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Abstract 

Background: While large-scale genomic analyses symbolize a precious attempt to decipher the molecular founda-
tion of uterine leiomyosarcoma (ULMS), bioinformatics results associated with the occurrence of ULMS based totally 
on WGCNA and CIBERSORT have not yet been reported. This study aimed to screen the hub genes and the immune 
cell infiltration pattern in ULMS by bioinformatics methods.

Methods: Firstly, the GSE67463 dataset, including 25 ULMS tissues and 29 normal myometrium (NL) tissues, was 
downloaded from the public database. The differentially expressed genes (DEGs) were screened by the ‘limma’ pack-
age and hub modules were identified by weighted gene co-expression network analysis (WGCNA). Subsequently, 
gene function annotations were performed to investigate the biological role of the genes from the intersection of 
two groups (hub module and DEGs). The above genes were calculated in the protein–protein interaction (PPI) net-
work to select the hub genes further. The hub genes were validated using external data (GSE764 and GSE68295). In 
addition, the differential immune cell infiltration between UL and ULMS tissues was investigated using the CIBERSORT 
algorithm. Finally, we used western blot to preliminarily detect the hub genes in cell lines.

Results: WGCNA analysis revealed a green-yellow module possessed the highest correlation with ULMS, including 
1063 genes. A total of 172 DEGs were selected by thresholds set in the ‘limma’ package. The above two groups of 
genes were intersected to obtain 72 genes for functional annotation analysis. Interestingly, it indicated that 72 genes 
were mainly involved in immune processes and the Neddylation pathway. We found a higher infiltration of five types 
of cells (memory B cells, M0-type macrophages, mast cells activated, M1-type macrophages, and T cells follicular 
helper) in ULMS tissues than NL tissues, while the infiltration of two types of cells (NK cells activated and mast cells 
resting) was lower than in NL tissues. In addition, a total of five genes (KDR, CCL21, SELP, DPT, and DCN) were identified 
as the hub genes. Internal and external validation demonstrated that the five genes were over-expressed in NL tissues 
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Introduction
Uterine leiomyosarcoma (ULMS) is rare, with only 1% 
of all uterine malignancies [1]. Compared with other 
gynecological tumors, the etiology and pathogenesis of 
ULMS are not yet clear. ULMS is the most common his-
tological subtype of uterine sarcoma originating in the 
smooth muscles of the myometrium. Because ULMS 
is not sensitive, treatment options are available, and it 
accounts for a considerable proportion of uterine cancer 
deaths [2]. The overall 5-year survival rate for ULMS is 
only 25% [3]. According to relevant guidelines [4], sur-
gery is the primary treatment for ULMS [5–7]

Because the effect of adjuvant radiotherapy and chem-
otherapy on improving the survival of patients was only 
minimal, even with standard treatment, 50–71% of these 
patients would develop recurrence. Recently, the devel-
opment of targeted therapy has been developed rapidly, 
and it is applied in lung cancer [8], ovarian cancer [9], 
and other malignant tumors [10, 11], which is expected 
to be an effective treatment for ULMS in the future. But 
ULMS has not been intensively investigated because 
they are given the few tumor intratumoral lymphocytes 
(TILs) on H&E sections and the low mutational burden 
[12]. Therefore, it is vital to explore the molecular etiol-
ogy and immune-related pathogenesis of ULMS. It hopes 
that locate molecular targets and related pathways for 
treatment. In this regard, the current success of immune 
checkpoint blockade (ICB)-based cures in a variety of 
difficult-to-treat cancers raises the query of whether such 
cures would be applicable in ULMS. Several biomark-
ers indicating a potential for ICB have been pronounced 
in ULMS [13, 14]. The doable gain of ICB in ULMS was 
used to be illustrated by George et al. [15], who suggested 
the case of a patient who received anti-PD-1 monother-
apy and experienced whole ailment remission for over 
2 years.

With the development of sequencing, bioinformatics 
analysis plays an essential role in medical research. It 
has provided a somewhat objective basis for scientists’ 
exploration of tumor pathogenesis. Weighted gene co-
expression network analysis (WGCNA) is a novel bioin-
formatics technique in which it can construct modules 
by analyzing gene expression profiles, and associate 

modules and sample characteristics [16]. Compared with 
statistics that solely focal point on differential expres-
sion, WGCNA has the following advantages: it can 
take full advantage of information, associate interesting 
alternations of phenotypes, and avoid the defects of dif-
ferential expression evaluation artificially setting thresh-
olds [17, 18]. The CIBERSORT algorithm can be used to 
assess the infiltration of immune cells in tissues, which 
has become a common technical approach in the field 
of immunology [19]. Newman et  al. [20] present CIB-
ERSORT method for the usage of RNA mixtures from 
almost any tissue and reveal it extensively increased 
accuracy for the evaluation of mixtures. Overall, CIB-
ERSORT consistently outperformed other methods. 
Recently, abundant researches have used this algorithm 
to explore the function of immune cells in diseases, such 
as pancreatic cancer [21], small cell lung cancer [22], and 
endometrial carcinoma [23].

To the best of our knowledge, no research has focused 
on ULMS based on WGCNA and CIBERSORT in recent 
years. So, our study found hub genes and immune cells 
highly related to ULMS occurrence by analyzing USML 
datasets in the GEO database. It will fill the bioinformat-
ics analysis gaps in ULMS and provide novel therapeutic 
ideas and research.

Materials and methods
Identification of differentially expressed genes
The datasets (GSE67463 as training set, GSE764, and 
GSE68295 as external validation set) were obtained from 
the Gene Expression Omnibus database (GEO, https:// 
www. ncbi. nlm. nih. gov/) in NCBI based on the keywords: 
uterine leiomyosarcoma, and homo sapiens. The differ-
entially expressed genes in ULMS samples and NL sam-
ples from the GSE67463 dataset were screened using the 
‘limma’ package in R software. The thresholds in ‘limma’ 
package were set to |log2 fold change (FC)|> 2 and 
adjusted P value < 0.05.

Co‑expression network construction
Firstly, the outlier samples were identified by using a flash 
cluster package with a threshold setting of 80 and only 1 
outlier sample was removed. The correlation coefficient 

compared with USML tissues. Finally, the correlation analysis results indicate that NK cells activated and mast cells acti-
vated positively correlated with the hub genes. However, M1-type macrophages had a negative correlation with the 
hub genes. Moreover, only the DCN may be associated with the Neddylation pathway.

Conclusion: A series of evidence confirm that the five hub genes and the infiltration of seven types of immune cells 
are related to USML occurrence. These hub genes may affect the occurrence of USML through immune-related and 
Neddylation pathways, providing molecular evidence for the treatment of USML in the future.
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between the two genes constituted the correlation matrix 
of co-expression. The above correlation matrix was con-
structed by the average linkage matrix and Pearson cor-
relation method. Subsequently, the correlation matrix 
was transformed into an adjacency matrix in the formula 
amn =|cmn|β. The correlation coefficient was significant: 
the correlation coefficient of gene m and gene N is repre-
sented using amn, and the connection coefficient of gene 
m and gene N is represented by cmn. It was worth not-
ing that β is a soft threshold (β = 9), making the strong 
association between genes more robust and vice versa. 
Finally, similar genes were put into the same module, and 
the adjacency matrix is transformed into a topological 
overlap matrix based on the above soft threshold. Pear-
son correlation analysis was carried out to evaluate the 
relationships between modules and ULMS occurrence.

Functional enrichment analysis
Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analyses were performed in the 
genes from intersections of two groups (hub module and 
DEGs) by using related packages in R software.

Identification of hub genes and construction of PPI 
network
In order to screen the genes from intersections of two 
groups (hub module and DEGs) in ULMS patients, the 
protein–protein interaction (PPI) network was con-
structed using the STRING tool Cytoscape software. 
Subsequently, according to the topological properties 
degree, the PPI networks above genes were calculated to 
select the hub genes further.

Immune cell infiltration in ULMS tissues
CIBERSORT is a novel algorithm that mainly uses 547 
immune cell-related gene expression values to estimate 
22 immune cells in the tissue. The proportion of 22 
immune cells in ULMS tissues was calculated using the 
CIBERSORT algorithm. Then, we used this algorithm 
to study the infiltration of immune cells between ULMS 
and NL. Finally, Pearson correlation analysis was used to 
calculate the correlation coefficient between immune cell 
infiltration and hub gene.

Cell culture and western blotting
The following leiomyosarcoma cell lines, antibodies, and 
relevant experimental results required were provided 
from the Yi Li, Nanjing Medical University. SK-LMS-1 
and MES-SA cell lines were cultured in Minimum Essen-
tial Media with 10% Fetal Bovine Serum. All cell lines 
were plated into T75 flasks and treated with MLN4924 
(0 – 1.0  μM). Westerns were carried out as previously 
detailed [24].

Statistical analysis
All statistical analyses were performed using the R soft-
ware (v.3.6.3). An unpaired t test was used to compare 
the different tissues. Pearson correlation analysis was 
used to verify the correlation between hub genes and 
immune cell infiltration. P < 0.05 was considered statisti-
cally significant.

Results
Identification of differentially expressed genes involved 
in ULMS
According to the cut-off value determined in the “Mate-
rials and methods” section, 171 differential genes were 
finally identified in ULMS tissues and NL tissues. Vol-
cano plot can discriminate ULMS and NL patients, in 
which the DEGs can be distinguished according to dif-
ferent colors, as shown in Fig. 1A. The red indicated the 
upregulated genes (79), and the green showed the down-
regulated genes (92), as shown in Table  S1. In addition, 
black indicated that those genes no difference between 
ULMS and NL tissues. The heatmap showed the distribu-
tion of the top 30 DEGs in ULMS and NL, as shown in 
Fig. 1B.

Taken together, our data showed that 171 DEGs were 
identified in ULMS tissues and NL tissues.

Construction of WGCNA and identification of hub modules
Fifty-four samples (25 ULMS and 29 NL) were clus-
tered, and only one outlier sample was removed, as 
shown in Fig. 2A. In this way, the homogeneity of the 
remaining samples was improved, which is conducive 
to the accuracy of the results. According to the “Mate-
rials and methods” section, the correlation matrix 
was transformed into an adjacency matrix using the 
formula amn =|cmn|β (β = 9). In order to construct 
scale-free network distribution better, the “picks of 
threshold” function of the “WGCNA” package cal-
culated the value of parameter β. Similar to scale-
free network distribution, the correlation coefficient, 
mean connectivity, and average correlation between 
log (k) and log (P (k)) of each threshold (1–20) were 
calculated in ULMS and NL samples; if the average 
network connectivity corresponding to the threshold 
was close to 0, which indicates that the network con-
nectivity is deficient, as shown in Fig. 2B, C. According 
to the corresponding steps of WGCNA modeling, a 
gene network was built based on a hierarchical cluster-
ing tree with the Diss Thres of 0.2. We took the mini-
mum number of genes as 50 as the standard and used 
the dynamic pruning tree method to merge similar 
genes into each gene module. Finally, 12 modules are 
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obtained, as shown in Fig. 2D. According to the ther-
mogram of correlation between module and ULMS, 
the highest correlation coefficient between green-yel-
low module (1063 genes, 0.81/ − 0.81, p = 3e − 09), as 
shown in Fig. 2E.

Taken together, our data showed that a hub module 
(1063 genes) was identified in ULMS tissues and NL 
tissues.

Functional enrichment analysis
To further study the biological function of the genes in 
the hub module and DEGs, we screened out 72 genes 
from the gene intersection in two groups, as shown in 
the Venn plot (Fig.  3A). The 72 genes were then was 
included in KEGG and GO enrichment analysis. Inter-
estingly, GO enrichment analysis showed that these 
genes mainly participated in the leukocyte tethering or 
rolling, as shown in Fig.  3B. In the meanwhile, KEGG 
enrichment analysis identified that these genes par-
ticipated in the regulation of immune-related pathways 
and Neddylation pathway, as shown in Fig.  3C. This 
result may be revealed between ULMS and immuni-
zation, so we analyzed it in depth in the “Immune cell 
infiltration analysis” section and “Correlation between 
hub genes and Neddylation pathway” section.

Taken together, our data showed that an exciting pos-
sibility: ULMS related to immunization cell infiltration 
and the Neddylation pathway.

Immune cell infiltration analysis
CIBERSORT algorithm was used to analyze the immune 
infiltration of ULMS samples. The proportion of 22 
immune cells was shown in a bar plot, and macrophages 
account for most significant proportion among the 
immune cells in the samples, as shown in Fig. 4A. T cells 
CD4 memory resting had the strongest positive correla-
tion with NK cells resting (0.79); however, T cells CD8 
had the strongest negative correlation with T cells CD4 
memory resting (− 0.83), as shown in Fig. 4B. In order to 
further compare the difference in proportion among the 
immune cells between NL and ULMS tissues, we also 
performed immune cell infiltration analysis in NL tissues, 
as shown in Fig. 5A. We found a higher infiltration of five 
types of cells (memory B cells, M0-type macrophages, 
mast cells activated, M1-type macrophages, and T cells 
follicular helper) in ULMS tissues than in NL tissues, 
while the infiltration of two types of cells (NK cells acti-
vated and mast cells resting) was lower than in NL tissues 
(Fig. 5B–H; p < 0.05).

Taken together, our data showed that the distribution 
of 22 type immune cells in USML and NL tissues, includ-
ing seven types of cells related to USML occurrence.

Identification of the hub genes
The STRING online tool was used to construct a PPI 
network from the intersection of two groups (hub mod-
ule and DEGs) with the node pair combing score ≥ 0.15 
as the criterion, excluding disconnected nodes in the 

Fig. 1 The expression of differentially expressed genes of ULMS and NL samples. A 171 DEGs were visualized by volcano plot and green and red 
indicated low and high expression in ULMS, respectively. In addition, black indicated that those genes no difference between ULMS and NL tissues. 
B DEGs were visualized by heatmap
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Fig. 2 Construction of weighted gene co-expression network analysis. A Clustering dendrogram of samples in GSE67463 by cut-off = 80. ULMS 
samples were assigned as 1; NL samples were assigned as red. Color intensity is proportional to ULMS samples. B Different soft-threshold and 
corresponding scale-free topology model. C Different soft-thresholding powers and corresponding mean connectivity. D A part of genes with the 
same function in each module. E Correlation coefficient of each module with UL and USML
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network. To further explore the hub genes, the data of 
PPI networks in STRING were input into the Cytoscape 
software. The topological properties analysis with top 
5 of degree set as the criterion and five hub genes were 
screened. These nodes were KDR (degree = 28), CCL21 
(degree = 19), SELP (degree = 18), DPT (degree = 18), and 
DCN (degree = 18), as shown in Fig. 6A.

Taken together, our data showed that five hub genes 
(KDR, CCL21, SELP, DPT, and DCN) related to USML 
occurrence were identified.

Internal and external validation for hub genes
Based on the hub genes, we have got KDR, CCL21, SELP, 
DPT, and DCN. We found that the hub genes were lower 
expressed in USML tissues than NL tissues by differen-
tial analysis based on the GSE67463 dataset, as shown in 
Fig.  6B. To verify the accuracy of the predicted results, 
hub genes expression in 11 pairs of USML and NL tissues 
was detected using external datasets (GSE764 includ-
ing three pairs and GSE68295 including eight pairs). The 
results showed that the hub genes were over-expressed 
in NL tissues and consistent with the prediction results 
(Fig.  6C − G). The association of hub genes with differ-
ent types of immune cell infiltration was explored. The 
results of Pearson correlation analysis indicate that NK 
cells activated and mast cells activated had a positive 
correlation with the hub genes. However, M1-type mac-
rophages had a negative correlation with the hub genes, 
as shown in Table  1. PD-L1 has been correlated with 
immune response and is currently used as a biomarker 
for ICB therapy in ULMS, so we investigated the cor-
relation of hub genes with PD-L1 and found that except 
DCN, other hub genes were significantly correlated with 
PD-L1, as shown in Figure S1.

Taken together, our data showed that hub genes were 
lower expressed in USML tissues.

Correlation between hub genes and Neddylation pathway
In our and others’ previous study [25–28], Neddylation 
inhibitor MLN4924 has significant anti-tumor effect in 
both vitro and vivo. Through TCGA database and KEGG 
analysis, we found that NEED8, an important molecule in 
the Neddylation pathway, as well as the catalytic enzymes 
UBE2M and UBE2F, were all transcribed at higher levels 
in USML tissues than NL tissues (Fig. 3C and Fig. 7B). It 
indicated that the Neddylation pathway is activated in 
USML. It was worth noting that PPI analysis suggested 
an interaction between hub genes and Neddylation-
related genes, as shown in Fig.  7A. Therefore, we made 
a bold conjecture: the Neddylation pathway may regu-
late hub genes (KDR, CCL21, SELP, DPT, and DCN). We 
detected the expression level of the hub gene in USML 
cell lines (MES-SA and SK-LMS-1). The results showed 
that the expression levels of DCN in two cells were sig-
nificantly upregulated with the increase of MLN4924 
concentration, while the other protein levels were almost 
unchanged, as shown in Fig.  7E. Moreover, immuno-
imprinting analysis was used to analyze the effects of 
different concentrations of MLN4924 on the Neddyla-
tion pathway in USML cell lines, including the Ned-
dylation level of the total protein and the Neddylation 
level of the substrate Cullin protein. The results showed 
that MLN4924 significantly inhibited the Neddylation 
pathway of MES-SA and SK-LMS-1 cells, as shown in 
Fig. 7C–D.

Taken together, our data confirmed that the possibility 
of activation of Neddylation pathway in KEGG analysis 
(Fig. 3C) and hub gene (DCN) associated with Neddyla-
tion pathway.

Fig. 3 GO functional and KEGG pathway enrichment analysis. A 72 genes from DEGs and hub module. B Biological process (BP), cellular 
component (CC), and molecular function (MF) of GO enrichment. C KEGG pathway enrichment analysis. The size of the bubble indicates the 
strength of the P value
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Discussion
Uterine sarcomas are sporadic mesenchymal neoplasms, 
and its related research is less than other malignant 
tumors. Because of the lower incidence rate, different 
histological appearances and clinical manifestations lead 
to no superior therapeutic regimen and lack of specific 
molecular markers [29]. Traditionally, the classification 
of uterine sarcomas is based on histological appearance, 
and immunohistochemistry (IHC) is chosen to support 

tissue differentiation. The most common subtypes of 
uterine sarcoma are leiomyosarcoma (ULMS), low-grade 
endometrial stromal sarcoma, and high-grade endo-
metrial stromal sarcoma [30]. The behavior of ULMS is 
unpredictable. Even if the tumor is confined to the uter-
ine body, recurrence and metastasis are very common 
[31]. Interestingly, related case has been reported suc-
cessful pregnancy after complete resection of leiomy-
omatosis peritonealis without recurrence [32]. A better 

Fig. 4 Immune cell infiltration pattern in USML tissues. A Proportion of the 22 immune cell types in USML tissues. B Correlation matrix between the 
22 immune cell types
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Fig. 5 Different distribution of immune cell in NL and USML tissues. A The total distribution of immune cells in NL and USML tissues. B Memory 
B cells distribution. C M0-type macrophages distribution. D Mast cells activated distribution. E M1-type macrophages cell distribution. F T cells 
follicular helper cell distribution. G NK cells activated cell distribution. H Mast cells resting cell distribution

Fig. 6 Internal and external validation for hub genes. A Identification of the hub genes from PPI network. B Heatmap of the hub genes. CCCL21 in 
external validation. DDCN in external validation. EDPT in external validation. FKDR in external validation. GSELP in external validation
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understanding of the biology of ULMS through clinically 
molecular markers will help to judge prognosis and treat-
ment [33].

In the present study, based on the profiles, including 
GSE764, GSE64763, and GSE68312 from the GEO data-
base, 171 DEGs were identified by comparing ULMS 
samples with NL samples. Hub modules related to ULMS 

were identified by weighted gene co-expression network 
analysis (WGCNA). The above two groups of genes were 
intersected to obtain 72 genes for subsequent functional 
annotation analysis and PPI analysis. Go and KEGG 
function enrichment analysis was performed in R pack-
age. This method can predict the function and pathway 
of related genes. Go functional annotation showed that 
the hub gene mainly participated in immune response, 
such as leukocyte rolling and adhesion. KEGG enrich-
ment analysis showed that the above genes participated 
in regulating immune-related pathways and the Neddyla-
tion pathway. However, there is no relevant experimental 
evidence to prove that these pathways are related to the 
occurrence of ULMS. But Andre Pinto found that PD-L1 
is expressed by the majority of carcinosarcomas, pre-
dominantly in the epithelial components [34]. Elisheva D 
showed that leiomyosarcomas demonstrate significantly 
higher PD-L1 expression and cytotoxic T cell infiltra-
tion when compared with other uterine smooth muscle 
tumors [14]. PD-L1 mediates multiple Immune-related 
pathways. Thus, it is reasonable to suggest that regula-
tion of the immune system is closely related to the occur-
rence of USML. Although the pathways in ULMS have 
not been adequately discussed, the immune landscape 
and genomic landscape of ULMS have been reported 
[33, 35, 36]. Gotoh O revealed that POLE and MSI 

Table 1 The correlation between hub genes and immune cell 
infiltration

Gene Immune cell P value Correlation

KDR Mast cells activated 0.026 Positive

CCL21 Mast cells activated 0.037 Positive

SELP Mast cells activated 0.003 Positive

DPT Mast cells activated 0.010 Positive

DCN Mast cells activated 0.026 Positive

KDR NK cells activated 0.029 Positive

CCL21 NK cells activated 0.002 Positive

SELP NK cells activated 0.002 Positive

DPT NK cells activated 0.009 Negative

DCN NK cells activated 0.030 Negative

KDR M1-type macrophages 0.001 Negative

CCL21 M1-type macrophages 0.001 Negative

SELP M1-type macrophages 0.027 Negative

Fig. 7 Correlation between hub genes and Neddylation pathway. A PPI network in hub genes and Neddylation-associated genes. BNEDD8, 
UBE2M, and UBE2F expression in TCGA database. C Total protein Neddylation in MES-SA and SK-LMS-1. D Cullin protein Neddylation in MES-SA and 
SK-LMS-1. E Western blotting in MES-SA and SK-LMS-1 cell lines
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(hypermutator) tumors showed an enrichment of M1 
macrophages, plasma cells, and CD8 + T cells, whereas 
CNH and CNL (non-hypermutator) tumors had high 
levels of M2 macrophages from gynecologic carcinosar-
coma RNA-seq data [37]. This is similar to our results; 
we found a higher infiltration of five types of cells (mem-
ory B cells, M0-type macrophages, mast cells activated, 
M1-type macrophages, and T cells follicular helper) in 
ULMS tissues than in NL tissues, while the infiltration of 
two type of cells (NK cells activated and mast cells rest-
ing) was lower in NL tissues. In addition, the results of 
Pearson correlation analysis indicate that NK cells acti-
vated and mast cells activated had a positive correlation 
with the hub genes. However, M1-type macrophages had 
a negative correlation with the hub genes.

The topological properties analysis in PPI network 
screened out five hub genes: KDR, CCL21, SELP, DPT, 
and DCN. Current research focused on Kinase insert 
domain receptor (KDR) in infertility field, and the role 
of ULMS needs to be explored in the future. Chen found 
that increased KDR was found in the endometrium of 
intrauterine adhesions (IUA) patients, which was posi-
tively related to IUA severity [38]. CCL21 promotes 
immune activity in the tumor microenvironment (TME) 
by colocalizing dendritic cells (DC) and T cells program-
ming ectopic lymph node architectural structures that 
correlate with cancer prognosis [39]. CCL21 plays a role 
not only in immunity, but also in regulating the biologi-
cal processes of tumor cells. Yang showed that CCL21 
can suppress the migration and invasion of colorectal 
cancer cell line [40]. SELP (P-selectin) may contribute to 
adverse platelet function [41]. DCN, a small leucine-rich 
proteoglycan, is a tumor suppressor in prostate cancer 
[42]. Reduced expression of DCN has been considered 
as an indicator of poor prognosis in patients with cancer 
[43, 44]. According to the current literature, there is only 
indirect evidence to prove the accuracy of our prediction 
of hub genes associated with ULMS occurrence. How-
ever, the relationship between the hub genes and differ-
ent immune cell infiltrates suggests they are correct. In 
particular, our subsequent western blotting further veri-
fied our conjecture.

Neddylation pathway is a novel protein post-transla-
tional modification. Studies have shown that Neddyla-
tion pathway is over-activated in a variety of human 
primary tumor tissues [45]. It can promote the develop-
ment of tumor by activating CRLs (Cullin-Ring ligases) 
to cause the degradation of CRL tumor suppressor pro-
tein substrates. Neddylation inhibitor MLN4924 [46] 
has significant anti-tumor effect in both vitro and vivo. 
Through TCGA database analysis, we found that NEED8, 
an important molecule in the Neddylation pathway, as 
well as the catalytic enzymes UBE2M and UBE2F, were 

all transcribed at higher levels in USML tissues than NL 
tissues. It indicated that the Neddylation pathway is acti-
vated in USML. It was worth paying attention to what PPI 
analysis suggested that there was an interaction between 
hub genes and Neddylation-related genes. Therefore, we 
made a bold conjecture: hub genes (KDR, CCL21, SELP, 
DPT, and DCN) may be regulated by the Neddylation 
pathway. But only the DCN may be associated with Ned-
dylation pathway.

The limitations of this research need to be discussed. 
There is no experimental evidence to prove the correla-
tion between gene-related immune pathways and ULMS. 
Firstly, this research is in the prediction stage. Although 
some experiments have been carried out to verify the hub 
gene, there is no further evidence to verify our predic-
tion results. Our follow-up studies are focusing on the 
detailed correlation between DCN gene and Neddyla-
tion pathway. We believe that our verification in  vitro 
and in  vivo will make the conclusion more rigorous in 
the future. Secondly, the sample size of the research is 
not large enough, which is also related to the low inci-
dence rate of USML. Finally, due to the specificity of 
blood, we cannot guarantee the accuracy of CIBERSORT 
algorithm.

Conclusions
A series of evidences confirm that the five hub genes and 
the infiltration of seven types of immune cells related 
to USML occurrence. These hub genes may affect the 
occurrence of USML through immune-related and Ned-
dylation pathways, providing molecular evidence for the 
treatment of USML in the future.
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