaptations of the Planning Horizon. In order to investigate the planning

horizon, the experimental conditions must demand a subject to gradually decrease the plan-

ning horizon. With respect to the Problem Description section, this decrease must be triggered

by increasing the uncertainty for the subject. As mentioned, higher uncertainty is achieved by

rendering the environment partially observable due to a rising complexity of the situation. For

the virtual environment, this is realized by increasing the number of moving obstacles. A sub-

ject is able to track and predict a few obstacles in its way, but with increasing numbers the

uncertainty will rise. This way, the gradual influence is realizable and different situations are

comparable.

We assume that subjects attempt to solve the posed motion problem optimally in case of a

simple and therefore fully observable environment. This allows for the comparison whether

subjects omit the globally optimal solution when a shorter planning horizon is necessary. An

optimal solution is defined by the subject’s tasks. The task description defines that the goal

position must be reached with least possible collisions, whereas the elapsed time is not of any

meaning and the collisions are not counted. In order to solve the posed motion problem opti-

mally, a simple straight motion from the start to the goal position is sufficient. Indeed, the

study setup provides an optimal solution in every condition, which allows to move to the goal

by a single smooth motion. Owing to the structure of the virtual environment the opportunity

for this optimal path appears periodically, but specifically two seconds after the start of a trial.

In correspondence to [52] a human is capable of observing and assessing the environment in

less than two seconds. But the subject must be capable of observing and predicting all obstacles

in order to find this solution. Note, that owing to the supplied top view, subjects see all obsta-

cles at every time step of their motion planning. Yet, a subject may also move to the goal on a

straight line while avoiding collisions step by step.

The hypotheses about the planning horizon and the deviations from an optimal solution

are now investigated by measuring the paths, velocities and major gaze fixation areas of each

subject. Rising numbers of obstacles are supposed to result in partial observability and a reduc-

tion in the planning horizon. Accordingly, fluctuating velocities, lower average look-ahead

and deviations from the theoretically optimal path are the expected consequences.
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Setup of a Virtual Environment. Within the virtual environment the smooth and straight

motion is defined as the optimal solution baseline. For triggering changes in the planning hori-

zon, a varying number of moving obstructions is integrated. With the rising number of obsta-

cles, complexity and thus uncertainty is increased. The experiment therefore features various

scenarios, which are in the following also called “levels of complexity” or “levels”. An example

of the virtual environment shown to the participants is illustrated in Fig 4. Its projection is 2 m

away from the input device and thus 105 cm wide and 145 cm high. All levels have the same

starting field, which is always located at the bottom center and printed in a pale blue. The goal

field is adversely at the top center and colored in a pale orange. The marker which is moved by

the subject is represented by a dark blue box. All objects are placed on a white background,

1500 × 1100 pixel in size. At the edges, a virtual force keeps the subjects from leaving the

defined workspace. Obstacles are integrated as static and moving blocks. In order to predeter-

mine the motion of the obstacles, they only move on a straight line from left to right or vice

versa. Hence, prediction is simple for a subject but becomes complex with an increasing

Fig 4. Virtual environment. Obstacles are shown in black, start position on the bottom center (blue) and the goal position at the top center (pale orange).

doi:10.1371/journal.pone.0167021.g004
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number of these objects. Prior tests revealed that a single obstacle is very easy to circumvent.

For multiple obstacles, a subject may simply wait until the straight path is free, because there is

no time constraints for the task. By adding multiple obstacles that re-enter the environment, a

set of moving gaps is created which makes the task considerably harder. Yet, these “obstacle

lines”, as shown in Fig 4, remain easy to pass.

Pilot-Study for Parameter Definition. In addition to the varying number of obstacles,

different velocities are used as well. The reason is that very slow obstacles are extremely easy to

pass, such that a change in planning horizon might not be needed. Thus, the variance in speed

and obstacle numbers allows us to investigate the planning horizon more precisely. As the

number of trials rises with variability, we limit the velocities to three types, slow, medium and

fast. Choosing these qualitative velocities, however, is dependent on human perception. There-

fore, a pilot-study is conducted with 21 subjects (12 male and 9 female participants). All sub-

jects are presented with an empty environment and are supposed to move three times from

the start to the goal. Participants are only asked to move at slow, medium and fast velocity,

which they are allowed to define themselves. Thereby, subject velocities are transformed to

progression in pixel-per-frame (PPF) by factors that define the relation of measured data to

size and resolution of the visualized environment.

Path and velocity data is collected from 21 subjects in this pilot-study prior to the experi-

ment, in order to define acceptable obstacle velocities. For calculation of the mean velocity

along the y-axis, the data is fitted and thereby smoothed with splines. Afterwards, a mean and

a 95% confidence interval are calculated, see Fig 5. Women are not significantly slower than

men, although the DeKiFeD does require force to be applied. Consequently, data from women

and men is evaluated equally. Velocity perception is very individual, leading to a wider range

of speeds. Some subjects are four times faster than others, despite equal instructions. The max-

imum of the combined mean is used for the fast and slow version to define boundaries. Trans-

forming velocities to pixel-per-frame leads to 1 PPF for slow and 7 PPF for fast obstacles.

Following this scheme, the medium velocity would be 2 PPF, which is just imperceptibly faster

than the slow variant. Therefore, the average over all trials is chosen as a medium velocity,

which leads to 3 PPF. Another important result of the pilot study is that none of the partici-

pants has difficulties in handling the input device. The DeKiFeD supplies an intuitive way of

moving the virtual marker and is therefore appropriate to investigate aspects of human motion

planning. With respect to the posed setup, averaging of the recorded velocities results in

Fig 5. Pilot-study data of the velocities along the y-axis for the individual perception of slow, medium and fast. Red corresponds to data from

female participants, blue data from male and green resembles the combined result. Solid lines represent the mean and dashed lines confine the 95%

confidence interval.

doi:10.1371/journal.pone.0167021.g005
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obstacle velocities: 1 PPF for slow, 3 PPF for medium and 7 PPF for fast. The PPF unit is cho-

sen to resemble the progression of an obstacle over frame-rate, whereas the visualization runs

with 50 frames per second (FPS).

Experimental Setup. The final experimental setup is shown in Fig 6. Gaze data is

recorded with a Dikablis eye-tracker [53]. After calibration the transformations between the

eye-tracking device and the observed environment are retrieved. Thus, the recorded focus

points are transformable to the image space with the subject’s marker position. The subject’s

trajectory data may then be evaluated with respect to gaze fixation. For recording the arm

motions the four DoF interface DeKiFeD is used [51]. It offers three translational and a rota-

tional DoF within a working area of 40 cm × 40 cm. Forces applied by the user are measured

with a 6-DoF force-torque sensor (JR3 Inc., Woodland, CA, USA) and transformed into accel-

eration and velocity of the virtual position marker. By locking the upward facing axis, subjects

are restricted to move in two dimensions.

In order to gain data for different situations and with varying complexity levels, a set of ten

levels is designed. Confronting subjects with a rising order of complexity probably yields

Fig 6. Setup of the experiment. The subject on the right wears the Dikablis Eye-Tracker (1), while using one part of the DeKiFeD (2) to move the virtual

marker (4) through the virtual environment (3). The motion begins at a starting position (6) and must end at a distinct goal (7), while the subject must avoid

collisions with the moving obstacles (5).

doi:10.1371/journal.pone.0167021.g006
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significant effects, when comparing the first and the last level. However, subjects are presented

with the levels in randomized order, to control for any learning effects. The ten levels have the

following structure:

1. The first level is an empty field, to test what optimal trajectory subjects choose in this virtual

environment.

2. The second level contains one static obstacle in the middle of the field, to cause smooth but

adjusted paths.

3. The third level has one horizontal line of dynamic obstacles moving from right to left with a

medium velocity.

4. In the fourth level the single line is moving diagonally from bottom right to top left,

inspired by [11].

5. Two horizontal obstacle lines enter the field from the right within the fifth level, where the

first and closer line moves at a slow velocity and the second one with medium velocity.

6. Equal obstacle numbers and speeds appear in the sixth level, yet the second line moves

from the left to the right.

7. The seventh level is similar to the sixth, but obstacles move diagonally from bottom right to

top left and the second line reversely.

8. In the eighth level, four obstacle lines are to be passed which move horizontally from the

right side to the left. The first line is slow, the second and the fourth line medium and the

third line fast.

9. Level nine is equal to level eight, but the second and the fourth obstacle line move from left

to right.

10. Complexity is further increased in level ten as lines one and four switch from slow to

medium speed, line two slows down from medium to slow speed and line three switches

from fast to medium speed, if the subject gets as close as 100 pixels. In addition, line two

and three also reverse their moving direction.

With this last scenario we intend to observe how subjects manage these ‘interruptions’ and

the inherent uncertainty within their motion planning. The experimental task is performed

twice with each level of complexity, hence resulting in a 10 (complexity) × 2 (trial – run)

within-subjects design. Repetition of the ten levels is important to analyze the effects of learn-

ing regarding the level structure and experience with the handling of the DeKiFeD.

Participiants

An opportunity sample of 10 female and 31 male participants, aged 18 to 33 (mean age = 24

yrs., SD = 4 yrs.) took part in the main study, five of whom were left-handed.

Experimental Procedure

The experiments are approved by the ethics committee of the Technische Universität Mün-

chen and conformed to the principles expressed in the Declaration of Helsinki. A written

informed consent had been obtained from all participants prior to each experiment run.

Subjects were instructed to reach the goal position whilst avoiding any obstacles but that

there would be no counting of collisions and no time to beat. Afterwards, each subject was

equipped with the eye-tracking system and the headset position and the alignment of eye- and
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field-camera were adjusted. With the subject standing at its position, the eye tracking is finally

calibrated with respect to eye color and other aspects. Prior to the experiment scenarios, sub-

jects were allowed to familiarize themselves with the handling of the DeKiFeD and the virtual

environment. When the respective subject felt comfortable, the experiment started with a ran-

dom level. The ten scenarios were then completed in random order twice. Upon completion of

the experiment, a questionnaire was issued to every subject. The questions assess how difficult

and exhausting the tasks were perceived to be by the participants.

Main Experiment Results

Within our experiments, position and velocity data of 41 subjects is captured at 1 kHz and the

corresponding eye-tracking data at 25 Hz. At first, the data is evaluated qualitatively in order

to determine the effects of the level complexity. Quantitative statistical evaluation is conducted

afterwards to elaborate found indications of changes in the planning horizon and to determine

the probability with which the observed effects might generalize beyond the present study.

Qualitative Data Evaluation

The following section highlights noteworthy findings and gives an interpretation with regard

to the human planning horizon. The inclination and movement direction of obstacle lines

seems to have negligible effects on subject behavior. For example, the scenarios four and

seven, which cover diagonally moving obstacles in one and two lines, respectively, show very

similar results when compared to their counterpart scenarios three and six with horizontally

moving obstacles. The most relevant gaze data for the comparison of behaviors is therefore

created in the levels one, two, three, six and ten. Across these levels, the complexity is raised

significantly with additional obstacle lines.

The subsequent qualitative evaluation considers gaze, path and velocity data of these levels,

in order to find adaptations in the planning horizon of the human subjects. In order to evalu-

ate gaze data, the virtual environment is divided into areas. One covers the start, another one

the goal, and other zones are defined between the spaces start-to-first-obstacle, obstacle-to-

obstacle and obstacle-to-goal. Gaze data is then distributed according to these categories such

that plots reveal what the subjects focus on while moving in one of the areas. Fig 7 shows the

color-based partitioning for a level with four obstacle-lines.

In level one, see Fig 8, subjects scan the empty area and then progress to the goal which they

focus. The figure shows blue dots for gaze-points created while the subject remained at the

start and green dots that represent the gaze during the motion to the goal. Clearly, subjects

scan the area in front at first and the progress straight to the goal position. A planning horizon

covering the full motion appears reasonable. The few orange dots indicate the gaze data

recorded when the subject reaches the goal position. Across all levels we observed that subjects

tend to look back. This is related to the structure of the experiment, because subjects are

required to return to the starting position after each level in order to reset the system and start

the next random level. Indeed, the field is free like the first level when subjects reached the goal

and need to reposition to the start.

The single static obstacle in level two and the moving obstacle line in level three already

receive large parts of the attention. The blue dots in Figs 9 and 10 indicate that the scanning of

the area ends mostly at the obstacle. Yet, it is possible that the remaining area is processed by

the peripheral field of view. The green dots now correspond to the area between the start posi-

tion and the first obstacle. Most of the gaze is dedicated to the obstacles, although it is not mov-

ing in level two. Once the obstacle is reached, gaze slowly shifts to the goal, as the teal dots

indicate. Similarly to the problem posed in the Problem Description section, humans seem to

Assessing the Human Planning Horizon

PLOS ONE | DOI:10.1371/journal.pone.0167021 December 9, 2016 20 / 39



reduce their planning horizon to the most immediate obstacle at first. However, position and

velocity data will show that subjects perform very smooth trajectories in level two and are able

to stick closely to the optimal straight path in level three.

In the following levels, gaze data shows even less look-ahead. Even in the scenarios with

only two lines, attention is mostly on the obstacles. Figs 11 and 12 illustrate this. Red dots now

cover the area between the two obstacle lines, all other colors are assigned as before. Notably,

the red and green gaze points are mostly between the obstacles which are the most immediate

at that position. Since the goal or the area past the obstacles is not in the focus, we assume that

the planning horizon is constrained to find a solution for passing the obstacles.

These effects become even stronger with four obstacle lines. The color-to-area alignment is

now blue-pink-violet-green-red-teal-orange covering the spaces from start to goal. In Figs 13

and 14, gaze-points illustrated in pink cover the first two obstacle lines, proposing a larger

planning horizon. Violet, red and green dots, however, are again constrained to the areas

between obstacles, indicating no further looking-ahead. A comparison of level one and nine or

ten suggests, that humans do reduce their planning horizon. Yet, this behavior may be also

Fig 7. Classification zones for gaze data in a scenario with four obstacle-lines.

doi:10.1371/journal.pone.0167021.g007
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interpreted as a motion towards the most immediate obstacle which is then passed. In fact, fur-

ther areas might be covered by the peripheral vision of the subject.

Therefore, path and velocity data must be considered to gain insight how far the planning

horizon reaches. Following plots are color coded such that blue depicts male right-handed sub-

jects, green depicts male left-handed subjects, red depicts female right-handed subjects and

pink is used for female left-handed subjects. Handedness, however, does not have any forma-

tive influence on the results. Fig 15 shows the position and velocity data of the first scenario.

Without any obstructions the path and velocity are smooth and lead directly from start to goal.

This supports the proposition that the planning horizon follows the OC idea for this simple

level.

The single static obstacle in scenario two is easily circumvented by all subjects with smooth

paths, see Fig 16. This argues against the shorter planning horizon. Velocity data shows that

subjects brake in front of the obstacle and speed up to go around it. A smooth and continuous

progression of the velocity is expected but it appears that the planning horizon does not cover

the full distance to the goal. Visible loops in the velocities originate from collisions, where the

marker is stopped and moves backwards slightly until new speed is gained. In scenario three,

Fig 8. Gaze-points created in level one.

doi:10.1371/journal.pone.0167021.g008
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see Fig 17, the single obstacle line does also not pose a problem for most subjects. Both path

and velocity remain smooth with some visible braking in the velocity plot. This braking com-

bined with the fact that most subjects moved straight towards the obstacle at first, allows for

the assumption that some participants relied on a shorter planning horizon. Yet, the majority

of the subjects follows the shortest path solution and achieves smooth progression.

For the case of two obstacle lines, velocity and path remain mostly smooth. Fig 18 visualizes

the data captured in level six. Indeed, as the gaze-points revealed, many subjects are not able to

surpass both obstacle lines at once. Their planning horizon seems restricted to the area

between the obstacles as the braking in the center of the velocity plot reveals. Yet, the majority

of the subjects follows the shortest path and produces smooth velocities.

The scenarios nine and ten add another two obstacle rows to the environment. With the

added complexity a change in the behavior must be visible, if the hypothesis about the correla-

tion of uncertainty and planning horizon holds. In fact, the data changes drastically as Figs 19

and 20 show. With the complexity of the ninth level, subjects are often not able to apply

smooth paths. The goal-directed motion is therefore reduced to stepwise progression. Path

Fig 9. Gaze-points created in level two.

doi:10.1371/journal.pone.0167021.g009
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data deviates strongly from the shortest path solution. Velocity data reveals an increase in

braking, especially in front of the third and fourth obstacle line. Thus, smoothness of the tra-

jectories is diminished. Taking into account gaze data, the hypothesis holds that subjects are

not able to plan a path directly to the goal. Clearly, subjects progress by passing one obstacle

line after the other. Indeed, two subjects noticed and used the free optimal path which appears

after 2s. If the hypothesis holds that humans reduce their planning horizon within uncertain

situations, the observed effects of level nine must intensify if further complexity is added.

Thus, in level ten the obstacles additionally change their velocity and direction of movement.

The extra uncertainty actually enhances the mentioned aspects even more, as Fig 20 shows.

Paths now differ even more from the straight path. The velocity data contains increased signs

of braking and collisions.

This qualitative data evaluation substantiates the assumption that humans alter their plan-

ning horizon in order to cope with complex environments. Subjects focus the most immediate

obstacle and pass it before the next obstruction is considered. Further, subjects deviate from

the shortest path and omit the global optimum. The velocity data also suggests that the subjects

Fig 10. Gaze-points created in level three.

doi:10.1371/journal.pone.0167021.g010
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are not able to plan far ahead in complex environments, in order to avoid braking between

obstacle lines. In the following, these results are further elaborated by statistical evaluations

Statistical Data Evaluation

The statistical evaluation of the acquired data focuses on two distinct parameters. Firstly, the

visual look-ahead is considered, where the position of the marker in the virtual environment is

compared with the focus of synchronized gaze. Secondly, the velocity profile is analyzed

because smooth velocities indicate a continuous motion and thus a large planning horizon and

vice versa. Finally, the deviation from the optimal path is considered, whereby smaller devia-

tions would indicate a larger planning horizon.

Visual Look-Ahead. One indicator of the planning horizon in the experiment may be the

distance between the human’s visual focus of attention and the position of the participant’s

cursor. Hence, in order to ascertain whether the planning horizon changed with increasing

complexity of the scene, eye tracking data were evaluated in combination with position data

on the participants’ cursor. Specifically, the mean distance between participants’ visual focus

Fig 11. Gaze-points created in level five.

doi:10.1371/journal.pone.0167021.g011
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and their cursor’s position was compared over the different complexity levels. Due to missing

data, 10 data-sets were excluded from the analysis, leaving a sample of N = 31. Of the 620

remaining values, 25 individual missing values (= 4.05% of the data-set) were replaced by the

group mean.

A repeated-measures 10 (complexity) × 2 (trial – run) ANOVA showed a non-significant

(accepted α-level p = .05) run main effect (F(1, 30) = 0.13, p = .73), indicating that over all lev-

els of complexity, the distance between the participants’ cursor and the point of visual fixation

did not vary significantly between the first and second run. The ANOVA further showed a

small but significant main effect of complexity on the mean fixation-cursor distance (F(5.73,

171.86�) = 4.82, p< .001, ηp
2 = .14, �with Greenhouse-Geisser correction). The mean values

indicate a trend of increasingly smaller distances with increasing level complexity. Post-hoc

contrasts to the baseline (level 1) confirm that the distance is significantly smaller in most com-

plexity levels (with the exception of levels 2 and 5) compared to the visual behavior shown in

the fully observable environment in level 1. Mean values, standard errors and the results of the

post-hoc contrasts to the baseline (level 1) are summarized in Table 1.

Fig 12. Gaze-points created in level six.

doi:10.1371/journal.pone.0167021.g012
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Bonferroni-adjusted post-hoc paired-samples t-tests that compared the visual look-ahead

between levels 3, 6 and 10 indicate that in comparison to the most complex level 10, subjects

looked ahead of their cursor a significantly longer distance in the less complex levels 3 (t(30) =

2.86, p< .016) and 6 (t(30) = 2.60, p< .016), whereas the difference between levels 3 and 6 was

not significant at the adjusted α-level of p = .016(t(30) = 0.22, p = .83). Thus, the statistical anal-

yses indicate that the planning horizon, as indicated by the visual look-ahead, shortens with

increasing scene complexity.

Smoothness of Velocity. Further analyses investigated the effects of scenario complexity

on participants’ variation of movement velocity. Using Roy’s largest root, a repeated-measures

MANOVA indicated a significant medium-sized main effect of complexity on velocity varia-

tion on x- and y-axis (Θ = 2.62, F(9, 351) = 102.02, p< .001, ηp
2 = .72). Follow-up ANOVA

showed that on both axes, velocity varied significantly between the different complexity levels

with large and medium effect sizes on the x- and y- axis, respectively (x-axis: F(9, 351) = 99.17,

p< .001, ηp
2 = .72; y-axis: F(9, 351) = 17.95, p< .001, ηp

2 = .32). There was also a large and sig-

nificant multivariate main effect of run (Θ = 3.74, F(2, 38) = 70.97, p< .001, ηp
2 = .79), and a

Fig 13. Gaze-points created in level nine.

doi:10.1371/journal.pone.0167021.g013
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small yet significant interaction effect (Θ = 0.18, F(9, 351) = 7.04, p< .001, ηp
2 = .15). Looking

at the mean values, it seems that the velocity variation on the x-axis was significantly larger on

the first run than the second run, while it was approximately similar between runs on the y-

axis.

Mean values indicate a tendency towards greater velocity variations on the x-axis, but not

the y-axis in levels with higher complexity compared to levels with lower complexity. Notice-

able difference is level 2, which contains 1 static object and seems to encourage more extreme

x-axis velocity maneuvers. Post-hoc contrasts to the baseline indicate that the velocity variation

on the x-axis is significantly smaller in the baseline condition (level 1) compared to movements

in all other levels. On the other hand, velocity variation on the y-axis is significantly larger in

the baseline condition compared to the variation observed in levels 2 and 5-10. Tables 2 and 3

summarize the results of the baseline contrasts.

Bonferroni-adjusted post-hoc paired-samples t-tests comparing the x- and y-axis velocity

variation between levels 3, 6 and 10 indicate that in comparison to the most complex level 10,

subjects varied their movement speed on the x-axis significantly less in level 3 (t(40) = −7.72,

Fig 14. Gaze-points created in level ten.

doi:10.1371/journal.pone.0167021.g014
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p< .001) and level 6 (t(40) = −6.62, p< .001), whereas the difference between levels 3 and 6

was not significant at the adjusted α-level of p = .016 (t(40) = 2.15, p = .04). In contrast, y-axis

velocity variation increased significantly with increasing velocity (levels 3 vs. 6: t(40) = 3.33,

p< .016; levels 6 vs. 10: t(39) = 2.65, p< .016; levels 3 vs. 10: t(39) = 5.83, p< .001).

Deviation from an Optimal Path. In order to investigate the extent to which the level of

complexity affects a deviation from the optimal path, the absolute mean values of participants’

Fig 15. Path and velocity data of level one.

doi:10.1371/journal.pone.0167021.g015

Fig 16. Path and velocity data of level two.

doi:10.1371/journal.pone.0167021.g016
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average path deviations were examined. Mean values and standard deviations are shown in

Table 4. The mean values indicate, that on average, participants deviated from the optimum

path the most in level 2 with one immobile object, followed by large deviations in levels with

four objects. The smallest deviations from the optimum path are observed in the baseline level

1, followed by those levels that contain 1 and 2 objects, with the exception of level 2. The large

deviations in level 2 may be attributed to the fact that there are two optimum paths around the

Fig 17. Path and velocity data of level three.

doi:10.1371/journal.pone.0167021.g017

Fig 18. Path and velocity data of level six.

doi:10.1371/journal.pone.0167021.g018
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object. Overall, a large variance can be observed in the average deviations, whereby the vari-

ance seems to increase with the number of objects in the scene.

Repeated measures 10 (complexity) × 2 (trial – run) ANOVA revealed a significant main

effect of run (F(1, 40) = 20.55, p< .001) and complexity (F(3.73, 149.08) = 42.88, p< .001),

but no significant interaction (F(4.02, 160.93) = 0.84, p = .50). Looking at the mean values, the

data thus indicate that participants deviated significantly less from the optimum path when

Fig 19. Path and velocity data of level nine.

doi:10.1371/journal.pone.0167021.g019

Fig 20. Path and velocity data of level ten.

doi:10.1371/journal.pone.0167021.g020
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Table 1. Mean values and standard errors for average mean distances between eye fixation and cursor

position (in pixels).

Levels of Complexity Mean (SE) Baseline Contrast

1 No objects 300.279

(17.733)

–

2 1 static object 264.118

(18.731)

F(1, 30) = 2.02 p = .166

3 1 obstacle line moving horizontally 244.169

(12.854)

F(1, 30) = 9.01 p = .005*,

ηp
2 = .23

4 1 obstacle line moving diagonally 250.484

(11.972)

F(1, 30) = 7.63 p = .010*,

ηp
2 = .20

5 2 obstacle lines moving horizontally at different speeds in

same direction

285.741

(24.006)

F(1, 30) = 0.45 p = .510

6 2 obstacle lines moving horizontally at different speeds in

opposite directions

240.153

(12.529)

F(1, 30) = 10.43

p = .003**, ηp
2 = .26

7 2 obstacle lines moving diagonally at different speeds in

opposite directions

262.189

(16.754)

F(1, 30) = 4.42 p = .044*,

ηp
2 = .13

8 4 obstacle lines moving horizontally at different speeds in

same direction

206.796

(16.055)

F(1, 30) = 18.16

p < .001**, ηp
2 = .34

9 4 obstacle lines moving horizontally at different speeds in

opposite directions

228.984

(25.359)

F(1, 30) = 6.00 p = .020*,

ηp
2 = .17

10 4 obstacle lines moving horizontally at different speeds in

opposite directions with both changing

189.679

(11.858)

F(1, 30) = 25.08

p < .001**, ηp
2 = .46

*sig. at p < .05

**sig. at Bonferroni corrected p < .005

doi:10.1371/journal.pone.0167021.t001

Table 2. Mean values and standard errors for average velocity variation on x-axis (in dm/s).

Levels of Complexity Mean

(SE)

Baseline Contrast

1 No objects .068

(.005)

–

2 1 static object .481

(.021)

F(1, 39) = 483.75

p < .001**, ηp
2 = .93

3 1 obstacle line moving horizontally .152

(.012)

F(1, 39) = 37.50

p < .001**, ηp
2 = .49

4 1 obstacle line moving diagonally .168

(.011)

F(1, 39) = 58.07

p < .001**, ηp
2 = .60

5 2 obstacle lines moving horizontally at different speeds in

same direction

.123

(.006)

F(1, 39) = 56.95

p < .001**, ηp
2 = .59

6 2 obstacle lines moving horizontally at different speeds in

opposite directions

.127

(.012)

F(1, 39) = 20.11

p < .001**, ηp
2 = .34

7 2 obstacle lines moving diagonally at different speeds in

opposite directions

.174

(.012)

F(1, 39) = 60.51

p < .001**, ηp
2 = .61

8 4 obstacle lines moving horizontally at different speeds in the

same direction

.283

(.013)

F(1, 39) = 216.36

p < .001**, ηp
2 = .85

9 4 obstacle lines moving horizontally at different speeds in

opposite directions

.292

(.018)

F(1, 39) = 148.69

p < .001**, ηp
2 = .79

10 4 obstacle lines moving horizontally at different speeds in

opposite directions with both changing

.260

(.013)

F(1, 39) = 229.54

p < .001**, ηp
2 = .85

**sig. at Bonferroni corrected p < .005

doi:10.1371/journal.pone.0167021.t002
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Table 3. Mean values and standard errors for average velocity variation on y-axis (in dm/s).

Levels of Complexity Mean

(SE)

Baseline Contrast

1 No objects .685

(.034)

–

2 1 static object .514

(.026)

F(1, 39) = 42.39

p < .001**, ηp
2 = .52

3 1 obstacle line moving horizontally .671

(.039)

F(1, 39) = 0.23 p = .634

4 1 obstacle line moving diagonally .702

(.046)

F(1, 39) = 0.27 p < .609

5 2 obstacle lines moving horizontally at different speeds in

same direction

.623

(.036)

F(1, 39) = 5.05 p < .030*,

ηp
2 = .12

6 2 obstacle lines moving horizontally at different speeds in

opposite directions

.578

(.032)

F(1, 39) = 18.38

p < .001**, ηp
2 = .32

7 2 obstacle lines moving diagonally at different speeds in

opposite directions

.543

(.033)

F(1, 39) = 25.2 p < .001**,

ηp
2 = .39

8 4 obstacle lines moving horizontally at different speeds in the

same direction

.559

(.031)

F(1, 39) = 19.87

p < .001**, ηp
2 = .34

9 4 obstacle lines moving horizontally at different speeds in

opposite directions

.504

(.030)

F(1, 39) = 36.58

p < .001**, ηp
2 = .48

10 4 obstacle lines moving horizontally at different speeds in

opposite directions with both changing

.512

(.022)

F(1, 39) = 41.60

p < .001**, ηp
2 = .52

*sig. at p < .05

**sig. at Bonferroni corrected p < .005

doi:10.1371/journal.pone.0167021.t003

Table 4. Mean values and standard errors for the mean deviations from the optimal path (in dm).

Levels of Complexity Mean

(SE)

Baseline Contrast

1 No objects .020

(.002)

–

2 1 static object .244

(.006)

F(1, 40) = 1374.62

p < .001**, ηp
2 = .97

3 1 obstacle line moving horizontally .061

(.008)

F(1, 40) = 23.19 p < .001**,

ηp
2 = .37

4 1 obstacle line moving diagonally .078

(.008)

F(1, 40) = 43.98 p < .001**,

ηp
2 = .52

5 2 obstacle lines moving horizontally at different speeds in

same direction

.052

(.007)

F(1, 40) = 19.36 p < .001**,

ηp
2 = .33

6 2 obstacle lines moving horizontally at different speeds in

opposite directions

.053

(.008)

F(1, 40) = 13.56 p < .001**,

ηp
2 = .25

7 2 obstacle lines moving diagonally at different speeds in

opposite directions

.060

(.008)

F (1, 40) = 19.82

p < .001**, ηp
2 = .33

8 4 obstacle lines moving horizontally at different speeds in the

same direction

.170

(.022)

F(1, 40) = 46.71 p < .001**,

ηp
2 = .54

9 4 obstacle lines moving horizontally at different speeds in

opposite directions

.107

(.011)

F(1, 40) = 56.68 p < .001**,

ηp
2 = .59

10 4 obstacle lines moving horizontally at different speeds in

opposite directions with both changing

.140

(.021)

F(1, 40) = 31.82 p < .001**,

ηp
2 = .44

**sig. at Bonferroni corrected p < .005

doi:10.1371/journal.pone.0167021.t004
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moving through the levels for a second time compared to the first time. Presumably, this can

be attributed to a reduced uncertainty. Regarding the complexity, post-hoc comparisons to the

baseline level 1 confirmed that participants deviated significantly less in the baseline condition

compared to each of the 9 experimental levels, see Table 4. The contrasts further indicate that

the deviations were considerably larger in levels with four objects compared to those with only

two objects.

Bonferroni-adjusted post-hoc paired-samples t-tests which compared the mean deviations

from the optimal path between levels 3, 6 and 10 indicate that in comparison to the most com-

plex level 10, subjects deviated from the path significantly less in the less complex levels 3 (t
(40) = −4.09, p< .001) and 6 (t(40) = −4.98, p< .001), whereas the difference between levels 3

and 6 was not significant at the adjusted α-level of p = .016 (t(40) = 1.18, p = .25). Thus, the sta-

tistical analyses indicate that the deviation from the optimal path increases with increasing

scene complexity; however, this effect is only significant with high levels of complexity.

Looking at the maximum deviations from the optimum path, a similar pattern is observed,

with the largest deviations occurring in level 2, followed by the levels with four objects. The

smallest maximum deviations are found in the baseline level, suggesting that participants fol-

lowed the optimum trajectory when there are no objects to circumvent. On the other hand,

with the introduction of further objects, participants increasingly deviated from the optimum

path. Again, the variance seems to increase notably with the introduction of four moving

objects, suggesting that individual differences effect more variance in the movement with

increasing scene complexity, while individual difference are much less notable in the levels

with lower scene complexity, in particular the baseline level 1.

Repeated measures 10 (complexity) × 2 (trial – run) ANOVA revealed a significant main

effect of run (F(1, 40) = 26.80, p< .001) and complexity (F(3.39, 135.49) = 68.12, p< .001) on

the maximum deviations, but no significant interaction (F(4.94, 197.64) = 0.65, p = .66). Look-

ing at the mean values, the data thus indicate that participants deviated significantly less from

the optimum path when moving through the levels for a second time compared to the first

time. Presumably, this can be attributed to a reduced uncertainty. Regarding the complexity,

post-hoc comparisons to the baseline level 1 confirmed that participants deviated significantly

less in the baseline condition compared to each of the 9 experimental levels, see Table 5. Con-

trasts further confirmed that the deviations were significantly larger in levels with four objects

compared to those with only two objects.

As it was the case with the other measures that were used to infer changes in the planning

horizon, Bonferroni-adjusted post-hoc paired-samples t-tests which compared the maximum

deviations from the optimal path between levels 3, 6 and 10 indicate that in comparison to the

most complex level 10, subjects deviated from the path significantly less in the less complex

levels 3 (t(40) = −6.50, p< .001) and 6 (t(40) = −6.87, p< .001), whereas the difference

between levels 3 and 6 was not significant at the adjusted α-level of p = .016 (t(40) = 1.42, p =

.16). Thus, the statistical analyses corroborates the finding on the mean path deviation which

is that the deviation from the optimal path increases with increasing scene complexity,

whereby this effect only seems to take effect with high levels of complexity.

Discussion and Conclusions

In summary, a literature review indicated that many recent optimal control and model predic-

tive control methods can not provide an accurate account of human locomotion, specifically

for avoidance behaviors that originate from suddenly emerging collision situations. Instead, it

was stipulated that a nonlinear model predictive control-based framework might depict

human locomotion behavior in some circumstances more accurately. Hence, the goal of the
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present work was to investigate human locomotion planning processes from a control

method-based point of view, to provide an empirical basis for the development of predictive

models that might improve human interactions with mobile robots. Specifically, it was

explored whether the planning horizon for locomotion, i.e. the physical space that humans

subconsciously take into consideration when planning their movement paths, changes with

the complexity of the presented environment. Environment complexity was varied by system-

atically changing the number of present obstacles as well as the number of differing object

velocities and the objects’ movement directions, that subjects were asked to avoid in each

experimental run whilst moving their cursor between two locations. Since the cognitive pro-

cesses that are involved in determining the planning horizon cannot be directly observed,

three behavioral measures were investigated which are assumed to be indicators of the plan-

ning horizon. These are visual look-ahead, smoothness of the performed trajectory and devia-

tions from the optimal path. Qualitative and quantitative analyses of the experimental results

indicate that humans adapt their planning horizon, as indicated by the behavioral measures,

with increasing environment complexity. If the environment is free of obstacles, the subjects’

gaze tends to scan the whole area between start and goal position. Paths and velocities of the

motion are then smooth and follow a straight line. With a static obstacle, subjects focus on the

obstacle to avoid collisions but still produce smooth trajectories. If the complexity is further

increased by adding more obstacles and varying speed and direction of the obstacles, gaze

tends to address only the next obstacle to be passed.

To conclude this work, the results from simulations and experiments are discussed. With

respect to literature, the simulations of the presented nonlinear model predictive control

approach for human locomotion prediction revealed very similar effects regarding avoidance

behaviors. While optimal control models the human desire for minimum effort in path

Table 5. Mean values and standard errors for the maximum deviations from the optimal path (in dm).

Levels of Complexity Mean

(SE)

Baseline Contrast

1 No objects .069

(.005)

–

2 1 static object .764

(.015)

F(1, 40) = 2422.73

p < .001**, ηp
2 = .98

3 1 obstacle line moving horizontally .205

(.023)

F(1, 40) = 31.27 p < .001**,

ηp
2 = .44

4 1 obstacle line moving diagonally .241

(.025)

F(1, 40) = 42.08 p < .001**,

ηp
2 = .51

5 2 obstacle lines moving horizontally at different speeds in

same direction

.162

(.016)

F(1, 40) = 25.98 p < .001**,

ηp
2 = .39

6 2 obstacle lines moving horizontally at different speeds in

opposite directions

.178

(.023)

F(1, 40) = 19.10 p < .001**,

ηp
2 = .32

7 2 obstacle lines moving diagonally at different speeds in

opposite directions

.240

(.026)

F(1, 40) = 38.35 p < .001**,

ηp
2 = .49

8 4 obstacle lines moving horizontally at different speeds in the

same direction

.598

(.062)

F(1, 40) = 67.84 p < .001**,

ηp
2 = .63

9 4 obstacle lines moving horizontally at different speeds in

opposite directions

.484

(.038)

F(1, 40) = 110.17

p < .001**, ηp
2 = .73

10 4 obstacle lines moving horizontally at different speeds in

opposite directions with both changing

.456

(.040)

F(1, 40) = 87.19 p < .001**,

ηp
2 = .69

**sig. at Bonferroni corrected p < .005

doi:10.1371/journal.pone.0167021.t005
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planning and trajectory execution, the reduced planning horizon within nonlinear model pre-

dictive control resembles more accurately the avoidance movements presented within litera-

ture. The simulation results illustrate the influence of a changing planning horizon for

locomotion prediction. Accordingly, the change in planning horizon is understood as a

human behavior and thus investigated in the designed experiment. Results obtained in the

experiment validate the control approach and support the integration of this aspect within pre-

diction methods. A detailed model for human motion planning behavior with an adaptive

planning horizon is not obtained from the experiment. Indeed, the experimental setup and its

result pose a strong foundation and motivation to further investigate the human planning

horizon. Changing the planning horizon poses one factor that is not yet considered in current

models. However, there are various aspects which may affect the trajectories similarly and

require further studies based on present results.

Regarding the conducted experiment, the recorded data show smooth paths and velocities

up to two lines of moving obstacles. This performance declines if more obstacles are to be

passed. Most subjects then progress in small physical increments, which leads to noticeable

braking, as indicated by the velocity data. The statistical evaluations support these findings.

Evaluation of the mean distance between the marker and the gaze position shows that looking

ahead diminishes when comparing an empty scenario with a very complex scenario. Further-

more, when considering the shortest path as the optimal solution, subjects deviate significantly

from this solution if the environment is complex.

While the presented results provide a clear indication that human locomotion planning

changes with increasing environment complexity and illuminates to some degree the nature of

these changes, further studies are required to determine the extent to which these findings

might generalize to three-dimensional environments with varying stimuli and different loco-

motion behaviors. For instance, in the present experiments, the environment was seen from a

bird’s-eye point of view, where all obstacles that might affect the planned path are visible and

their movements predictable. Hence, the subjects had much more knowledge of possible path

obstructions than would be the case in a crowded real-world environment, where moving

obstacles are oftentimes partially occluded and their movements more difficult to predict.

Moreover, assuming that avoidance-motivated locomotion planning is in humans strongly

influenced by visual input, it would seem likely that obstacles of differing visual salience might

affect human locomotion planning (e.g. the planning horizon might be more likely to extend

to a large, red object than a small, grey object in a visually cluttered environment). Further-

more, the cognitive mechanisms that affect the planning horizon are still unclear. While sub-

jects rated the experimental task overall as undemanding and effortless, it seems likely that

cognitive load increased with increasing environment complexity. However, the experiment

was neither designed nor destined to uncover which features contributed most to the increase

in cognitive load: the number of obstacles, the speed with which they traveled or the path they

took. A detailed and systematic analysis of differential effects of obstacle features on the plan-

ning horizon thus remains subject to future investigations. Similarly, it must still be investi-

gated whether analog effects on the planning horizon can be observed with regard to other

human motions, in particular walking. Further experiments are therefore needed to evaluate

and adjust existing prediction models or serve as an empirical basis to develop new models.

However, with respect to shown simulations and results, the detailed knowledge about human

locomotion behavior seems to hold the potential to improve current and future model-based

locomotion prediction algorithms. Future applications of robots performing collaborative

tasks in shared environments will benefit from improved predictions. Robots moving in ware-

houses or production halls will entail less disturbance for nearby humans and pose efficient as

well as convenient collaboration partners.
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