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Abstract: Paddies are a potential source of anthropogenic nitrous oxide (N2O) emission. In paddies,
both the soil and the rice plants emit N2O into the atmosphere. The rice plant in the paddy is
considered to act as a channel between the soil and the atmosphere for N2O emission. However,
recent studies suggest that plants can also produce N2O, while the mechanism of N2O formation in
plants is unknown. Consequently, the rice plant is only regarded as a channel for N2O produced
by soil microorganisms. The emission of N2O by aseptically grown plants and the distinct dual
isotopocule fingerprint of plant-emitted N2O, as reported by various studies, support the production
of N2O in plants. Herein, we propose a potential pathway of N2O formation in the rice plant. In rice
plants, N2O might be formed in the mitochondria via the nitrate–nitrite–nitric oxide (NO3–NO2–NO)
pathway when the cells experience hypoxic or anoxic stress. The pathway is catalyzed by various
enzymes, which have been described. So, N2O emitted from paddies might have two origins, namely
soil microorganisms and rice plants. So, regarding rice plants only as a medium to transport the
microorganism-produced N2O might be misleading in understanding the role of rice plants in the
paddy. As rice cultivation is a major agricultural activity worldwide, not understanding the pathway
of N2O formation in rice plants would create more uncertainties in the N2O budget.

Keywords: anoxia; hypoxia; mitochondria; nitric oxide; nitrous oxide; paddy; potential pathway;
rice plant

1. Introduction

Nitrous oxide (N2O) is a major anthropogenic greenhouse gas and the single most important
contributor to stratospheric ozone depletion [1,2]. It accounts for approximately 6% of the enhanced
global warming effect [3]. Among the anthropogenic sources of N2O, the agriculture sector represents
the largest source [4]. Rice (Oryza sativa) farming plays an important role in the agricultural sector
as it is a staple food for one-half of the world’s population [5]. Additionally, rice farming occupies
about 158.5 million hectares of the world’s arable land and is one of the most important economic
activities that provides a livelihood to millions of people [5]. Paddies are also a contributor of N2O
to the atmosphere [5,6]. Moreover, the paddy utilizes one-seventh of the nitrogen (N) fertilizer and
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one-third of irrigation globally [7], making a more potent zone of N2O formation, as the N fertilizer
application [8] and irrigation management practices [9] contribute significantly to N2O emissions.
So, global N2O emissions from the paddy might increase considerably [10]. Thus, it is necessary to
understand the mechanisms of N2O production in the paddy for necessary steps to be taken towards
mitigation strategies for the global warming effect.

N2O in the paddy is emitted by the soil [10,11] and the rice plant [12,13]. The processes involved
in the soil are well studied [10,11]. However, processes involving the plant are overlooked and the
N2O emitted by the rice plants in paddies is considered to be produced by soil microorganisms, with
the rice plant hypothesized to act as a channel to emit it into the atmosphere [12,13]. However, studies
hypothesizing rice plants as a channel to emit N2O [12,13] have only measured the flux from the soil
and plants and concluded that rice plants are not a source of N2O. Recently, Lenhart et al., (2019) [14]
reported the distinct dual isotopocule fingerprint of N2O (δ15N, δ15Nsp and δ18O) emitted from the
plant Miscanthus sinensis, and suggested that plants are a natural source of N2O. So, in our opinion,
measuring only the N2O fluxes from the soil and the rice plant may not be sufficient to prove that
rice plants are not a source of N2O. The results of Smart and Bloom (2000) [15] do not support the
hypothesis that N2O emitted by wheat plants is produced by microorganisms and via the transpiration
process. To elucidate this, we suggest the use of the 15N natural abundance method by injecting
15N-labelled N2O into the soil zone and, subsequently, measuring the fluxes and the 15N natural
abundance of N2O from the soil and plants to reveal whether the N2O emissions are emitted either
from soil and plants transport them, or whether N2O emissions can also be produced from plant cells.
Furthermore, the rice plants should be aseptically grown in a controlled hydroponic solution with a
regulated O2 partial pressure, and NO3 and NH4 concentrations and, subsequently, the N2O fluxes
should be measured. Moreover, recent studies have shown that various species of plants can produce
N2O and emit it into the atmosphere [14–16], however, the mechanism of N2O formation is not clearly
understood. Therefore, considering rice plants only as a channel for soil-produced N2O might mislead
understanding of the role of rice plants in N2O emission, as it is a conclusion based on studies that just
measured the N2O fluxes from rice soil and the rice plant.

There are reports of both higher [17,18] and lower flux rates of N2O from paddies [19,20]. The high
or low emissions of N2O from paddies depend on the management practices [18–20]. The N fertilizer
application rate and water level are major factors controlling the N2O emissions from paddies [8,20].
For example, a meta-analysis by Zou et al. (2007) [19] revealed that under a continuous flooding system,
N2O is emitted only after drainage, whereas flooding-midseason drainage-reflooding management
triggers a substantial N2O emission. Moreover, flooding-midseason drainage-reflooding moist
intermittent irrigation practices without waterlogging trigger a threefold higher N2O emission than
the flooding-midseason drainage-reflooding management practice. A recent meta-analysis [9] reported
a 105% increase in N2O emission with non-continuous flooding management rather than continuous
flooding. Similarly, midseason drainage and N application significantly increased the N2O emissions
from the paddy [11]. Another meta-analysis, based on the comparison between flooding irrigation and
non-flooding irrigation (reduced irrigation with midseason drainage) and N fertilizer input, showed
an increase in N2O emission of 84.4% and 167.3%, respectively [8]. From these observations of the
meta-analyses, it can be concluded that water level management and N application significantly affect
the N2O fluxes from the paddies. Interestingly, water level management [13] and nitrogen fertilizer
application [12] also significantly increased the N2O emission from the rice plants and, in both cases,
the emissions of N2O were higher from rice plants than from the soil–water surface [12,13]. These
results highlight the role of rice plants in N2O emissions from paddies.

To mitigate the effects of global warming and ozone depletion effectively, a good understanding
of all of the sources of N2O and the regulating factors is crucial. There have been numerous studies on
paddies regarding their N2O emissions [8,12,13,20,21], however, no study has highlighted the role of
the rice plant as a source of N2O. Thus, it is essential to explore the role of the rice plant in paddies—that
is, whether it acts as a source of or a medium to channel N2O. The production of N2O in ascetically
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grown plants [16,22] suggests N2O can be produced by even eukaryotic plant cells. Moreover, based
on the distinct dual isotopocule fingerprint of plant-emitted N2O, Lenhart et al. (2019) [14] proposed
that plants are a natural source of N2O. So, the rice plant might also be a source of N2O. Now arises the
question of what the mechanism of N2O formation in the rice plant cell is, if the rice plant is a source of
N2O. Due to the unknown mechanisms of N2O formation in the plant cell, the rice plant might be
regarded as just a medium to transport the soil microorganism-produced N2O. Therefore, to elucidate
the origin of N2O emitted from paddies, we propose a potential pathway of N2O formation within the
rice plant.

2. Potential Pathway of N2O Formation in Rice Plants

Studies on plants’ N2O emissions, involving the usage of the 15N isotope labeling method, have
shown nitrate (NO3) as a precursor to N2O formation, but not ammonium (NH4) [8,14–16,22–24].
Furthermore, aseptically grown plants and axenic algal cells, when supplied with 15N-NO2, have also
been found to produce δ 15N-N2Obulk [16,22,25]. In addition, eukaryotic cells, when supplied with
15N-NO, produce δ 15N-N2Obulk via a reduced form of cytochrome c oxidase [26]. Therefore, NO3,
NO2, and nitrous oxide (NO) are the sources of N2O in eukaryotic cells. Thus, N2O formation in the
cells of rice plants might occur via the NO3-NO2-NO pathway.

Nitric oxide (NO), being a signaling molecule, is formed at the cellular level in every eukaryotic
organism [27]. There are, mainly, two potential pathways of NO formation in cells, namely the oxidative
and reductive pathways. The oxidative pathway is L-arginine-dependent and occurs when the oxygen
concentration in the cells is sufficient, whereas the reductive pathway is NO3 and NO2-dependent and
occurs at a low oxygen concentration in the cells [28,29]. Briefly, the reductive pathway can occur in
the hypoxic or anoxic cell environment, via NO3-NO2, and is catalyzed by various enzymes [27,28,30].
For example, NO3 taken by the plant root is reduced to NO2 in the cytoplasm by the cytoplasmic nitrate
reductase (NR) [29]. Hypoxia caused by flooding in the root may increase [31], decrease [32], or have
no effect [33] on NO3 uptake from the soil. However, flood-tolerant species such as rice might have
higher NR activities than flood-sensitive species [34]. During hypoxia and anoxia, the NO2 and NH4

assimilation to amino acids strongly decreases [35]. So, NO2 formed in the cytosol, due to the reduction
in NO3 by NR, is transported to the mitochondria by a protein similar to that in the chloroplast [30,36].
Moreover, the mitochondrial inner membrane anion channel may also be responsible for the transport
of nitrite to the mitochondria [30].

It is evident that the mitochondrion is a site of NO2 reduction [30,37]. NO2 in the mitochondria
is reduced to NO, and the process is pronounced under hypoxic to anoxic stress [30,38,39] and is
more favorable at a lower pH [40,41]. Accordingly, Klepper (1987) [42] and Rockel et al. (2002) [43]
reported a high emission of NO from plant leaves after the supply of NO3 under anaerobic conditions.
The reduction process in the mitochondria is catalyzed by various electron transport chains (ECTs) [39,
44]. For example, complex III [45] (Benamar et al., 2008), cytochrome c [44,46], and alternative oxidase
(AOX) [47] can catalyze the reduction of NO2 to NO in the mitochondria. The NO subsequently formed
is further reduced to N2O by a reduced form of eukaryotic cytochrome c oxidase [26,48]. The conversion
of NO into N2O by a reduced form of cytochrome c oxidase is more favorable at low levels of both NO
and O2 [48]. Cytochrome c oxidase in aerobic organisms is considered to be evolved from bacterial
denitrifying enzymes [49]. Therefore, it is believed that, under the condition of less oxygen in cells, the
enzyme exhibits some rudimentary nitrite and nitric oxide reductase activities [26,48,50]. Moreover,
quinone in the mitochondria can also catalyze the reduction of NO to N2O [51–53].

Therefore, the processes, like the reduction of NO2 to NO and NO to N2O, are favorable under
hypoxic and anoxic conditions in the mitochondria of plants. As discussed in the introduction section,
the emission of N2O from paddies is very high under non-continuous flooding, midseason drainage,
and reduced irrigation with midseason drainage management practices. All of these practices alter the
oxygen (O2) level significantly in the root cells of the rice plant [54,55], which may create a favorable
zone for N2O formation. Laboratory-based measurements also showed approximately 82–92% of
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N2O emissions from rice plants under soil flooded conditions, whereas 7–24% were found under
unsaturated soil water conditions [13]. Along with O2, NO3 also plays an important role in N2O
emission from plants, as NO3 is the precursor to N2O production in plants [14−16]. The role of O2

in the proposed pathway is supported by high NO2 and NO emissions from the soybean plant [56]
and N2O [13] from the rice plant under anaerobic conditions. Furthermore, the role of NO3 in the
proposed pathway is supported by the emission of 15N-labelled NO and δ 15N-N2Obulk from plants
when supplied with 15N-NO3 [23]. Therefore, NO3

− concentration in the root zone and cells might
affect the N2O emission from rice plants, as NO3

− uptake in the plant increases when its concentration
in the soil solution is increased [57,58]. It might be the reason that soil fertilization with KNO3 greatly
enhances N2O emission from rice plants [12]. Thus, N2O emitted by rice plants might be formed
in hypoxic or anoxic mitochondria, as shown in Figure 1. It further suggests the existence of an
incomplete denitrification (NO3-NO2-NO-N2O) pathway in the plant cells [16] when the oxygen
level in the cells declines. This is further supported by the production of N2O in plants after the
supply of NO3 and NO2, but not NH4 [14–16,22–24]. As there are many reports that the rice plant
emits a substantial amount of N2O [12,13], and that within the plant cell there exists evidence of the
NO3-NO2-NO-N2O pathway [26,29,30,37,48], this suggests that rice plants are a source of N2O. So,
considering rice plants only as a channel for soil-produced N2O might create a gap in understanding
N2O emission from paddies.
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3. Why It Is a Challenge to Understand the Role of Rice Plants with Current Approaches to
Methods from Field Studies?

Current methodologies involved in field-based measurements of N2O emissions from paddies
include closed static chamber-based methods [18,59] and the micrometerological approach (the
eddy covariance method) [10,60,61]. These methods include both soil and rice plants in the same
system [10,18,59–61], making it difficult to evaluate the role of rice plants. However, for other plants
with bigger stems (like trees), recent studies have developed separate chambers that help to capture the
fluxes of N2O by avoiding soil N2O emissions [62]. The chamber used for trees cannot be used for crop
species, like rice. The studies taken in field conditions [18,59–61] have not developed such chambers
that could separately quantify the N2O emitted from the rice plant and the rice soil. In this regard,
static chambers that could be used for crops like the rice plant should be developed and the N2O fluxes
from the rice plant and the rice soil (microbial) should be measured separately. This limitation has
made it difficult to evaluate the contribution of the rice plants to the total contribution from the paddy
and the N2O budget from rice plants remains unsolved. Although it might be a challenge to prove that
all N2O emitted by the plants in field conditions is from either soil microorganisms, plants, or both,
injecting δ 15N-N2Obulk into the soil profile and subsequently measuring the N2O fluxes in the soil and
the rice plants might help to distinguish the source. Additionally, to understand the role of the rice
plants in the paddy, we suggest measuring the isotopocule fingerprint of N2O (δ 15N, δ 15Nsp and δ
18O) emitted from rice plants and rice soil, as isotope analysis methods are a more powerful tool than
the flux measurement methods to distinguish the source of the N2O [63].

At the plant’s cellular level, the NO3-NO2-NO-N2O pathway, as represented in Figure 1 operates
during limited oxygen in cells and in the presence of NO3, NO2 [26,29,30,37,48]. Similarly, in the rice
soil the microbial pathway of denitrification (NO3-NO2-NO-N2O-N2) occurred during limited oxygen
conditions and in the presence of NO3 and NO2 [10,64]. So, both in the rice plant and the rice soil,
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the pathway of N2O formation occurred during the limited oxygen conditions, making the process
appear only to occur in the known site, i.e., the soil. As the N2O flux measurement was done with
the help of static chambers that captured the N2O fluxes in the soil and the rice plant at bulk [18,59],
this masked the role of the rice plant. However, as described in Section 2, the NO3-NO2-NO-N2O
pathway existed in the plant cells during hypoxia and anoxia and this pathway in the rice plant cells
was overlooked.

4. Role of NO3, NO2 and NO during Hypoxia and Anoxia Tolerance

Rice farming needs frequent irrigation, resulting in hypoxic and anoxic conditions in the root zone.
Under such conditions, oxygen concentration in the cells is too low to support aerobic respiration
and may cause energy deficit and, ultimately, cell death [65]. Various studies have shown that NO3

fertilization improves tolerance to low oxygen conditions in plants [31,66]. During hypoxia, and in
the absence of NO3, the plants’ growth is significantly disturbed [31]. So, for crop species like the
rice plant, which is frequently subjected to hypoxia and anoxia, NO3 might play important role in
improving tolerance to low oxygen.

Oxygen deprivation affects the plant mitochondria [67,68]. Nitrate and nitrite are shown to have a
protective effect on mitochondria under oxygen deprivation [68]. Hypoxia strongly decreases the NO2

reduction to NH4 and the NH4 assimilation to amino acids [35]. As NO2 assimilated to NH4 is reduced
during hypoxia [35], it is accumulated in the cytosol [30,65] or released to the external medium [66].
The accumulated NO2 can serve as an alternative electron acceptor at mitochondrial electron transport
chain (ETC), with NO as a significant product of the reaction [52]. Moreover, the pathway of
NO formation through NO3-NO2 in the mitochondria contributes to the ATP synthesis [33,65,69].
The NO3-NO2-derived ATP production in mitochondria can make an important contribution to hypoxia
survival [70]. Although NO is a signaling molecule [27–30], an excess of NO in the mitochondria can
be toxic to the cell and may result in the death of the cell [71]. Although N2O is a potent greenhouse
gas, the conversion of NO to N2O by cytochrome c oxidase [26,48] might play an important role in
maintaining the integrity of mitochondria during limited oxygen conditions, as an excess of NO can be
toxic to the cell [71]. So, the high emissions of N2O from rice plants during limited oxygen conditions,
as reported by Yan et al., (2000) [13] might be an efficient mechanism to reduce the toxicity of NO and
to maintain the integrity of the mitochondria under hypoxia and anoxia, therefore, this should be a
matter of further research.

5. Conclusions and Future Perspectives

In conclusion, NO3 is reduced to NO2 in the cytosol, and NO2 reduction to NO, along with NO
reduction to N2O, occurs in the mitochondria of rice plants. The pathway of N2O formation is formed
under hypoxic or anoxic conditions, and the water management practice may often cause hypoxia and
anoxia in the rice root, making the rice plant a potent source of N2O. Therefore, we suggest that, while
studying N2O emission from paddies, the potential pathway of N2O formation in rice plants should be
explored. To date, the rice plant is hypothesized to be a medium to transport the N2O produced in the
soil by microorganisms. However, recent studies suggest that plants can produce N2O, which may be
during the metabolism of NO to N2O in plant mitochondria [30], as shown in this study. The significant
amount of N2O emitted from rice plants suggests the possibility of the existence of the proposed
pathway of N2O formation in rice plants. Furthermore, the NO3-NO2-derived NO formation pathway
in the hypoxic and anoxic rice plant’s mitochondria helps the ATP synthesis and develop a tolerance to
limited oxygen conditions. The rice plant, being an anoxia-tolerant plant, in which NO2 dependent
NO production in mitochondria was sustained for almost twice as long as barley [67], suggests that
these plants might be a more potent producer of N2O. However, to date, N2O emitted from the paddy
is regarded as being produced by various microbes [10,21] and the N2O formation pathway in plants
is neglected. Future studies are certainly required to elaborate on the proposed pathway of N2O
formation in the rice plant. Furthermore, the transport of soil-produced N2O by plants, as hypothesized
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by many experiments [12,13], is not supported because there are no emissions of N2O by plants when
supplied with NH4 and during a high rate of N2O production in the rhizosphere [15]. So, it would
be misleading to understand the N2O emitted by the rice plant to be soil microorganism-produced.
Understanding the role of the rice plant is necessary for further strategies to be taken to mitigate
N2O emissions from the paddy. Quantifying the dual isotopocule fingerprint of N2O, along with
the molecular-based studies, would provide clear insights into the proposed mechanism. Therefore,
the extraction of rice mitochondria and the measuring of NO and N2O emissions under different
conditions of O2 and NO3 would provide insights into the N2O pathway. Besides, the reduced form of
cytochrome c oxidase and quinone are found to catalyze NO reduction to N2O and, therefore, their
roles in rice plants should be investigated in detail. Moreover, to differentiate the soil sources from the
plant source and quantify the portion of soil and plant contributions to total emissions will be a big
challenge with the current approach to the methodology used. The development of static chambers
that could capture the fluxes of N2O from the rice plant and separate the soil emissions would help to
evaluate the rice plant’s role in the total emissions.
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